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Abstract
Adjusting for latent covariates is crucial for es-
timating causal effects from observational tex-
tual data. Most existing methods only account
for confounding covariates that affect both
treatment and outcome, potentially leading to
biased causal effects. This bias arises from
insufficient consideration of non-confounding
covariates, which are relevant only to either the
treatment or the outcome. In this work, we aim
to mitigate the bias by unveiling interactions
between different variables to disentangle the
non-confounding covariates when estimating
causal effects from text. The disentangling pro-
cess ensures covariates only contribute to their
respective objectives, enabling independence
between variables. Additionally, we impose a
constraint to balance representations from the
treatment group and control group to alleviate
selection bias. We conduct experiments on two
different treatment factors under various sce-
narios, and the proposed model significantly
outperforms recent strong baselines. Further-
more, our thorough analysis on earnings call
transcripts demonstrates that our model can ef-
fectively disentangle the variables, and further
investigations into real-world scenarios provide
guidance for investors to make informed deci-
sions1.

1 Introduction

Causal Inference (Holland, 1985; Pearl, 2000; Mor-
gan and Winship, 2007; Imbens and Rubin, 2015;
Hernan and Robins, 2020) aims to identify how
the treatment variable affects the outcome vari-
able. For example, to estimate the effect of "po-
litical risk" (treatment) faced by a company on its
"stock movement" (outcome). Early research ef-
forts (Abadie and Imbens, 2004; Bardone-Cone
and Cass, 2006; Kurth et al., 2006; Murnane and
Willett, 2010; Keele, 2015) focusing on conduct-
ing randomized control trials (RCTs) to estimate

1Our code and data are released at https://github.com/
zyxnlp/DIVA.
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Figure 1: The causal diagram for our proposed model.
Shaded nodes denote observed variables. Transparent
nodes denote latent covariates derived from the tran-
scripts, among which, nodes outlined in red represent
non-confounding covariates that impact only either the
treatment T or outcome O, whereas the node outlined in
black denotes the confounding covariate that influences
both T and O.

causal effects from structural numeric data have
made significant progress. However, these methods
requires extensive effort in treatment assignment
mechanism (Halloran and Struchiner, 1995) and
may suffer from ethical issues. Natural Language
Processing (NLP) researchers are increasingly in-
terested in estimating causal effects from observa-
tional unstructured text. Early literature (Choud-
hury et al., 2016; Olteanu et al., 2017; Pryzant
et al., 2018) largely focuses on transforming texts
into high-dimensional vectors using lexical features
for confounding adjustment. Recent research pri-
marily focuses on learning adequate representa-
tions through advanced NLP models. For example,
Veitch et al. (2020) fine-tuned BERT (Devlin et al.,
2019) to produce contextual text representations for
efficient estimation of causal effects. Later, Pryzant
et al. (2021) introduced strategies involving treat-
ment enhancement and text adjustment to estimate
the causal effects related to linguistic properties.

Despite their efficacy, such approaches operate
under the assumption that text solely encompasses
confounding covariates. This assumption raises
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a potential issue due to the possible existence of
unobserved non-confounding covariates that are
pertain exclusively to either the treatment or the
outcome. The causal estimation may be biased if
we fail to differentiate non-confounding covariates
from confounding ones when learning an estima-
tion function through effective modeling of variable
interactions (Pearl, 2010; Wooldridge, 2016). As
illustrated in Figure 1, if we aim to accurately esti-
mate the causal effects of treatment T (e.g, Political
Risk) on the outcome Y (e.g., Stock Movement),
we intentionally omit the consideration of the im-
pacts originating from Zy (e.g., Expected Revenue).
This mirrors our decision not to account for the in-
fluence of Zc (e.g., Geographical Location) on Y ,
as such inclusion could obfuscate our ability to
discern the true effects originating from T .

In this paper, we propose a framework named
Disentangling Interaction of VAriables (DIVA),
specifically tailored for causal inference from text.
We assume that the text carries sufficient informa-
tion to identify the causal effects and consider the
existence of non-confounding covariates. Drawing
on the success of latent variable models for causal
inference in literature (Louizos et al., 2017; Zhang
et al., 2021), we use Variational Auto-Encoder
(VAE) (Kingma and Welling, 2014) to infer con-
founding and non-confounding covariates. Addi-
tionally, we design a disentanglement module to
ensure that covariates only contribute to their spe-
cific objectives, enabling independence between
covariates. Furthermore, we propose to impose
a constraint to balance representations from the
treatment group and control group, which helps to
mitigate selection bias.

Our contributions are summarized as follows:

• We propose the Disentangling Interaction of
VAriables (DIVA) approach, tailored to mit-
igate the bias issue in causal inference from
text.

