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Abstract

Large Language Models (LLMs) have made
remarkable strides in various tasks. Whether
LLMs are competitive few-shot solvers for in-
formation extraction (IE) tasks, however, re-
mains an open problem. In this work, we
aim to provide a thorough answer to this ques-
tion. Through extensive experiments on nine
datasets across four IE tasks, we demonstrate
that current advanced LLMs consistently ex-
hibit inferior performance, higher latency, and
increased budget requirements compared to
fine-tuned SLMs under most settings. There-
fore, we conclude that LLMs are not effec-
tive few-shot information extractors in gen-
eral 1. Nonetheless, we illustrate that with
appropriate prompting strategies, LLMs can
effectively complement SLMs and tackle chal-
lenging samples that SLMs struggle with. And
moreover, we propose an adaptive filter-then-
rerank paradigm to combine the strengths of
LLMs and SLMs. In this paradigm, SLMs
serve as filters and LLMs serve as rerankers.
By prompting LLMs to rerank a small portion
of difficult samples identified by SLMs, our pre-
liminary system consistently achieves promis-
ing improvements (2.4% F1-gain on average)
on various IE tasks, with an acceptable time
and cost investment. Our code is available at
https://github.com/mayubo2333/LLM-IE.

1 Introduction

Large Language Models (LLMs, Brown et al. 2020;
Chowdhery et al. 2022; Touvron et al. 2023) have
shown remarkable abilities on various NLP applica-
tions such as factual question answering (Yu et al.,
2023; Sun et al., 2023), arithmetic reasoning (Chen
et al., 2022a; Qian et al., 2023) and logical rea-
soning (Jung et al., 2022; Pan et al., 2023). Given
the reasoning, memorization, instruction-following
and few-shot adaption capabilities emerging from

1A more precise assertion is that current LLMs, with
vanilla prompting setting and without IE-specific fine-tuning,
are not good few-shot information extractors in general.

LLMs, it prompts a compelling question: Can
LLMs be used to boost performance in few-shot
information extraction (IE) tasks?

To answer this question, we conduct an exten-
sive empirical study to compare the performance
between LLMs using in-context learning 2 (ICL)
and fine-tuned Small Language Models (SLMs).
We fairly evaluate SLMs-based and LLMs-based
methods across nine datasets spanning four com-
mon IE tasks: (1) Named Entity Recognition, (2)
Relation Extraction, (3) Event Detection and (4)
Event Argument Extraction. For each dataset, we
explored four to six settings to encompass typi-
cal low-resource extents, from 1-shot to 20-shot or
even more. Given the potential sensitivity of LLMs’
performance to the prompt context, we meticu-
lously considered variations in instruction, demon-
stration number and selection strategy, prompt for-
mat, etc. Our study reveals that LLMs excel over
SLMs only when annotations are extremely lim-
ited, i.e., both label types3 and the samples4 per
label are extremely scarce. With more (e.g., hun-
dreds of) samples, SLMs significantly outperform
LLMs. Furthermore, LLMs incur greater inference
latency and costs than fine-tuned SLMs. Hence, we
claim that current LLMs are not good few-shot
information extractors in general.

We further investigate whether LLMs and SLMs
exhibit different abilities to handle various types of
samples. We categorize samples according to their
difficulty measured by SLMs’ confidence scores,
and compare LLMs’ and SLMs’ results within each
group. We find that LLMs are good at hard sam-
ples, though bad at easy samples. We posit that
the knowledge and reasoning abilities in LLMs en-
able them to handle hard samples (which are sim-

2All LLMs discussed in this paper are not fine-tuned, and
results for LLMs are based on in-context learning.

3Label types denote entity/relation/event/role types in dif-
ferent tasks. We use them interchangeably there-in-after.

4Samples refer to (i) demonstrations in ICL of LLMs, or
(ii) training samples for SLMs’ fine-tuning.
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ply beyond SLMs’ capabilities) well. Nevertheless,
LLMs demonstrate strong predisposition to false-
positive predictions on negative samples. Since
most negative samples are easy samples (which
could be solved readily by SLMs), the performance
of LLMs on easy samples sometimes collapses and
are usually much worse than fine-tuned SLMs.

Leveraging these findings, we pursue an ap-
proach to incorporate LLMs and SLMs within a
single system and combine their merits. To this end,
we propose a novel filter-then-rerank framework.
The basic idea is that SLMs serve as a filter and
LLMs as a reranker. Specifically, SLMs initially
predict and determine the difficulty of each sample.
If the sample is a hard one, we further pass the
top-N most-likely candidate labels from SLMs to
LLMs for reranking. Otherwise we view the predic-
tion from SLMs as the final decision. By providing
easy/hard samples with different solution strategies,
our system utilizes each model’s strengths to com-
plement each other. Also, it reranks only a small
subset of samples and minimizes the extra latency
and budgets for calling LLMs. With a modest cost
increase, our framework yields a consistent F1 im-
provement, averaging 2.4% higher than previous
methods on various few-shot IE tasks. To the best
of our knowledge, this is the first successful attempt
to use LLMs to enhance few-shot IE tasks.

2 Related Work

2.1 LLMs for Information Extraction

Recent studies have increasingly explored Informa-
tion Extraction (IE) tasks using LLMs. Drawing in-
spiration from instruction tuning (Wei et al., 2022a),
several methods (Wadhwa et al., 2023; Wang et al.,
2023a; Lu et al., 2023) transform annotated sam-
ples into instruction-answer pairs and then fine-
tune LLMs, such as FlanT5 (Chung et al., 2022),
on them. Nonetheless, this method necessitates a
vast range of samples with diverse schemas and
often yields suboptimal results in low-resource sce-
narios. In the context of few-shot IE tasks, preva-
lent strategies bifurcate into two main streams. The
first approach perceives LLMs as efficient annota-
tors (Ding et al., 2023; Josifoski et al., 2023). In
these methods, they produce a plethora of pseudo-
labeled samples through LLMs and leverage the
enhanced annotations to train SLMs. Conversely,
the latter approach employs LLMs in inference us-
ing the ICL paradigm, which is the focus of our
subsequent discussion.

2.2 Few-shot IE with ICL

Regarding few-shot IE tasks, recent studies inten-
sively compare the performance between SLMs
and LLMs but yield inconsistent conclusions.
Some studies favor LLMs as competent few-shot
extractors (Agrawal et al., 2022; Wang et al.,
2023b; Li et al., 2023; Zhang et al., 2023a;
Wadhwa et al., 2023), while others dispute this
claim (Jimenez Gutierrez et al., 2022; Qin et al.,
2023; Wei et al., 2023; Gao et al., 2023). This
discrepancy leaves the question of whether LLMs
perform competitively on few-shot IE tasks unre-
solved, thus hindering the advances of this domain.

We attribute such disagreement to the absence
of an comprehensive and unified benchmark. Ex-
isting studies usually vary in tasks, datasets, and
few-shot settings. Furthermore, some studies rely
on overly simplistic datasets (Jimenez Gutierrez
et al., 2022; Li et al., 2023) and may exaggerate
the effectiveness of LLMs. Driven by these find-
ings, our research undertakes comprehensive ex-
periments across four IE tasks, nine datasets with
various schema complexities (from coarse-grained
to fine-grained) and low-resource settings.

In addition to the empirical study, we develop an
innovative filter-then-rerank paradigm to combine
the strengths of both LLMs and SLMs. It utilizes
prompting strategies akin to QA4RE (Zhang et al.,
2023a), transforming IE tasks into multi-choice
questions. However, our method stands apart by
integrating SLMs and LLMs within a single frame-
work. This incorporation (1) enables our paradigm
applicable to various IE tasks by providing candi-
date spans in the text and (2) achieves promising
performance under low-resource IE scenarios.

3 Large LMs v.s. Small LMs

In this section, we compare the performance be-
tween LLMs and SLMs to evaluate whether LLMs
perform competitively.

3.1 Task, Dataset and Evaluation

We run experiments on nine widely-used datasets
across four IE tasks. (1) Named Entity Recognition
(NER): CONLL03 (Tjong Kim Sang and De Meul-
der, 2003), OntoNotes (Weischedel et al., 2013)
and FewNERD (Ding et al., 2021). (2) Relation
Extraction (RE): TACRED (Zhang et al., 2017)
and TACREV (Alt et al., 2020). (3) Event De-
tection (ED): ACE05 (Doddington et al., 2004),
MAVEN (Wang et al., 2020) and ERE (Song et al.,
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Figure 1: Examples of prompts used. The green, blue and black parts in the top boxes represent the instruction,
demonstration (demo) and test sentence in the prompt respectively. The red parts represent the outputs from LLMs.
We plot only 1 example for convenience of visualization. The actual demo number is usually much larger than 1.