• Our model is able to effectively model inter-
actions among diverse variables, ensuring that
each variable primarily contributes to its spe-
cific objective and promotes maximal indepen-
dence.

• Our experiments demonstrate state-of-the-art
results in various scenarios. A detailed analy-
sis shows that our model effectively disentan-
gles different variables given inherently high-
dimensional nature of text representation, pro-

viding valuable insights for estimating causal
effects from text.

• To the best of our knowledge, we are pioneers
in addressing biased issues arising from inad-
equate consideration of non-confounding co-
variates when estimating causal effects from
text.

2 Related Work
Causal estimation with text data Early efforts
in estimating causal effects from text focused
on using lexical features for confounding adjust-
ment (Choudhury et al., 2016; Choudhury and Kıcı-
man, 2017; Olteanu et al., 2017). Later studies
investigating causal effects were devoted to effec-
tively converting text into low-dimensional repre-
sentations (Falavarjani et al., 2017; Pham and Shen,
2017; Pryzant et al., 2018; Weld et al., 2020; Cheng
et al., 2021). Another line of work focused on us-
ing causal formalisms to make NLP methods more
reliable (Wood-Doughty et al., 2018, 2021; Feder
et al., 2021, 2022). Most recently, pre-trained lan-
guage models such as BERT (Devlin et al., 2019)
significantly benefited causal estimation. For ex-
ample, Veitch et al. (2020) fine-tuned BERT us-
ing multi-task learning to produce contextual text
representations for efficient estimation of causal
effects. Later, Pryzant et al. (2021) introduced
treatment-boosting and text-adjusting strategies to
estimate the causal effects of linguistic properties.
Our work differs from these works in three main as-
pects. First, we aim to mitigate the bias that arises
from insufficient consideration of non-confounding
covariates in causal inference. Second, we disen-
tangle non-confounding covariates by encouraging
independence among the variables, ensuring that
each one contributes solely to its respective objec-
tive. Third, we introduce regularization to balance
representations from the treatment group and con-
trol group, which helps to mitigate selection bias.

Causal inference with latent variable model
Latent variable models have demonstrated their
effectiveness and gained significant popularity in
causal inference (Fong and Grimmer, 2016; Srid-
har and Getoor, 2019; Roberts et al., 2020). For
example, Louizos et al. (2017) used Variational
Auto-Encoder (VAE) (Kingma and Welling, 2014)
to infer confounders from latent space to estimate
the effect of job training on employment follow-
ing the training. Rakesh et al. (2018) inferred the
causation that leads to spillover effects between
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pairs of units by incorporating VAE to learn the
latent attributes as confounders. We follow the
line of decomposing latent factors for causal in-
ference (Hassanpour and Greiner, 2020; Wu et al.,
2020; Vowels et al., 2020; Yang et al., 2021; Zhang
et al., 2021). However, there are several key distinc-
tions in our approach. Firstly, while previous stud-
ies attempted to disentangle variables for causal
inference in structured numeric data, we specifi-
cally focus on estimating causal effects from tex-
tual data. The inherently high-dimensional nature
of text features presents substantial challenges in
disentangling various variables within the latent
space, leading to biased causal estimations. Sec-
ondly, we tailor distinct constraints to effectively
model interactions among diverse variables, ensur-
ing that each variable primarily contributes to its
specific objective and promotes maximal indepen-
dence. Lastly, we optimize the maximum mean
discrepancy loss to achieve a balanced representa-
tion of samples from both treatment and control
groups.

NLP for earnings call transcripts Earnings call
transcripts (Frankel et al., 1997; Bowen et al., 2001;
Price et al., 2011) have gained much popularity in
financial analysis using NLP tools. Early work
by Wang and Hua (2014) formulated financial
risk prediction as a text regression task and used
handcrafted features to improve SVM performance.
Later, researchers (Qin and Yang, 2019; Sawhney
et al., 2020; Sang and Bao, 2022; Pataci et al., 2022;
Shah et al., 2022; Yang et al., 2022) focused on
stock prediction by employing sophisticated neural
networks with financial pragmatic features. An-
other line of work focused on analyzing the content
of earnings call transcripts (Sawhney et al., 2021;
Alhamzeh et al., 2022). For example, Keith and
Stent (2019) examined analysts’ decision-making
behavior as it pertains to the language content of
earnings calls. More in line with our work, Hassan
et al. (2017) adapted linguistic tools to investigate
the extent of political risk faced by firms over time
and its correlation with stocks, hiring, and invest-
ment. In contrast with this prior work, our primary
focus lies on estimating causal effects between fi-
nancial interests, such as the impact of political risk
on stocks, rather than measuring their correlations.