2015). (4) Event Argument Extraction (EAE):
ACE05, ERE and RAMS (Ebner et al., 2020). With
label numbers ranging from 4 to 168, we assess
LLMs’ performance under different schema com-
plexities. See their details in Appendix A.1.
Few-shot Set We construct few-shot datasets from
the original datasets above. For training and vali-
dation set, we adopt K-shot sampling strategy, i.e.,
sampling K samples for each label type. See more
details in Appendix A.2. For test set, we down-
sample their original test sets to reduce the cost
of LLMs. We randomly sample 500 sentences for
RE tasks, and 250 sentences for other task. We en-
sure that each label has at least one corresponding
sample to avoid the absence of rare labels.
Evaluation We adopt micro-F1 score in NER, RE
and ED tasks. For EAE task, we follow previous
work (Wang et al., 2023b) and adopt head-F1 score,
which merely considers matching of the head word
rather than the whole content of a text span. We re-
port averaged score w.r.t 5 sampled train/validation
sets unless otherwise stated.

3.2 Small Language Models
We adopt five supervised methods to evaluate the
abilities of SLMs. (1) Vanilla fine-tuning for all
tasks, (2) FSLS (Ma et al., 2022a) for NER and ED
tasks, (3) KnowPrompt (Chen et al., 2022b) for RE
task, (4) PAIE (Ma et al., 2022b) for EAE task, and

(5) UIE (Lu et al., 2022c) for all tasks. See their
details in Appendix B.

3.3 Large Language Models

Detailed in Appendix C, we evaluate the ICL abil-
ities of LLMs. Given labeled sentences D =
{(si, yi)} and a test sentence s, our goal is to pre-
dict structured information y from s using a frozen
LLM L. We feed LLM with prompt PE,I,f (D, s):

PE,I,f (D, s) = [I; f(E(D, s)); f(s)] (1)

We give examples of prompts on four IE tasks
in Figure 1. The prompts consist of three parts: in-
struction I (color in green in Figure 1), demonstra-
tion f(E(D, s)) (demo; color in blue) and the ques-
tion f(x) (color in black). Here E denotes demo
selector and E(D, s) ⊂ D denotes selected sen-
tences as the demo to predict s. Prompt format f 5

refers to the template which converts demo E(D, s)
and sample s to input context for LLMs. Then
LLM generates f(y) (color in red) from which we
could readily parse the extraction results y.
Models L: We explore six LLMs from two
sources. (1) OpenAI models 6: we employ Chat-

5We slightly abuse the notation f to allow s, y and {(s, y)}
as the input for simplicity.

6The versions of model we use are: gpt-3.5-turbo-0301,
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(a) Named Entity Recognition (NER)
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(b) Relation Extraction (RE)
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(c) Event Detection (ED)
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(d) Event Argument Extraction (EAE)

Figure 2: Overall results of SLM-based methods (dashed lines) and LLM-based methods (solid lines) on nine
datasets across four IE tasks. The black, horizontal dashed lines represent the SoTA performance on full dataset.

GPT, CODEX (Chen et al., 2022a) and Instruct-
GPT (Ouyang et al., 2022) for main experiments.
We also evaluate GPT-4 in Appendix D.3. (2)
Open-source models: we use LLaMA-13B (Tou-
vron et al., 2023) and its instruction-tuned counter-
part, Vicuna-13B (Chiang et al., 2023).
Instruction I: The instruction (1) describes the
task and (2) enumerates all possible labels for ref-
erence. we adopt instructions shown in Figure 1.
Demo selector E : The maximum input length of

code-davinci-002, text-davinci-003 and gpt-4-0314.
Due to budget constraints, we execute InstructGPT and GPT-
4 only once per setting. We do not conduct EAE task on
CODEX since it had been unavailable at that time.

LLMs usually limits the sentence number in de-
mos even under few-shot settings. Therefore for
each test sentence s, we demand a demo retriever
E(D, s) which selects a small subset from D as
the sentences in demo. Following previous meth-
ods (Liu et al., 2022; Su et al., 2022), we retrieve
demos according to their sentence embedding simi-
larity to the test samples.

Prompt format f : We use simple textual tem-
plates to format the demos and the test sample in
main experiments. For example, the template for
NER is “Sentence: [S], Entities: ([type1],
[entity1]), ([type2], [entity2])...".

10575



56.0

57.0

58.0

59.0

60.0

I0 I1 I2 I3 I4 I5
Instruction format

F
1 

sc
or

e

36

40

44

48

52

56

60

4 8 16 32 64 96
Demonstration number

F
1 

sc
or

e

ChatGPT
CODEX 52.5

55.0

57.5

60.0

random embed epr
Demonstration selection

F
1 

sc
or

e

Figure 3: LLMs’ performance w.r.t prompt variants on 20-shot FewNERD dataset. See full results on other datasets
in Appendix E.2- E.5. Left: ChatGPT’s performance (F1 Score) across six instruction variants. Middle: F1 Score
changes over varying numbers of demo. Right: ChatGPT’s performance across three demo selection strategies.
Random: Random sampling. Embed: Sentence embedding. EPR: Efficient Prompt Retriever (Rubin et al., 2022).

3.4 Main Results

We summarize the main experimental outcomes in
Figure 2, indicating that LLMs only outperform
SLMs in environments with restricted labels and
samples. Conversely, SLMs are generally more
effective. Given (1) the practicality of fine-grained
IE tasks and the manageable effort of obtaining 10-
20 annotations per label and (2) the excessive time
and budget demands of LLM inference, we con-
clude that LLMs are not as effective as supervised
SLMs for few-shot IE tasks under real scenarios.
We detail our findings as below.
Performance w.r.t sample number. The perfor-
mance dynamics of SLMs and LLMs are influenced
by variations in sample size. Under extremely low-
resource (1-shot or 5-shot) settings, LLMs some-
times present superior performance than SLMs.
Yet, LLMs tend to reach a performance plateau
with only modest increases in sample size. Con-
versely, SLMs demonstrate marked performance
enhancement as sample sizes grow. This trend is
evident in Figure 2, where the SLM trajectories
(represented by dashed lines) ascend more steeply
compared to the LLM ones (solid lines).
Performance w.r.t label number. Compared with
SLMs, LLMs tend to struggle on fine-grained
datasets. For instance, LLMs perform relatively
worse on MAVEN and RAMS datasets (with
168/139 labels) than on CONLL (4 labels only).
Detailed quantitative results are shown in Ap-
pendix E.1, illustrating a clear negative correlation
between the label number and the result disparity
between LLMs and SLMs across various IE tasks.
Comparisons among LLMs. We observe perfor-
mance variability among LLMs. (1) Open-source
models, LLaMA and Vicuna, significantly lag be-
hind proprietary LLMs across all few-shot IE tasks.

(2) Among proprietary LLMs, ChatGPT performs
better on NER and EAE tasks, but poorer so on RE
and ED tasks. InstructGPT and CODEX demon-
strate comparable performance across these tasks.
LLMs show limited inference speed. We compare
the inference speed of different methods and show
their results in Table 1. We observe that LLMs
is much slower than SLMs since they have much
more parameters, longer input contexts and extra
response decay (if external APIs applied).

3.5 Analysis on Prompt Sensitivity

Previous work (Lu et al., 2022b) indicates that the
efficacy of LLMs on specific tasks can be signifi-
cantly influenced by the construction of the prompt.
To ensure that LLMs’ suboptimal outcomes are
not erroneously ascribed to inappropriate prompt
designs, we meticulously examine the impact of
diverse prompt variations from four aspects, i.e., in-
struction format, demo number, demo selector and
prompt format. We leave comprehensive details
of the variants and their results to Appendix E.2-
E.5, and illustrate salient findings in Figure 3. Our
findings include that (1) diverse instruction strate-
gies yield comparable results in IE task; (2) in-
creasing the number of samples in demonstrations
does not unequivocally enhance performance; and
(3) The selection strategy of demonstration mat-
ters, and retrieval based on sentence embedding

Table 1: The inference seconds over 500 sentences (run
on single V100 GPU). Here LLaMA is extremely slow
since we set batch size as 1 due to memory limit.

Dataset (Task) Roberta T5 LLaMA CODEX

FewNERD (NER) 2.8 39.4 1135.4 179.4
TACREV (RE) 1.4 45.6 1144.9 151.6
ACE05 (ED) 6.6 62.5 733.4 171.7
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(what we used) proves sufficiently effective. Con-
sequently, we believe that there unlikely exists a
lottery prompt that substantially alters our conclu-
sions that LLMs are not good few-shot IE solver.