3 Preliminaries

Causal inference from text aims to estimate the
causal effects based on observed textual data. Let

D = {Xi, Ti, Yi}Ni=1 represent the N observa-
tional examples. Here, Xi is the observed textual
data (e.g., earnings call transcript) for the i-th exam-
ple (e.g., company), and Ti ∈ {0, 1} is the binary
treatment variable2. Ti = 1 indicates that the i-
th example belongs to the treatment group (e.g.,
a company faced high political risk). Conversely,
Ti = 0 indicates that the i-th example belongs to
the control group (e.g., a company faced low or
no political risk). The causal effect τi for the i-
th example is defined as the expected difference
between its potential outcome Yi (e.g., stock volatil-
ity) of the treatment and control groups, known as
the Individual Treatment Effect (ITE):

τi = Yi(Ti = 1)− Yi(Ti = 0) (1)

One of the most challenging problems in esti-
mating causal effects from observational data is
the impossibility of simultaneously observing both
potential outcomes Yi(Ti = 0) and Yi(Ti = 1) for
a given example (Rubin, 1974; Holland, 1985).
In other words, D only includes the observed out-
come Yi for each example, but not the unobserved
counterfactual outcome, which refers to the poten-
tial outcome for the i-th example in the alternative
group. Nonetheless, it’s feasible to identify the
Conditional Average Treatment Effect (CATE) and
the Average Treatment Effect (ATE) from obser-
vational data under certain assumptions (Spława-
Neyman et al., 1990; Rubin, 1974; Pearl, 2009):

Assumption 1 (Stable Unit Treatment Values As-
sumption (SUTVA)): The potential outcomes of
one example are not influenced by the treatment as-
signed to other examples, and there are no varying
forms or levels of the treatment that could result in
different potential outcomes: Yi(t1, ...ti, ...tn) =
Yi(ti), and Y (T = ti) = Yi(Ti).

Assumption 2 (Unconfoundedness): The po-
tential outcomes are conditionally independent
of the treatment given a set of observed covari-
ates: (Y (1), Y (0)) ⊥⊥ T .

Assumption 3 (Positivity): Every individual has
a non-zero probability of receiving treatment or
control for all observed variables: 0 < P (T =
1|X = x) < 1.

In line with the potential outcome framework
outlined by Spława-Neyman et al. (1990) and Ru-
bin (1974), and with the above assumptions, we

2We defer the scenarios involving multiple treatments for
future exploration.
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Figure 2: DIVA architecture.

can define the CATE as follows:

E[τi|X = xi] = E[Yi(1)− Yi(0)|X = xi] (2)

where Yi(1) and Yi(0) are the potential outcomes
had the i-th individual received the treatment or
control. X is the observed variable which is suffi-
cient for causal estimation. The ATE can be written
as:

E[τi] = EX [τi|X = xi] (3)

Problem Definition Defining Q(t, x) =
E[Yi(t)|X = x] as the potential outcome of
observing treatment T = t for an example with
X = x, the objective is to learn an estimation
function Q̂(t, x) that can accurately predict both
the observed outcome and counterfactual outcome
from D. Therefore, we can plug in Q̂ to estimate
CATE:

τ̂ =
1

n

n∑

i=1

[
Q̂ (1, xi)− Q̂ (0, xi)

]
(4)

4 DIVA: Disentangling Interaction of
VAriables

In this section, we present the proposed Disen-
tangling Interaction of VAriables (DIVA) frame-
work (Figure 2) for causal inference from textual
earnings call transcripts. Although previous re-
search (Veitch et al., 2020; Pryzant et al., 2021) has
explored estimating causal effects from text, one
of the core contributions of our work is that we
disentangle various variables to effectively model
the interactions among them. This in turn enables
us to learn a more accurate estimation function Q̂
for predicting outcomes, thereby reducing the bias
in the causal estimation.

Our proposed DIVA framework consists of a
few steps. First, we extract the contextualized

text representation from the pre-trained language
model. Following that, we employ a variational
auto-encoder to determine the posterior distribution
for various latent variables. Once this distribution
is obtained, we use the variable disentanglement
module to encourage independence among the vari-
ables, ensuring that each one contributes solely
to its respective objective. Next, we utilize the
disentangled variables to learn the Q̂ function via
the outcome prediction task. Finally, we plug the
trained Q̂ into a pre-determined statistic to estimate
the ATE.

4.1 Text Encoder
Given a transcript x = [w1, ..., wn] that consists of
n words, we adopt the pre-trained language (PLM)
model FinBERT (Araci, 2019)3 to obtain the con-
textual representation h for each transcript:

h = PLM(x) (5)

4.2 Latent Variable Inducer
Inspired by recent works (Louizos et al., 2017;
Zhang et al., 2021), we use the VAE to induce
latent variables. Given the contextualized repre-
sentation h. We compute the approximation vari-
ational posterior qϕ(z|h) using the inference net-
work Φ(h;ϕ):

µ = Wµh+ bµ

logσ2 = Wσh+ bσ

z = µ+ σ ⊙ ϵ

(6)

where Wµ, Wσ, bµ, and bσ are parameters for
two MLPs. µ and σ define a multivariate Gaus-
sian distribution with a diagonal covariance ma-
trix, and ϵ ∼ N (0, I). Then, we sample from
qϕ(z|h) ≃ N (µ, σ2I) to generate z ∈ Rl as the
latent representation, where l is the dimension of
the representation. Under the assumption that a
transcript contains not only the confounding co-
variates, which affects both treatment and outcome,
but also the non-confounding covariates specific
to either the treatment or the outcome, we use
separate inference networks Φc(h;ϕc) for infer-
ring confounding covariates zc, and Φt(h;ϕt) and
Φy(h;ϕy) for inferring non-confounding covari-
ates zt and zy, respectively. We use a one-layer
parameterized MLP Θ(h; θ) := pθ(h|zt, zc, zy)

3We chose FinBERT due to its adaptability to text in fi-
nance domain. However, other PLMs could serve as suitable
replacements.
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as the decoder to reconstruct h. The objective of
the latent variable inducer is to maximize the evi-
dence lower bound (ELBO):

Lvae = EΦt,Φc,Φy [logΘ(h; θ)]−
∑

k

KL(Φk||p(zk))

(7)
where k ∈ {c, t, y}, and p(zk) is the prior follows
the Gaussian distribution N (0, I).

4.3 Latent Variable Disentanglement
Despite the successful application of decomposing
variables in previous work (Zhang et al., 2021),
unfortunately, the high-dimensional nature of text
features presents significant obstacles in disentan-
gling different variables in a latent space, leading
to biased causal estimation. As will be shown in
Section 5.2 (e.g., TEDVAE v.s. CEVAE), consider-
ing only non-confounding covariates, without the
ability to effectively model interactions between
different variables, fails to consistently achieve bet-
ter performance in textual data.

To address this issue, we tailor various dis-
tinct constraints to effectively disentangle non-
confounding covariates from confounding ones, en-
suring that each variable primarily contributes to
its specific objective and promotes maximal inde-
pendence.

Specifically, we first minimize the Maximum
Mean Discrepancy (MMD) (Gretton et al., 2012)
loss to balance representations from the treatment
group and the control group:

Lmmd =
∑

k∈{c,t,y}
M(ztreat

k ; zcontl
k ) (8)

where M(; ) denotes the maximum mean discrep-
ancy metric. ztreat

k and zcontl
k are the representa-

tions in the treatment group and the control group,
respectively. The nice property of this loss is that
minimizing the loss essentially reduces the discrep-
ancy between different groups, encouraging the
satisfaction of the positivity assumption. Concur-
rently, it promotes the inference network to gener-
alize from the factual to counterfactual domains,
leading to better counterfactual inference (Johans-
son et al., 2016).

Next, we introduce an orthogonal loss to maxi-
mize the independence between zt, zc, and zy as
much as possible:

Lort =
∑

k,v

Orth(zk; zv) (9)

where k, v ∈ {t, c, y; k ̸= v}. Orth(zk; zv) =
||zk · zT

v − I||, and I is the identity matrix.
Intuitively, we expect that the prediction of the

treatment label should primarily rely on zt and zc,
rather than zy. To ensure this holds, we introduce
the treatment loss:

Lt = logP (t|zy)− logP (t|zt, zc) (10)

where t ∈ {0, 1} indicates whether the transcript
belongs to the treatment group.

Similarly, we expect the prediction of outcome
should primarily rely on zy and zc, and define the
outcome loss:

Lo = O(y, Q̂(t, zy, zc)) (11)

where y ∈ Y is the potential outcome. O is an
MSE loss for real-valued outcomes and a cross-
entropy loss for the binary outcomes.

The overall objective function of the latent vari-
able disentanglement module is formulated as:

Ld = Lvae + αLt + βLo + γLort + ηLmmd (12)

where α, β, γ, and η are hyper-parameters.