3.6 Discussion: Why LLMs Fail to Obtain
Satisfactory Performance on IE Tasks?

Underutilized Annotations. We notice that LLMs
appear to benefit less from additional annotations,
i.e., more training samples and label types, than
SLMs. We speculate that LLMs are constrained
by ICL in two ways. (1) More samples: The num-
ber of effective samples for LLMs, those in de-
mos, is limited by maximum input length. More-
over, we also observe LLMs’ performance plateaus
in some tasks before reaching this limit (see Ap-
pendix E.3). Meanwhile, SLMs can continually
learn from more samples through supervised learn-
ing, widening the performance gap as annotated
samples increase. (2) More labels: LLMs struggle
with fine-grained datasets. It suggests a difficulty
in understanding numerous labels and their subtle
interactions merely from the given instruction and
exemplars for LLMs. Also, the examples per label
in demos decrease as label types increase.
Unexplored Task format. As stated in Zhang
et al. (2023a), IE-related tasks are scarce in the
widely-used instruction tuning datasets like Wei
et al. (2022a) and Wang et al. (2022). Furthermore,
the highly-flexible format of NER and ED tasks
impair the ICL abilities 7. Therefore it is likely that
instruction-tuned LLMs are not well-acquainted
with such IE-related task formats.

4 LLMs are Good Few-shot Reranker

4.1 Filter-then-rerank Paradigm

Read following sentences and identify what is the entity type
of “The New Yorker” quoted by <t>.
Sentence:
In 2004 Gourevitch was assigned to cover the 2004 U.S.
presidential election for “<t> The New Yorker <t>”.
Candidate Choices:
(a)The New Yorker does not belong to any known entities.
(b)The New Yorker is a broadcast program.
(c)The New Yorker is a kind of written art.
(d)The New Yorker is a media/newspaper organization.
Analysis:
The New Yorker is a well-known American magazine that has
been published since 1925, and is primarily known for its
long-form journalism, commentary, and satire. It has a
reputation for publishing high-quality writing on a wide
variety of topics, including politics, culture, and the arts.
So The New Yorker is a media/newspaper organization.
Correct Answer: (d)

Figure 4: Multi-choice question (MCQ) prompt.

7These two tasks require unfixed numbers of (label, span)
tuple. Furthermore, the length of each span is also unfixed.

To mitigate LLMs’ drawbacks mentioned above,
we propose a filter-then-rerank paradigm to inte-
grate both SLMs and LLMs within the same system.
This paradigm uses SLMs as filters to select the
top-N candidate labels, then LLMs rerank them
to make final decisions. By using SLM-generated
candidate answers, the focus of LLMs shifts from
sentence-level (i.e., identifying all entities/events
in the sentence) to sample-level (i.e., determin-
ing single entity/event candidate provided). Each
question now corresponds to a single sample, al-
lowing us to reframe prompts as multi-choice ques-
tions (MCQ; shown in Figure 4) problem. Un-
der such format, each candidate label is converted
to a choice by pre-defined templates. We claim
filter-then-rerank paradigm is more likely to elicit
the powers of LLMs and smoothly solve few-shot
IE tasks because: (1) LLMs are more familiar
with MCQ prompts than IE-format prompts (Zhang
et al., 2023a). (2) This paradigm reduces the la-
bel scopes significantly, since N is usually much
smaller than fine-grained label numbers.

4.2 LLMs are Hard Sample Solver

Our filter-then-rerank paradigm, unfortunately,
presents unsatisfactory performance (and even suf-
fers longer latency since LLMs rerank candidates
per sample). Given LLMs’ abilities in memoriza-
tion and reasoning, however, we still believe that
LLMs are potential to solve some, if not most, IE
samples effectively. We hypothesize that LLMs
are more proficient than SLMs on hard samples.
These samples are characterized by their requisite
for external knowledge acquisition or sophisticated
reasoning strategies, areas where LLMs can lever-
age their extensive parametric knowledge bases and
inherent reasoning mechanisms. In contrast, SLMs
often falter with such samples, constrained by their
restricted modeling capacities.

We leverage an unsupervised metric from SLMs
to evaluate the difficulty of samples. Given a sample
x in the sentence s, we define the highest probabil-
ity across all labels as the confidence score:

conf(x) = max
l∈L

PSLM (l|x; s) (2)

where L denotes the label set and PSLM (l|x; s) the
probability of a span x (in the sentence s) referring
to label l computed by SLMs. We classify sam-
ples with low confidence scores as hard samples.
Otherwise we view them as easy samples.
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Figure 5: Relationship between confidence scores and
performance with/without LLM reranking. We adopt
RoBERTa-large as filter and InstructGPT as reranker.

We conduct experiments to confirm our hypoth-
esis that LLMs excel on hard samples. We group
samples by confidence scores and compare two
methods within each group: (a) SLM-based meth-
ods without LLM reranking, and (b) SLMs as the
filter and LLMs as the reranker. Method (b) dif-
fers from (a) by adding a single LLM to rerank the
top-N SLM predictions, using MCQ prompts.

The results in Figure 5 substantiate our assump-
tion. (1) LLM-based reranking (blue lines) en-
hances performance on hard samples (left areas in
the figure). We provide a detailed analysis of spe-
cific challenging instances where LLM rerankers
prove advantageous in Appendix F.1. These in-
stances demonstrate the efficacy of LLMs in har-
nessing external knowledge and complex reason-
ing to rectify erroneous predictions initially made
by SLMs (red lines). (2) Conversely, LLM-based
reranking impedes performance on easy samples
(right areas), resulting in a significant degradation,
particularly for very easy samples (rightmost areas).
In conclusion, LLMs exhibit greater proficiency in
handling hard samples compared to SLMs, yet they
underperform relative to SLMs on easy samples.

4.3 Why LLMs Fail on Easy Samples

We investigate why LLMs (relatively) fail on easy
samples in this section. As shown in Table 2, we
observe significant higher negative sample ratios
for easy samples across diverse IE tasks. In other

Table 2: Comparative ratios of negative to positive sam-
ples across various datasets and subsets. We set fixed
threshold τ here for simplicity.

FewNERD TACREV ACE05

Overall 5.88 3.03 38.2
Easy samples (τ > 0.9) 9.44 3.21 44.0
Hard samples (τ < 0.6) 1.28 2.68 1.36

words, most negative samples are easy samples for
SLMs. Here we refer negative samples to those
labeled as None. We speculate that the proficiency
of SLMs with negative samples stems from their
ability to adeptly discern apparent patterns during
the fine-tuning stages. Therefore, SLMs could pre-
dict negative samples with (relatively) high confi-
dence and accuracy. Due to LLMs’ predisposition
to false-positive predictions on negative samples,
however, the performance of LLMs on easy sam-
ples collapses. We attribute such false-positive pre-
dictions to (1) hallucination and (2) span boundary
mismatch. We detail such two kinds of mistakes
with cases in Appendix F.2.

5 Adaptive Filter-then-rerank Paradigm

Above findings can be summarized as: (1) SLMs
generally outperform LLMs, especially with more
training samples and fine-grained labels. (2) SLMs
are much more time- and cost-efficient. (3) LLMs
serve as powerful rerankers on hard samples that
challenge SLMs. Based on them, we propose a
simple, efficient, and effective adaptive reranker
that combines the strengths of SLMs and LLMs.

5.1 Method
Our adaptive filter-then-rerank approach, shown
in Figure 6, uses supervised SLMs as a filter to
make preliminary decisions. Samples with confi-
dence scores exceeding threshold are viewed as
easy samples otherwise hard ones. For easy sam-
ples, we retain SLM predictions as final results. For
hard samples, top-N predictions from SLMs are
reranked via LLMs using ICL. Here LLMs employ
MCQ prompts (Figure 4), containing demos and a
sample to be reranked. The LLMs then generate the
final answer and optionally provide an explanation.

5.2 Experimental Setup
We conduct experiments on FewNERD for NER
task, TACREV for RE task and ACE05 for ED
task. We employ top-performing SLM-based meth-
ods from Section 3 (FSLS or KnowPrompt) as the
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Filter

The sentence implies that Laura Silsby is associated with the city of Meridian in the state of Idaho, and

does not provide information about her birthplace. So Laura Silsby lives in the city Meridian.

Answer: (b)

Demonstration
The lawyer denied Italian news reports that she

wept while addressing the court, but said Knox was

upset as she recounted the pressure, the

aggressiveness of the police who called her a liar.

(a)she is the other family member of lawyer

(b)she is a lawyer

(c)she has no known relations to lawyer

Analysis: The word 'she' refers to someone who was

upset while recounting certain events in court. The

word 'lawyer' refers to someone who denied a news

report about that same person weeping in court.

There is no information in the sentence to indicate

that the two individuals are related in any way.

Answer: (c)

Adrien said he met the Baptists’ leader, Laura Silsby of

Meridian, Idaho, in Port-au-Prince on Jan 26.

(a)Laura Silsby lives in the state or province Meridian

(b)Laura Silsby lives in the city Meridian

(c)Laura Silsby was born in the city Meridian

(d)Laura Silsby has no known relations to Meridian

Analysis:

QuestionAdrien said he met the

Baptists’ leader, Laura Silsby 

of Meridian, Idaho, in Port-au-

Prince on Jan 26.

The last hostage, Italian

engineer Eugenio Vagni,

was released early Sunday.

per:origin per: cities_of_residence

Small LM

Large LM

Reranker

Easy Sample Hard Sample

Figure 6: The overall architecture of our adaptive filter-then-rerank paradigm. We color easy samples in orange and
hard samples in pink. For easy samples, the final predictions are exactly from the SLM-based methods. For hard
samples, the top-N predictions from SLMs are fed into LLMs as the format of multiple-choice questions (pink box).
The question is paired with demos (green box). LLMs rerank these N candidates and generate the final prediction.

filter, and Vicuna-13B, InstructGPT or GPT-4 as
the reranker. The threshold τ to determine sam-
ple difficulty is optimized on the valid set. For
hard sample, the top-3 SLM predictions and None
(if not included) are feed to LLMs for reranking.
Each LLM prompt has 4-shot demos. See demo
examples in Appendix G.1. We follow templates
in Lu et al. (2022a) for TACREV and carefully de-
sign others. See these templates in Appendix G.2.
We adopt chain-of-thought reasoning (Wei et al.,
2022b), i.e., prefacing the answer with an explana-
tion, to facilitate LLMs’ reranking procedure.
Baseline We compare our method with two kinds
of baselines to validate its effectiveness.
(1) LLMs with ICL: We follow the prompts in Sec-
tion 3.3 and conduct experiments on three LLMs.
(2) Supervised SLMs: We follow previous SoTA
methods shown in Section 3.4 (FSLS or Know-
Prompt). We additionally combine two SLMs with
ensemble or reranking approach (i.e., replace the
LLM with another SLM as the reranker) to verify
that improvements from our SLM-LLM integrated
system are not solely due to the ensemble effects.

5.3 Main Results

Table 3 shows that our filter-then-rerank method
consistently improves performance across three
datasets and nine settings. For instance, with In-
structGPT, reranking provides an average F1 gain
of 2.4% without SLM ensemble (Lines 4 vs. 7).
Based on ensemble SLMs as the filter, our method
still achieves 2.1% (Lines 5 vs. 8) gains on av-

erage. This confirms (1) the effectiveness of the
LLM reranking and (2) its gains are different and
(almost) orthogonal to the SLM ensemble.

5.4 Analysis

Few makes big difference Our method selectively
reranks hard samples. Table 4 shows that (1) only a
minor fraction (0.5%~10%) of samples are deemed
hard and are reranked by LLMs. (2) Despite their
limited quantity, reranking results in a substantial
performance boost on these samples (10%~25%
absolute F1 gains). This uplift on a small subset
significantly enhances the overall performance.
GPT-4 is more aggressive From Tables 3 and 4,
GPT-4 generally improves more on hard samples,
yet InstructGPT surpasses GPT-4 in NER and RE
tasks when evaluated overall. This discrepancy
arises from GPT-4’s aggressive reranking which
introduces more true positives. InstructGPT, how-
ever, focuses more on reducing false positives.
Few makes small cost Figure 7 demonstrates that
our method impressively reduces budget and la-
tency by approximately 80%~90% compared to
direct ICL. This reduction is due to (1) fewer LLM
callings (only for hard samples) and (2) shorter
prompts (fewer candidate labels and demos).

5.5 Ablation Study

We investigate the effectiveness of the modules
in adaptive filter-then-rerank system by removing
each of them in turn: (1) CoT: We exclude the
explantion for each examples in demo. (2) Demo:
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Table 3: Overall results of LLM-based ICL methods, SLM-based supervised methods, and our proposed filter-then-
rerank (SLM+LLM) methods. The best results are in bold face and the second best are underlined. All results
except InstructGPT and GPT-4 are averaged over 5 runs, and sample standard deviations are in the round bracket.

FewNERD (NER) TACREV (RE) ACE (ED)
5-shot 10-shot 20-shot 20-shot 50-shot 100-shot 5-shot 10-shot 20-shot

L
L

M

CODEX 53.8(0.5) 54.0(1.4) 55.9(0.5) 59.1(1.4) 60.3(2.4) 62.4(2.6) 47.1(1.2) 47.7(2.8) 47.9(0.5)
InstructGPT 53.6(−) 54.6(−) 57.2(−) 60.1(−) 58.3(−) 62.7(−) 52.9(−) 52.1(−) 49.3(−)

GPT-4 - - 57.8(−) - - 59.3(−) - - 52.1(−)

SL
M

Previous SoTA 59.4(1.5) 61.4(0.8) 61.9(1.2) 62.4(3.8) 68.5(1.6) 72.6(1.5) 55.1(4.6) 63.9(0.8) 65.8(2.0)
+ Ensemble (S) 59.6(1.7) 61.8(1.2) 62.6(1.0) 64.9(1.5) 71.9(2.2) 74.1(1.7) 56.9(4.7) 64.2(2.1) 66.5(1.7)
+ Rerank (S) 59.4(1.5) 61.0(1.7) 61.5(1.7) 64.2(2.3) 70.8(2.3) 74.3(2.2) 56.1(0.3) 64.0(1.0) 66.7(1.7)

SL
M

+
L

L
M

Vicuna-13B
+ Rerank (L) 60.0(1.8) 61.9(2.1) 62.2(1.4) 65.2(1.4) 70.8(1.6) 73.8(1.7) 56.9(4.0) 63.5(2.7) 66.0(2.6)
+ Ensemble (S) + Rerank (L) 59.9(0.7) 62.1(0.7) 62.8(1.1) 66.5(0.5) 73.6(1.4) 75.0(1.5) 57.9(5.2) 64.4(1.2) 66.2(2.4)

InstructGPT
+ Rerank (L) 60.6(2.1) 62.7(0.8) 63.3(0.6) 66.8(2.6) 72.3(1.4) 75.4(1.5) 57.8(4.6) 65.3(1.7) 67.3(2.2)
+ Ensemble (S) + Rerank (L) 61.3(1.9) 63.2(0.9) 63.7(1.8) 68.9(1.3) 74.8(1.3) 76.8(1.2) 59.5(3.7) 65.3(1.9) 67.8(2.1)

GPT-4
+ Rerank (L) 60.8(2.3) 62.6 (2.7) 63.0(1.3) 65.9(2.7) 72.3(0.3) 74.5(1.5) 59.6(2.9) 64.9(2.5) 67.1(2.5)
+ Ensemble (S) + Rerank (L) 61.1(2.2) 62.8(0.9) 63.6(1.2) 68.6(1.3) 73.9(1.4) 75.9(2.4) 60.9(3.9) 65.6(1.5) 67.8(1.7)

Table 4: The F1-score differences before and after
reranking on the reranked samples, as well as their pro-
portion of the total samples.

GPT-4 InstructGPT
before after △ ratio before after △ ratio

FewNER 31.9 40.7 8.8 3.2% 31.4 28.3 −3.1 3.3%
TACREV 25.3 43.0 17.7 9.1% 33.8 43.4 9.6 7.1%
ACE05 31.1 57.9 26.8 1.6% 35.6 55.7 20.1 0.5%

We remove all examples, rendering the reranking
a zero-shot problem. (3) LF (label filtering): We
retain all labels as candidate choices for reranking,
instead of only the top-N labels from the SLMs.
(4) AD (adaptive): We feed all samples, not just
hard ones, to the LLMs.

We show their results in Table 5 and see that
(1) Demos with explanations consistently enhance
the reranking ability of LLMs across all datasets.
(2) Demos without explanations also contribute to
performance improvement. (3) Label filtering re-
sults in gains and notably reduces the demo length,

Direct ICL (InstructGPT) Filter−then−rerank Fine−tuning (RoBERTa−large)
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Figure 7: The financial and time cost over 500 sentences.
InstructGPT as the reranker.

Table 5: Ablation study on three datasets. The filter is
ensembled SLMs and the reranker is GPT-4.

CoT Demo LF AD
FewNERD
(20-shot)

TACREV
(100-shot)

ACE05
(20-shot)

✓ ✓ ✓ ✓ 63.6(1.2) 75.9(2.4) 67.8(1.7)

✗ ✓ ✓ ✓ 63.2(1.2) 75.4(2.4) 67.2(1.7)
✗ ✗ ✓ ✓ 63.0(1.4) 74.9(2.2) 66.6(1.5)
✗ ✗ ✗ ✓ 62.4(2.1) 73.8(2.5) 66.5(1.3)
✗ ✗ ✗ ✗ 12.5(2.7) 59.9(6.0) 5.4(1.1)

Previous SoTA methods 62.6(1.0) 74.1(1.7) 66.5(1.7)

hence cutting inference costs. (4) The performance
collapses without a filter to identify sample diffi-
culty, reiterating the need for an integrated SLM-
LLM system to complement each other.