4.4 Final Training Objective

Following Veitch et al. (2020) and Pryzant et al.
(2021), we introduce a Masked Language Model
(MLM) objective that predicts words that are ran-
domly4 masked, in order to adapt text represen-
tation, making it more efficient for treatment and
outcome prediction. Our final objective function is
a multi-task learning objective:

L = Ld + λLmlm (13)

where λ is the coefficient that balances the contri-
bution of each component in the training process.

5 Experiments

We conduct experiments on both semi-synthetic
data and real-world application scenarios with two
objectives: 1) to empirically evaluate the effective-
ness of our proposed model, and 2) to investigate
practical questions in the field of finance and gain
insights from the application of our model to these
real-world scenarios.

4Following Devlin et al. (2019), we masked 15% of the
words in each transcript.
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5.1 Experimental Setup

Baselines The baseline models selected for com-
parison can be broadly categorized into three
groups: deep outcome regression models, latent
variable models, and representation learning mod-
els. Deep outcome regression models include:
• TARNet Shalit et al. (2017) uses separate

feed-forward networks to predict outcomes and
counterfactuals.

• CFRNet Shalit et al. (2017) adds an integral
probability metric (IPM) regularization term to
TARNet to balance representation from differ-
ent groups.

• DragonNet Shi et al. (2019) extends TARNet
with an additional head adapts representation
by modeling the propensity score.

The latent variable based models are:
• CEVAE Louizos et al. (2017) uses VAE to infer

confounders from an unknown latent space to
estimate causal effects.

• TEDVAE Zhang et al. (2021) extends CEVAE
by decomposing latent factors into three sets:
instrumental, confounding, and risk factors.

The representation learning models are:
• CausalBert Veitch et al. (2020) develops an

approach to adjust for confounding features of
text to estimate causal effects from observa-
tional data.

• TextCause Pryzant et al. (2021) introduces
treatment-boosting and text-adjusting strategies
to estimate causal effects of linguistic proper-
ties.

Whenever possible, we generate results for base-
lines using the officially released source code. In
cases where the code of models is not available at
the time of writing, we independently implement
those models using the optimal hyper-parameter
settings reported in the respective papers. For a
fair comparison, we use FinBERT (Araci, 2019) to
encode text for generating contextualized feature
representations for all models.

Evaluation Metric We evaluate the results
using the precision in estimation of heteroge-
neous effect (PEHE) (Hill, 2011), which re-
flects model’s individual-level estimation perfor-

mance:
√

PEHE =
√

1
N

∑N
i=1 (τi − τ̂i)

2. We
also report the error of ATE estimation δATE =
|τ − 1

N

∑N
i=1 τ̂i|, which measure the model’s

population-level estimation performance.

Setup Details In our experimental evaluations,
each model is trained for 30 epochs with a linear
warmup for the first 10% of the training steps. We
employ AdamW (Loshchilov and Hutter, 2019) as
the optimizer. We set the maximum learning rate
at 5e-5 and use a batch size of 86. We select the
optimal model weights based on either accuracy
or the MSE loss of the Q̂ function on the develop-
ment set5. We report the average results along with
the mean absolute deviations across five runs with
randomly initialized parameters.

5.2 Experiments on Synthetic Data

Dataset
Since ground truth causal effects ITE τi and ATE τ ,
are typically inaccessible in real-world scenarios,
directly training a model for causal inference is im-
practical. Therefore, we follow Veitch et al. (2020)
and Pryzant et al. (2021), using real text and meta-
data to generate semi-synthetic data to empirically
evaluate our proposed model. We collect 115,880
transcripts from 1,438 companies across twelve dif-
ferent sectors, for earnings calls held between May
2001 and October 2019. Then, we construct differ-
ent datasets for two distinct treatment variables -
political risk (Tpr) and sentiment (Ts) - under two
separate scenarios: stock volatility (Yvol) and stock
movement (Ymov). To derive Tpr , we follow Has-
san et al. (2017) to calculate the political risk score6

for each transcript. We then select the top 15,000
transcripts with the highest scores as the treatment
group (Tpr = 1), indicating that the company faces
high political risk. Conversely, we designate the
bottom 15,000 transcripts with the lowest scores as
the control group (Tpr = 0), suggesting these com-
panies face lower or no political risk. To derive Ts,
we follow Maia et al. (2018) and Araci (2019) to
calculate the sentiment score7 for each transcripts.
We select the top 15,000 transcripts with the high-
est scores as the treatment group (Ts = 1) and
select the bottom 15,000 transcripts with the lowest
scores as the control group (Ts = 0). Finally, we
simulate the outcomes by using the treatment vari-
able T ∈ {Tpr, Ts} along with observed covariates,
Csize and Csect, which represent the size of the
company in terms of the number of full-time em-
ployees and the industrial sector that the company
operates. The real-valued stock volatility Yvol can