6 Conclusion

Through an extensive empirical study on nine
datasets spanning four IE tasks, we find that LLMs,
despite their superiority in extreme low-resource
scenarios, are not effective few-shot information
extractors in general. They struggle with IE-related
prompts, have limited demonstration capacity, and
incur high inference costs. However, LLMs signifi-
cantly improve the performance on hard samples
when combined with SLM. Building on these in-
sights, we propose an adaptive filter-then-rerank
paradigm to leverage the strengths of SLMs and
LLMs and mitigate their limitations. This approach
consistently achieves promising results, with an av-
erage 2.4% F1 gain across multiple few-shot IE
tasks, while minimizing latency and budget costs.
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Limitations

We do work hard to find better prompts to elicit the
power of LLMs on few-shot IE tasks in Section 3.5,
by exploring various kinds of LLMs, demonstra-
tion strategies and prompt formats. We find that dif-
ferent prompt variants do not significantly impact
in-context learning abilities. As an empirical study,
we acknowledge the potential existence of a lottery
prompt superior to our explored prompts. However,
it seems unlikely that an improved prompt would
substantially alter our conclusions.

Another common risk when evaluating LLMs
on public benchmark is their potential memoriza-
tion of samples tested. To mitigate such poten-
tial contamination, we use earlier and stable ver-
sions of these models rather than the newer and
updated ones (for example, gpt-4-0314 instead of
gpt-4). Even if such contamination makes abilities
of LLMs overestimated, our primary conclusions
remain unchanged because we find that LLMs are
NOT good few-shot information extractors.

Regarding our adaptive filter-then-rerank
paradigm, a key limitation lies in how to assess
sample difficulty. In this work, we employ a
simple unsupervised metric, i.e., the maximum
probabilities from SLMs. This is predicated on the
assumption that SLMs are well-calibrated (Guo
et al., 2017). However, it is an obviously imperfect
assumption. We envision that calibrating SLMs-
based filters or developing an advanced difficulty
metric could substantially enhance LLM rerankers’
performance. We leave them for future work.
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A Datasets

A.1 Full Datasets

We construct few-shot IE datasets and conduct
the empirical study on nine datasets spanning four
tasks, with varying schema complexities ranging
from 4 to 168. We show their statistics in Table 6.

A.2 Details of Few-shot IE Datasets

Sampling Algorithm for Train/Valid Datasets.
We downsample sentences from original training
dataset to construct few-shot training and valid
datasets. We adopt K-shot sampling strategy that
each label has (at least) K samples. We set 6 K-
values (1, 5, 10, 20, 50, 100) for RE tasks and 4
K-values (1, 5, 10, 20) for other tasks. For RE
task, each sentence has exactly one relation and we
simply select K sentences for each label. For NER,
ED and EAE tasks, each sentences is possible to
contain more than one entities/events/arguments.
Since our sampling is at sentence-level, the algo-
rithm of accurate sampling , i.e., finding exactly
K samples for each label, is NP-complete8 and
unlikely to find a practical solution. Therefore we
follow Yang and Katiyar (2020) adopting a greedy
sampling algorithm to select sentences for NER and
ED tasks, as shown in Algorithm 1. Note that the
actual sample number of each label can be larger
than K under this sampling strategy. For all three
tasks, we additionally sample negative sentences
(without any defined labels) and make the ratio of
positive sentences (with at least one label) and neg-
ative sentences as 1:1. The statistics of the curated
datasets are listed in Table 7.

8The Subset Sum Problem, a classical NP-complete prob-
lem, can be reduced to this sampling problem.

Algorithm 1 Greedy Sampling

Require: shot number K, original full dataset
D = {(X,Y)} tagged with label set E

1: Sort E based on their frequencies in {Y} as
an ascending order

2: S ← ϕ, Counter← dict()
3: for y ∈ E do
4: Counter(y)← 0
5: end for
6: for y ∈ E do
7: while Counter(y) < K do
8: Sample (X,Y) ∈ D s.t.∃j, yj = y
9: D ← D\(X,Y)

10: Update Counter (not only y but all
event types in Y)

11: end while
12: end for
13: for s ∈ S do
14: S ← S\s and update Counter
15: if ∃y ∈ E, s.t. Counter(y) < K then
16: S ← S⋃ s
17: end if
18: end for
19: return S

Based on the subsets constructed above, we op-
tionally further split them into training and valid
sets. For few-shot datasets with more than 300 sen-
tences, we additionally split 10% sentences as the
valid set and the remaining sentences as training set.
Otherwise, we do not construct valid set and con-
duct 5-fold cross validation to avoid overfitting.

B Details on SLMs

We adopt five representative supervised methods to
evaluate the ability of SLMs on few-shot IE tasks.
(1). Fine-tuning (FT): Add a classifier head on
SLMs to predict the labels of each sentence/word.
(2). FSLS (Ma et al., 2022a): The state-of-the-art
extractive-based method for few-shot NER task.
Ma et al. (2023) also validate its competitive per-
formance on few-shot ED tasks.
(3). KnowPrompt (Chen et al., 2022b): The best
extractive-based method for few-shot RE task.
(4). PAIE (Ma et al., 2022b): The best extractive-
based method for few-shot EAE task.
(5). UIE (Lu et al., 2022c): A competitive unified
generation-based method for few-shot IE tasks. We
introduce their implementation details below:
Fine-tuning/FSLS. We implement these two meth-
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Table 6: Statistics of nine datasets used. Note that the #mentions for event detection tasks refers to the number of
trigger words, while the #mentions for event argument extraction tasks refers to the number of arguments.

Named Entity Recognition Relation Extraction Event Detection Event Arg Extraction
Dataset CONLL OntoNotes FewNERD TACREV TACRED ACE05 MAVEN ERE ACE05 RAMS ERE

#Label Type 4 18 66 41 41 33 168 38 33 139 38

#Sents Train 14,041 49,706 131,965 68,124 68,124 14,024 32,360 14,736 14,024 7329 14,736
Test 3,453 10,348 37,648 15,509 15,509 728 8,035 1,163 728 871 1,163

#Mentions Train 23,499 128,738 340,247 13,012 13,012 5,349 77,993 6,208 4859 17026 8924
Test 5,648 12,586 96,902 3,123 3,123 424 18,904 551 576 2023 822

Table 7: The statistics of few-shot training sets. We set
different random seeds and generate 5 training sets for
each setting. We report their average statistics.

Dataset Settings # Labels # Sent # Sample # Avg shot

CONLL’03
1-shot

4
4.8 5.8 1.4

5-shot 16.2 21.8 5.5
10-shot 29.2 42.6 10.7
20-shot 65.6 82.0 20.5

OntoNotes
1-shot

18
20.0 33.4 1.9

5-shot 84.8 148.0 8.2
10-shot 158.6 281.0 15.6
20-shot 332.8 547.2 30.4

FewNERD
1-shot

66
89.8 147.0 2.2

5-shot 286.2 494.8 7.5
10-shot 538.0 962.0 14.6
20-shot 1027.2 1851.4 28.1

TACREV

1-shot

41

81.6 41.0 1.0
5-shot 387.6 205.0 5.0

10-shot 741.2 406.0 9.9
20-shot 1367.2 806.0 19.7
50-shot 2872.0 1944.0 47.4
100-shot 4561.0 3520.0 85.9

TACRED

1-shot

41

81.6 41.0 1.0
5-shot 387.6 205.0 5.0

10-shot 741.2 406.0 9.9
20-shot 1367.2 806.0 19.7
50-shot 2871.2 1944.0 47.4
100-shot 4575.2 3520.0 85.9

ACE05
1-shot

33
47.4 41.0 1.2

5-shot 192.8 165.0 5.0
10-shot 334.6 319.4 9.7
20-shot 579.4 598.2 18.1

MAVEN
1-shot

168
157.6 298.0 1.8

5-shot 540.4 1262.2 7.5
10-shot 891.2 2413.8 14.4
20-shot 1286.4 4611.4 27.4

ERE
1-shot

38
48.4 54.6 1.4

5-shot 175.0 219.2 5.8
10-shot 304.8 432.4 11.4
20-shot 521.6 806.6 21.2

ACE05
1-shot

33
23.4 40.2 1.2

5-shot 79.8 178.2 5.4
10-shot 130.8 337.4 10.2
20-shot 213.4 630.2 19.1

RAMS
1-shot

139
130.2 332.6 2.4

5-shot 514.0 1599.6 11.5
10-shot 795.2 3193.2 23.0
20-shot 1070.4 6095.4 43.9

ERE
1-shot

38
21.6 102.8 2.7

5-shot 74.2 403.4 10.6
10-shot 127.2 775.6 20.4
20-shot 190.2 1397.2 36.8

ods by ourselves. We use RoBERTa-large (Liu
et al., 2019) as the backbones. We adopt Auto-
matic Mixed Precision (AMP) training strategy9 to
save memory. We run each experiment on a single
NVIDIA V100 GPU. We train each model with
the AdamW (Loshchilov and Hutter, 2019) opti-
mizer with linear scheduler and 0.1 warm-up steps.
We set the weight-decay coefficient as 1e-5 and
maximum gradient norms as 1.0. We set the batch
size as 64, the maximum input length as 192, the
training step as 500 and the learning rate as 5e-5.
KnowPrompt We implement this method based
on original source code10, and use RoBERTa-large
as our backbones. We set 10 maximum epochs for
50- and 100-shot datasets, and as 50 epochs for
other datasets. We keep all other hyperparameters
as default, and run each experiment on a single
NVIDIA V100 GPU.
PAIE We implement this method on original
source code11, and use BART-large (Lewis et al.,
2020) as backbones. We keep all hyperparameters
as default for ACE and RAMS dataset. For ERE
dataset, we set the training step as 1000, the batch
size as 16 and the learning rate as 2e-5. We run
each experiment on a single NVIDIA V100 GPU.
UIE We implement this method based on original
source code12, and use T5-large (Raffel et al.,
2020) as the backbones. We run each experiment
on a single NVIDIA Quadro RTX8000 GPU. We
set the batch size as 4 with 4000 training steps.
We set the maximum input length as 800 and the
learning rate as 1e-4.

C LLMs Implementations

Regarding our empirical study, we explore the ICL
abilities of LLMs on few-shot IE tasks. We mainly
use five LLMs from two sources. (1) OpenAI

9https://pytorch.org/docs/stable/amp.html
10https://github.com/zjunlp/KnowPrompt
11https://github.com/mayubo2333/PAIE
12https://github.com/universal-ie/UIE
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models: CODEX (code-davinci-002; Chen et al.
2021), InstructGPT (text-davinci-003; Ouyang
et al. 2022), and ChatGPT (gpt-3.5-turbo-0301).
(2) Open-source models: LLaMA-13B (Touvron
et al., 2023) and its instruction-tuned counterpart,
Vicuna-13B (Chiang et al., 2023). We detail their
implementation details in the next sections below.

C.1 Open-source Models

We implement multiple ICL approaches on
LLaMA-13B and Vicuna-13B without fine-tuning.
We set the maximum input length as 2048 and the
batch size as 1. We run each experiment on a single
NVIDIA V100 GPU. To achieve this, we leverage
the Accelerate 13 framework and fp16 inference
to save memory. We set maximum output length
as 96 and sampling temperature as 0 (i.e., greedy
decoding). We set both frequency_penalty and
presence_penalty as 0.

C.2 OpenAI Models

We implement multiple ICL approaches on Ope-
nAI models by calling their official APIs 14. We set
the maximum input length as 3600 for all tasks and
models. The only exception occurs when we use
CODEX on RE tasks, where we set the maximum
input length as 7000. We unify the maximum out-
put length as 32 for RE task, and 96 for other three
tasks. We set the sampling temperature coefficient
as 0, i.e., greedy decoding.

D Pivot Experiments on LLMs

D.1 Sampling Temperature

Existing prompt-engineering discussion15 suggests
setting the sampling temperature t = 0 for tasks
with structured outputs, including IE tasks. We
validate this conclusion in Table 8, from which we
could see the generated quality when t = 0 is much
higher than the quality when t ̸= 0. Therefore we
set t = 0 in all main experiments, and do not take
self-consistency (Wang et al., 2023c) into account.

D.2 Automatic Chain-of-thought

We additionally investigate whether rationales
could facilitate LLMs’ performance on few-shot
IE tasks. Since there exists no golden rationales in

13https://huggingface.co/docs/accelerate
14https://openai.com/blog/openai-api
15https://help.openai.com/en/articles/6654000-best-

practices-for-prompt-engineering-with-openai-api

Table 8: F1-scores across different t values. Experi-
ments run on 10-shot settings with CODEX.

FewNERD TACREV ACE05

t = 0 48.5(1.9) 53.7(2.3) 42.9(2.2)
+ 5-ensemble 53.5(1.3) 58.6(1.5) 46.3(0.8)

t = 0.7 40.9(2.3) 39.9(1.2) 35.6(1.0)
+ self-consistency 52.1(0.9) 53.4(1.3) 45.6(3.0)

original datasets, we follow Automatic Chain-of-
thought (Auto-CoT; Zhang et al. 2023b) method as
below. Regarding each sample, we query LLMs

According to [sentence], Why [span] is a [label].

For example, given the sentence “DSC and Trac-
tion Control on all Speed3 models is also stan-
dard.”, we would feed LLM the query that “Could
you explain why Speed3 is a kind of car”. Then we
insert the bootstrapped rationales between the sen-
tences and ground-truth answers. If a sentence has
no positive labels, however, we do not ask LLMs
and keep the original format as the vanilla ICL ap-
proach. Here we prompt InstructGPT to generate
the rationales with temperature t = 0.7. We com-
pare the performance with and without Auto-CoT
as shown in Table 9.

Table 9: The F1-score difference between with and
without Auto-CoT. We generate rationales by Instruct-
GPT, then adopt ICL w. Auto-CoT approach and use
CODEX as our backbone for inference.

10-shot train set FewNERD
(NER)

TACREV
(RE)

ACE05
(ED)

wo. Auto-CoT 54.0(1.4) 57.3(1.8) 47.7(2.8)

w. Auto-CoT 36.6(1.7) 22.0(1.2) 43.1(3.4)

We are frustrated to find Auto-CoT degrades the
performance with a large margin. We speculate
this degration could be attributed to three main
reasons. (1) The rationale increase the length of
each sample and thus decrease the overall example
number in demos. (2) There exists an obvious
discrepancy between sentences with and without
positive labels. The rationales are only provided for
sentences with positive labels because it is hard to
explain why a sentence dose not contain any label.
(3) Some auto-generated rationales are low-quality,
especially for RE tasks. We would explore better
strategy to exploit auto-genertaed rationales in the
future work.

10587



Table 10: F1-scores difference among GPT-4, CODEX and InstructGPT.

NER (20-shot) RE (100-shot) ED (20-shot) EAE (20-shot)
CONLL OntoNotes FewNERD TACREV TACRED ACE05 MAVEN ERE ACE05 RAMS ERE

InstructGPT 77.2 47.7 57.2 62.7 53.8 49.3 25.4 40.8 45.8 42.2 41.9
CODEX 81.1 55.6 55.9 62.4 53.6 47.9 22.8 39.0 - - -
GPT-4 84.7 65.6 57.8 59.3 50.4 52.1 30.2 40.5 42.9 38.6 38.2

Supervised SoTA 72.3 74.9 61.4 72.6 63.1 65.8 54.7 56.2 55.2 57.7 55.6

D.3 GPT-4 v.s. Others

We tend to minimize the GPT-4 calls due to its high
price. Thus we utilize 20-/100-shot settings across
each dataset to compare GPT-4’s performance with
other LLMs. Table 10 reveals that GPT-4 does not
outperform other LLMs significantly, except on
OntoNotes and MAVEN. However, even on these
datasets, GPT-4 still falls behind supervised SLMs
by a significant margin. Consequently, the exclu-
sion of GPT-4 does not undermine the conclusions
drawn from our main experiments, and we omit it
from our empirical study.

E Auxiliary Experiments

E.1 LLMs struggle on Fine-grained Datasets

Based on the results shown in Figure 2, we addi-
tionally provide a quantitative analysis to show that
LLMs struggle with fine-grained datasets. Under
the 5-shot setting, we compare the performance
difference of LLMs (ChatGPT) and SLMs (SoTA
few-shot models) among different datasets. For
each IE task, we observe a clear negative corre-

Table 11: Performance comparison between LLMs
(ChatGPT) and SLM-based methods among datasets
with various schema complexities.

Named Entity Recognition
CoNLL OntoNotes FewNERD

# Entity 4 18 66
Micro-F1 (SLM) 52.5 59.7 59.4
Micro-F1 (LLM) 77.8 59.4 55.5
∆F1 (LLM, SLM) 25.3 -0.3 -3.9

Event Detection
ACE05 ERE MAVEN

# Event 33 38 168
Micro-F1 (SLM) 55.1 48.0 49.4
Micro-F1 (LLM) 39.6 33.8 25.3
∆F1 (LLM, SLM) -15.5 -14.2 -24.1

Event Argument Extraction
ACE05 ERE RAMS

# Event / #Role 33 / 22 38 / 26 139 / 65
Head-F1 (SLM) 45.9 40.4 54.1
Head-F1 (LLM) 52.8 40.7 44.2
∆F1 (LLM, SLM) 6.9 0.3 -9.9

lation between the label number (row 2) and the
performance difference (row 5). In other words,
with more label types, LLMs tend to perform rel-
atively worse than SLMs. Therefore we conclude
that LLMs struggle on fine-grained datasets.

E.2 Finding Better Instruction
To investigate whether LLMs would benefit from
complex instructions, we explored six instruction
variants from simple to complex. Take NER task
as an example, we illustrate them as below.
Instruction0: [empty]
Instruction1: Identify the entities
expressed by each sentence, and locate
each entity to words in the sentence.
The possible entity types are: [Type_1],
[Type_2], ..., [Type_N]. If you do not
find any entity in this sentence, just
output ‘Answer: No entities found.’
Instruction2: Identify the entities
expressed by each sentence, and locate
each entity to words in the sentence.
The possible entity types are:

• [Type_1]: [Definition_1]

• [Type_2]: [Definition_2]

• ...