5Please refer to Appendix B for detailed hyper-parameters.
6https://github.com/mschwedeler/firmlevelrisk
7https://github.com/ProsusAI/finBERT
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Model
Political risk Sentiment

√
PEHE† δATE† √

PEHE† δATE†

Stock Volatility

TARNet 1.196±0.019† 0.480±0.049† 1.213±0.019† 0.491±0.049†

DragonNet 1.173±0.022† 0.450±0.048† 1.190±0.021† 0.463±0.046†

CFRNet 1.169±0.020† 0.445±0.045† 1.185±0.020† 0.455±0.044†

CEVAE 1.197±0.025† 0.477±0.050† 1.211±0.024† 0.491±0.044†

TEDVAE 1.212±0.056† 0.447±0.101† 1.228±0.056† 0.459±0.099†

CausalBert 1.097±0.032† 0.313±0.079† 1.121±0.034† 0.336±0.080†

TextCause 1.096±0.019† 0.114±0.042† 1.100±0.019† 0.114±0.028†

DIVA 1.003±0.003† 0.033±0.012† 1.010±0.007† 0.027±0.008†

Stock Movement

TARNet 0.497±0.001† 0.086±0.009† 0.497±0.001† 0.089±0.010†

DragonNet 0.497±0.003† 0.084±0.025† 0.497±0.004† 0.088±0.026†

CFRNet 0.497±0.003† 0.083±0.025† 0.497±0.004† 0.086±0.025†

CEVAE 0.499±0.004† 0.076±0.022† 0.499±0.004† 0.079±0.020†

TEDVAE 0.498±0.007† 0.095±0.024† 0.497±0.007† 0.098±0.023†

CausalBert 0.496±0.002† 0.083±0.020† 0.496±0.001† 0.088±0.017†

TextCause 0.526±0.008† 0.038±0.028† 0.522±0.009† 0.030±0.028†

DIVA 0.483±0.001† 0.009±0.004† 0.481±0.001† 0.015±0.003†

Table 1: The causal estimation results of different treatment factors on stock volatility and stock movement. Lower is
better. The best results on each dataset are in bold. The second-best ones are underlined. The † marker indicates that
the p-value is less than 0.05 compared to the second-best results.The parameter setting used is (α=1, β=1, γ=0.5,
ϵ=1) for Equation (14) and (15).

be simulated as follows:

Yvol = αvT + βv1(π(Csect)− γv0)

+ βv2(π(Csize)− γv1) + ϵv
(14)

The binary stock movement (Up or Down), Ymov

can be simulated as:

Ymov ∼ Bernoulli(σ(αmT + βm1(π(Csect)− γm0)

+ βm2(π(Csize)− γm1) + ϵm))
(15)

where π(Csize) and π(Csect) are propensity socres
estimated from meta data. αv and αm control treat-
ment strength. βv1, βv2, βm1, and βm1 control con-
found strength. γv1, γv2, γm1, and γm2 are offset.
σ is the sigmoid function.

We split the dataset into the training, valida-
tion, and test sets in an 8:1:6 ratio and conduct
experiments in a cross-validated manner, follow-
ing Egami et al. (2018) and Pryzant et al. (2021).
We conduct experiments for the two different treat-
ment variable Tpr and Ts under the scenarios of
stock volatility and stock movement, respectively.
Detailed statistics of each scenario can be found in
the Appendix.

Main Results
As shown in Table 1, DragonNet and CFRNet gen-
erally achieve better results than TARNet, suggest-

ing that additional constraints indeed benefit the
outcome regression model in causal estimation. For
example, DragonNet improves upon the TARNet
by 0.03 in terms of δATE based on political risk in
the stock volatility scenario. We also observe that
Causalbert and TextCause generally achieve bet-
ter results than the deep outcome regression mod-
els such as TARNet, DragonNet, and CFRNet, as
well as latent variable models such as CEVAE and
TEDVAE. This suggests that the inclusion of the
masked language modeling task has a positive im-
pact on causal inference from text. Our model con-
sistently outperforms all compared baseline models
across both evaluation metrics and under both sce-
narios. For instance, DIVA demonstrates a signif-
icant improvement (with p < 0.05) over the best-
performing baseline TextCause and the CausalBert
model.