• [Type_N]: [Definition_N]

If you do not find any entity in
this sentence, just output ‘Answer: No
entities found.’
Instruction3: Assume you are an
entity-instance annotator. Given a
sentence, you need to (1) identify the
word or phrase about the entity in the
sentence, and (2) classify its entity
type. The possible entity types are
listed as below: [Type_1], [Type_2],
. . . , [Type_N]. Please note that your
annotation results must follow such
format: ”’Answer: ([Type_1] <SEP>
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identified_entity:[Entity_1]), ([Type_2]
<SEP> identified_entity:[Entity_2]),
......”’. If you do not find any entity
in this sentence, just output ‘Answer:
No entities found.’

Instruction4: Assume you are an
entity-instance annotator. Your
objective is to perform a series
of intricate steps for Named Entity
Recognition. Firstly, you have to
identify a particular word or phrase
in the sentence that corresponds to
an entity. Following this, classify
the entity into one of the potential
entity types. The potential entity
types are provided as below: [Type_1],
[Type_2], . . . , [Type_N]. Please note
that your annotation results must follow
such format: ‘Answer: ([Type_1] <SEP>
identified_entity:[Entity_1]), ([Type_2]
<SEP> identified_entity:[Entity_2]),
......’. If you do not find any entity
in this sentence, just output ‘Answer:
No entities found.’

Instruction5: Assume you are an
entity-instance annotator. Given a
sentence, you need to (1) identify the
word or phrase about the entity in the
sentence, and (2) classify its entity
type. The possible entity types are
listed as below:

• [Type_1]: [Definition_1]

• [Type_2]: [Definition_2]

• ...

• [Type_N]: [Definition_N]

Please note that your annotation
results must follow such
format: ‘Answer: ([Type_1] <SEP>
identified_entity:[Entity_1]), ([Type_2]
<SEP> identified_entity:[Entity_2]),
......’. If you do not find any entity
in this sentence, just output ‘Answer:
No entities found.’

Regarding these six instructions, we evaluate
their performance of ChatGPT on four 20-shot IE
tasks. As shown in Table 12, there is no signifi-
cant correlation between the instruction complexity

Table 12: F1-scores across six instruction formats. Ex-
periments run on 20-shot settings with ChatGPT.

FewNERD
(NER)

TACREV
(RE)

ACE
(ED)

ACE
(EAE)

I0 57.6(2.1) 49.1(2.4) 44.0(1.4) 50.9(0.1)
I1 58.3(0.5) 49.6(1.2) 42.6(1.0) 51.5(1.1)
I2 57.7(1.0) 50.0(1.5) 41.8(0.9) 50.3(1.5)
I3 57.6(2.3) 52.3(1.8) 42.9(1.3) 49.2(2.3)
I4 56.8(0.9) 49.6(2.9) 41.6(1.9) 49.9(1.2)
I5 57.8(0.5) 47.2(1.8) 43.1(1.8) 50.6(1.8)

and LLMs’ performance. Even the prompt with-
out instruction (I0) leads to comparable, if not bet-
ter, results than prompt with complex instructions.
Therefore, we use simple instruction (I1) in our
main experiment.

E.3 Do More Samples in Demos Help?
We wonder whether longer demos bring more pow-
erful ICL abilities for LLMs. Thus we investigate
the impact of increasing the number of demon-
strations on LLMs’ performance in Figure 8. We
observe that: (1) The performance of the RE task
consistently improves with more demos, indicating
its potential benefiting from additional annotations.
(2) The NER and ED tasks reach a stable or de-
graded performance with increased demo numbers,
suggesting that they are limited even before reach-
ing the maximum input length. (3) Open-source
LLMs, i.e., LLaMA and Vicuna, have more limited
capacities in leveraging demos compared to Ope-
nAI models, with their performance stagnating or
even collapsing with only a few (2-4) demos.

E.4 Finding Better Demo Selection Strategy
The maximum input length of LLMs usually limits
the sentence number in demos even under few-
shot settings. For each test sentence s, we de-
mand a demo retriever E(D, s) which selects a
subset from D as the sentences in demo. Following
previous work, we consider three commonly-used
strategies. (1) Random sampling. (2) Sentence-
embedding (Liu et al., 2022; Su et al., 2022): re-
trieving the top-K nearest sentences measured by
sentence embedding. We compute the embeddings
by SimCSE-RoBERTa-large (Gao et al., 2021).

E(D, s) = arg-topKs′∈D[Sent-embed(s′, s)] (3)

(3) Efficient Prompt Retriever (Rubin et al., 2022):
retrieving by a neural retriever R trained on D.

E(D, s) = arg-topKs′∈D[RD(s
′, s)] (4)
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Figure 8: Relationship between demo number and F1-score among three datasets. Note that the x-axis in each
subfigure represents the number of demos (not the shot value K) during ICL. We adopt sentence embedding as the
demo selection strategy and text prompt in this experiment.

For each test sentence s, we pre-retrieve M sim-
ilar sentences D̄ = {(s′i, y′i)}Mi=1 ⊂ D. Then
we score each sentence in D̄ by their likelihoods
PL(f(y′i)|f(s′i)) where f denotes the prompt for-
mat adopted and L the scoring LM. We randomly
select positive samples s′i

(pos) from the top-KD sen-
tences and hard negative samples s′i

(hard-neg) from
the bottom-KD ones. Then we train RD by in-
batch contrastive learning (Chen et al., 2020). For
each sentence s′i within the batch, there are 1 posi-
tive sentences s′i

(pos) and 2B−1 negative sentences
{s′j(hard-neg)}Bj=1 ∪ {s′j}Bj ̸=i. Here we adopt M as
40, KD as 5, f as text prompt, the batch size B as
128, and the scoring LM L as FLAN-T5-xl.

Table 13: F1-scores on three demo-selection strategies.
Experiments run on 20-shot settings with ChatGPT.

FewNERD
(NER)

TACREV
(RE)

ACE
(ED)

Random Sampling 53.2(0.4) 43.0(3.3) 38.0(1.5)
Sentence Embedding 57.6(2.3) 49.6(1.2) 42.9(1.3)

Efficient Prompt Retriever 57.2(0.6) 48.0(0.8) 43.5(1.4)

Table 13 demonstrates the F1-score performance
on different selection strategies. We find that both
the sentence embedding and EPR surpass random
sampling by a large margin. Given the simplicity
of the sentence embedding, we adopt it, rather than
EPR, as our selection strategy in main experiment.

Table 14: F1-scores across three prompt formats. Ex-
periments run on 20-shot settings with ChatGPT.

FewNERD
(NER)

TACREV
(RE)

ACE
(ED)

ACE
(EAE)

Text 57.6(2.3) 49.6(1.2) 42.9(1.3) 51.5(1.1)

Code 53.2(0.9) 50.2(1.8) 44.3(2.0) 47.3(1.5)

E.5 Finding Better Prompt Format

Previous studies on LLMs for few-shot IE tasks
have explored different prompt formats and high-
lighted the importance of selecting an appropri-
ate format for achieving competitive performance.
Therefore, we investigate two commonly-used vari-
ants in previous work: (1) Text prompt as shown in
Figure 1. (2) Code prompt: We follow Wang et al.
(2023b); Li et al. (2023) and recast the output of IE
tasks in the form of code. See more details about
this format in their original papers.

Table 14 shows comparable performance across
all formats. Based on simplicity, we choose the
text prompt for our main experiment.

F Case Study

F.1 Hard Samples

Table 15 showcases some hard examples which
benefits from our LLM reranking. In accordance
with our intuition, we observe that the LLM
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rerankers correct two kinds of erroneous predic-
tions made by LLMs. (1) The lack of external
knowledge, such as the first (Triptolemus is a fig-
ure in Greek mythology) and third examples (Mi-
nas Gerais is a state instead of city). (2) Limited
reasoning abilities, such as the second (His wife’s
children are his children) and the fourth (The word
"fought" in this sentence does not involve any phys-
ical violence) examples.

F.2 Easy Samples

As discussed in Section 4.3, we attribute the in-
ferior performance of LLMs on easy samples to
their false-positive predictions for negative samples.
Upon examining the incorrect cases, we speculate
that two main reasons are responsible: (1) LLM
hallucination and (2) span boundary mismatch. We
provide details on them with specific cases below.

LLM Hallucination. The most distinctive mis-
takes made by LLMs. Without specific fine-tuning
on IE tasks, LLMs (with in-context learning ap-
proaches) sometimes hallucinate and provide mean-
ingless, even confusing explanations or answers.
For instance, LLMs might predict a verb, preposi-
tion or even special symbols as an entity.

Case 1: LLMs predict the word die as entity
person-other (Ground truth: None)

Sentence: Flavius Rumoridus (died 5th cen-
tury AD) was a Roman soldier who was ap-
pointed consul in AD 403 in the Western Ro-
man Empire at the same time as the eastern
emperor Theodosius II served in the same
capacity in the East.