Interestingly, we observe that TEDVAE strug-
gles to consistently outperform CEVAE. In par-
ticular, TEDVAE achieves better results in terms
of δATE but performs worse in terms of

√
PEHE

compared to CEVAE in the stock volatility sce-
nario. We have contrary observations for TEDVAE
and CEVAE under the stock movement setting.
These results demonstrate that only considering
non-confounding covariates, without the ability to
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Latent Covariates Political Risk Sentiment

zt zc zy
√

PEHE δATE
√

PEHE δATE

Stock Volatility

✓ 1.0107 0.0684 1.0179 0.0860
✓ ✓ 1.0062 0.0502 1.0110 0.0519

✓ ✓ 1.0054 0.0696 1.0140 0.0516
✓ ✓ ✓ 1.0034 0.0332 1.0102 0.0273

Stock Movement

✓ 0.4891 0.0407 0.4857 0.0358
✓ ✓ 0.4900 0.0440 0.4881 0.0579

✓ ✓ 0.4845 0.0390 0.4841 0.0409
✓ ✓ ✓ 0.4831 0.0095 0.4814 0.0145

Table 2: Ablation study of our proposed model consid-
ering various latent covariates. Lower values are better.

effectively modeling interactions among various
variables, falls short of consistently devlivering sat-
isfactory performance in textual data. However, our
DIVA model consistently surpasses both CEVAE
and TEDVAE by a substantial margin across all sce-
narios, which clearly demonstrates the importance
of the constraints we introduced and underscores
the effectiveness of our proposed model to estimate
causal effects more accurately from text data.

Latent Covariates Analysis
To further investigate the influence of various co-
variates on model performance, we conduct an
in-depth analysis of DIVA, focusing on the dis-
entanglement of different covariates. As shown
in Table 2, merely disentangling non-confounding
covariates zt or zy from the confounding covariate
zc fails to consistently achieve better results com-
pared to considering only zc. Our model yields
the best performance with the simultaneous dis-
entanglement of zt, zc, and zy. This results un-
derscore the necessity of comprehensive covariate
disentanglement, specifically, disentangling both
non-confounding covariates zt and zy from the
confounding covariate zc, as opposed to a partial
or singular focus.

Simulation Sensitivity Analysis
To evaluate the robustness of our proposed DIVA
model, we have chosen to compare it with the
two strongest baseline CausalBert and TextCause,
under different simulation settings (α=1, β=10,
γ=0.5, ϵ=4) in Equation (14) and (15). As shown
in Table 3, our DIVA model consistently outper-
forms both CausalBert and TextCause across both
evaluation metrics and under both scenarios. These
results suggest that the superior performance of our
model is not sensitive to changes in the simulation

Model
Political Risk Sentiment

√
PEHE δATE

√
PEHE δATE

Stock Volatility

CausalBert 4.0810 0.3858 4.1610 0.3904
TextCause 4.4103 0.2968 4.3927 0.2926
DIVA 4.0589 0.0534 4.1378 0.0592

Stock Movement

CausalBert 0.4992 0.0400 0.4999 0.0531
TextCause 0.5306 0.0148 0.5337 0.0286
DIVA 0.4973 0.0072 0.4966 0.0103

Table 3: Causal estimation results (lower is better) under
parameter settings (α=1, β=10, γ=0.5, ϵ=4) in Equa-
tion (14) and (15).

Model
Political risk Sentiment

√
PEHE† δATE† √

PEHE† δATE†

Stock Volatility

DIVA 1.003 0.033 1.010 0.027
—w/o- mlm 1.004 0.062 1.011 0.068
—w/o- mmd 1.003 0.040 1.010 0.032
—w/o- ort 1.003 0.034 1.010 0.036

Stock Movement

DIVA 0.483 0.009 0.481 0.015
—w/o- mlm 0.487 0.057 0.485 0.044
—w/o- mmd 0.486 0.036 0.485 0.035
—w/o- ort 0.486 0.036 0.485 0.030

Table 4: Ablation study of our proposed model on var-
ious scenarios. Lower values are better. ‘w/o mlm’
− without masked language modeling objective; ‘w/o
mmd’ − without the Maximum Mean Discrepancy
(MMD) objective; ‘w/o ort’ − without the orthogonal
loss.

parameter setting, demonstrating the robustness or
our DIVA model.

Ablation Study
We conducted experiments to examine the effec-
tiveness of the major components of our proposed
model. Table 4 shows the ablation results on stock
volatility and stock movement scenarios. We ob-
serve that each component, namely Lmlm, Lmmd,
and Lort contributes to the overall performance of
the model. Specifically, with the removal of the
Lmmd, the performance of the full model drops con-
siderably in terms of

√
PEHE. Similarly, removing

Lmlm results in a considerable drop in performance,
measured by δATE. These observations demon-
strate the vital role played by the Lmmd regulariza-
tion term, which encourages closer representations
of individuals from different groups in the latent
space. Incorporating the Lmlm term benefits the es-
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Figure 3: Causal effect of political risk and sentiment
on the actual stock over trading days.

timation of CATE from text data. This phenomenon
aligns with previous studies such as (Veitch et al.,
2020; Pryzant et al., 2018).

5.3 Real World Scenario Application
To answer the questions of "How does political risk
faced by a company affect its stock?" and "How
does the sentiment conveyed in the earning call
transcription of a company affect its stock?", we
apply our proposed model to estimate the treatment
effect of political risk and sentiment on actual stock
volatility and stock movement.

Stock Volatility Following Qin and Yang (2019)
and Kogan et al. (2009), we obtain the stock prices
from Yahoo Finance8 by stock-market-scraper9 and
calculate stock volatility as:

v[t−µ,t] = ln



√∑µ

i=0 (rt−i − r̄)2

µ


 (16)

where rt =
Pt

Pt−1
− 1 is the stock return between

the close of trading day t− 1 and day t, Pt is the
divedend-adjusted closing stock price at t. r̄ is the
mean of rt over the period of day t − µ to day t.
We choose different µ ∈ {3, 7, 15, 30} to evaluate
the short-term and long-term causal effects.

Stock Movement Following (Medya et al.,
2022), we define stock movement as:

mt =

{
1, if rt ≥ v̄[t−µ,t]

0, else
(17)

where v̄[t−µ,t] is the mean stock volatility over the
period of day t− µ to day t.

8https://finance.yahoo.com/
9https://github.com/gunjannandy/

stock-market-scraper

Figure 4: Causal effect of political risk on stock volatil-
ity over companies in different sectors.

Result As shown in Figure 3, we observe that the
causal effects of political risk on stock increases in
the short term (3 days) and begin to decline over
time. Conversely, the causal effect of sentiment on
stock movement decreases over time.

Analysis To further investigate the effect of po-
litical risks on the stock market for different types
of companies, we examine the causal effect of po-
litical risk faced by companies in different sectors
on their stock prices. Figure 4 shows that the stock
volatility of companies in Industrials Goods, Real
Estate, and Energy are most significantly affected
by the political risk they faced, while companies in
Consumer Cyclical and Technology are affected to
the smallest extent. The political risks faced by the
Healthcare companies have no effect on their stock
volatility.

6 Conclusion

In this paper, we propose DIVA, a novel framework
designed specifically for causal inference from text.
We verify its effectiveness by estimating the causal
effects of treatment factor (e.g., political risk or sen-
timent) on a company’s stock (e.g., stock volatil-
ity or movement) from the earnings conference
call transcripts. The experimental results demon-
strate that our model can effectively disentangle
representations with different functionalities from
text features by imposing constraints and utilizing
multi-task learning. Furthermore, our analysis of
real-world applications highlights the causal rela-
tionship between political risks faced by a company
and its stock prices, providing valuable insights for
the finance and investment industry.
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Limitations

Our work has a number of limitations. First, we
constructed a balanced dataset in which the number
of transcripts in the treatment group is equal to that
in the control group. While this facilitated rela-
tively easier causal estimation, it does not account
for the selection bias that commonly exists in real-
world scenarios. Consequently, causal estimation
in such scenarios becomes more challenging. Sec-
ond, we modeled the relation between treatment
factors and stocks as a linear relation. However, in
reality, this relationship is likely to be much more
complex and nonlinear. A more precise modeling
of this relationship would enhance the accuracy of
our causal estimation.
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A Data Statistics

Table A1 shows the detailed statistics of each sce-
nario.

Treatment
Train Dev Test

# Treat. # Ctrl. # Treat. # Ctrl. # Treat. # Ctrl.

Stock Volatility

Political Risk 8,000 8,000 1,000 1,000 6,000 6,000
Sentiment 8,000 8,000 1,000 1,000 6,000 6,000

Stock Movement

Political Risk 8,000 8,000 1,000 1,000 6,000 6,000
Sentiment 8,000 8,000 1,000 1,000 6,000 6,000

Table A1: Data statistics.

B Hyper-parameters

Table A2 shows the detailed hyper-parameters set-
ting of DIVA under all scenarios.

Hyper-parameter

Framework Pytorch
GPUs 1 A100
Batch Size 86
Epoch 30
Warmup Steps 10%
Learning Rate 5.00E-05
Optimizer AdamW
Adam ϵ 1E-08
Max Sequence Length 512
Hidden Size 798
Hidden Layer 12
Dropout probability 0.2
Latent Dimension 200
Coefficient α 1
Coefficient β 1
Coefficient γ 0.1
Coefficient η 0.1
Coefficient λ 0.01

Table A2: Hyper-parameters of DIVA.
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