Candidate Choices:

(a) died do/does not belong to any known
entities.

(b) died is a kind of geopolitical entity.

(c) died is a person, but not affiliated with
following professions: actor, artist, ath-
lete, author, director, politician, scholar,
soldier.

Analysis: The sentence provides information
about Flavius Rumoridus, who was a Roman
soldier and appointed consul in AD 403. The
sentence also mentions that he died in the 5th
century AD, which is a statement about his
death. Therefore, the correct answer is (c)
because the sentence does not provide any
information about Flavius Rumoridus being
affiliated with any of the professions listed in
option (c).

Correct Answer: (c)

Case 2: LLMs predict the word of as entity
organization-other (Ground truth: None)

Sentence: During these years he studied at
the South Kensington Schools of the Royal
College of Art.

Candidate Choices:

(a) of do/does not belong to any known en-
tities.

(b) of is an educational institute.

(c) of pertains to an organization that does
not fall under the categories of com-
pany, educational institution, govern-
ment, media, political party, religion,
sports league, sports team, band or mu-
sical group.

Analysis: In the given sentence, of is a prepo-
sition that indicates the relationship between
South Kensington Schools and Royal College
of Art. None of the candidate choices directly
address the correct relationship between these
entities or state that they are not applicable.
Therefore, the correct answer is (c): of does
not pertain to any known entities mentioned
in the choices provided.

Correct Answer: (c)

Span boundary mismatch. Different from
sentence-level approaches which take one or mul-
tiple sentences as an unit and assign each word’s
label globally, LLMs under our filter-then-rerank

10591



paradigm adopt sample-level approaches. In other
words, LLMs only consider each word/span candi-
date independently. The sample-level approaches
enable LLMs to rerank candidates with the help of
multi-choice question prompt. However, they also
aggravate the span boundary mismatching prob-
lem in NER and ED tasks. We empirically find
easy samples suffering much more from boundary
mismatching problem than hard samples.

Case 3: LLMs predict Baron, a subspan of Baron
Carl Hurleman, as the entity person-other (The
ground-truth entity type of Baron is None. And the
ground-truth entity type of Baron Carl Hurleman
is person-artist/author).

Sentence: Additions in the 1740s were by
Baron Carl Hurleman (1700 - 1753).

Candidate Choices:

(a) Baron do/does not belong to any known
entities.

(b) Baron is a person, but not affiliated with
following professions: actor, artist, ath-
lete, author, director, politician, scholar,
soldier.

(c) Baron is a kind of geopolitical entity

Analysis: In the given sentence, Baron is a
title given to a person named Carl Hurleman,
who is mentioned as the one who made ad-
ditions in the 1740s. The sentence does not
provide any information about connections
to geopolitical entities or any other known
entities mentioned in the choices provided.
Therefore, the correct answer is (b): Baron is
a person, but not affiliated with following pro-
fessions: actor, artist, athlete, author, director,
politician, scholar, soldier.

Correct Answer: (b)

Case 4: LLMs predict 65th, a subspan of
65th British Academy Film Awards, as the en-
tity other-awards (The ground-truth entity type
of 65th is None. And the ground-truth entity
type of 65th British Academy Film Awards is
other-awards).

Sentence: Ralph Fiennes was nominated for
the BAFTA Award for Outstanding Debut by
a British Writer, Director or Producer at the
65th British Academy Film Awards.

Candidate Choices:

(a) 65th do/does not belong to any known
entities.

(b) 65th is a kind of award.

(c) 65th refers to some event except attack,
election, natural disaster, protest, revolu-
tion and sports.

Analysis: The sentence mentions the 65th
British Academy Film Awards, which is an
event that recognizes outstanding achieve-
ments in the film industry. Therefore, option
(c) is incorrect as it excludes events like award
ceremonies. Option (a) is also incorrect as
the number 65th is associated with the event.
Hence, the correct answer is (b) as 65th refers
to the specific edition of the BAFTA Awards.

Correct Answer: (b)

G Details on Adaptive Filter-then-rerank
Paradigm

G.1 Demonstration Examples
We convert few-shot IE tasks to multiple-choice
questions in our filter-then-rerank paradigm. We
show 4 examples used in demonstrations for FewN-
ERD dataset in Table 16, for TACREV dataset in
Table 17, and for ACE05 datasets in Table 18.

G.2 Template
In our filter-then-rerank paradigm, we utilize tem-
plates converting candidate labels to question op-
tions. We list the template for FewNERD dataset
in Table 19, for TACREV dataset in Table 20, and
for ACE05 datasets in Table 21.
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Table 15: Examples of the samples corrected by LLM reranking. We sample four examples from NER, RE and ED
tasks, respectively. Sentences: The sentences in which samples locate. We color the samples (entities or trigger
words) to be identified. Before: The prediction before LLM reranking. Based on SLM-based methods. After: The
reranked prediction using LLMs. Rationales: LLM-generated Explanations.

Sentences (entity/event) Before After Rationales

Named Entity Recognition

According to it, King Eleusis and
Cothonea (Cyntinia), parents of Trip-
tolemus, are visited by Demeter, who
rears their son, feeding him divine milk
by day and placing him into the fire at
night, which makes Triptolemus grow
faster than mortal children normally do.

person-other
✗

other-god
✓

According to the context, Triptolemus is a
figure in Greek mythology, the son of King
Eleusis and Cothonea (Cyntinia). He was a
demigod who was sent by Demeter to teach
mankind the art of agriculture. So Triptole-
mus is a god in some legend/religious story.

Relation Extraction

Survivors include his wife, Sandra; four
sons, Jeff, James, Douglas and Harris; a
daughter, Leslie; his mother, Sally; and
two brothers, Guy and Paul.

None
✗

per:children
✓

The sentence states ’Survivors include his
wife, Sandra; four sons, Jeff, James, Douglas
and Harris; a daughter, Leslie; his mother,
Sally; and two brothers, Guy and Paul.’ This
indicates ’his’ is the father of Jeff, James,
Douglas and Harris, and the husband of San-
dra. So his is the parent of Jeff.

Eliza Samudio, Bruno ’s ex-girlfriend
and his 4-month-old baby boy’s mother,
disappeared from her hometown of Belo
Horizonte, Minas Gerais.

per:cities_of
_residence ✗

per:states_of
_residence ✓

The sentence states that ’Eliza Samudio,
Bruno’s ex-girlfriend and his 4-month-old
baby boy’s mother, disappeared from her
hometown of Belo Horizonte, Minas Gerais.’
This indicates that Eliza Samudio is from the
city of Belo Horizonte, which is located in
the state of Minas Gerais. So Eliza Samudio
lives in the state or province Minas Gerais.

Event Detection

We have fought every institution, every
law firm ... it ’s cost us a fortune but now
we ’re going on a massive expansion.

Conflict.Attack
✗

None
✓

In the given sentence, the word fought is
used to describe the action of the speaker
fighting against various institutions and law
firms. This does not involve any physical
violence or court proceedings, so the word
fought does not trigger any known event.
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Table 16: Demo examples used in FewNERD dataset. We color the entity in blue.

Instruct: Read following sentences and identify what is the entity type of 392 quoted by <t>.
Sentence: Powell v. Texas , <t> 392 <t> U.S. 514 ( 1968 ) , was a United States Supreme Court case that ruled that a
Texas statute criminalizing public intoxication did not violate the Eighth Amendment protection against cruel and unusual
punishment.
(a) 392 is a legal document, a term or a convention in legal sense.
(b) 392 does not belong to any known entities.
(c) 392 refers to a protest, uprising or revolution event
(d) 392 refers to a government or governmental agency
Analysis: In the context you provided, 392 refers to the volume number in the United States Reports where the Supreme
Court’s decision in Powell v. Texas can be found. However, 392 itself does not refer to a legal document. So 392 do/does
not belong to any known entities.
Answer: (b)

Instruct: Read following sentences and identify what is the entity type of The New Yorker quoted by <t>.
Sentence: In 2004 Gourevitch was assigned to cover the 2004 U.S. presidential election for " <t> The New Yorker <t> ".
(a) The New Yorker does not belong to any known entities.
(b) The New Yorker is a broadcast program.
(c) The New Yorker is a kind of written art.
(d) The New Yorker is a media/newspaper organization.
Analysis: The New Yorker is a well-known American magazine that has been published since 1925, and is primarily
known for its long-form journalism, commentary, and satire. It has a reputation for publishing high-quality writing on a
wide variety of topics, including politics, culture, and the arts. So The New Yorker is a media/newspaper organization.
Answer: (d)

Instruct: Read following sentence and identify what is the entity type of St. quoted by <t>.
Sentence: The May 1980 eruption of Mount <t> St. <t> Helens in the state of Washington seriously affected both 47th Air
Division and 92d Bombardment Wing operations at Fairchild AFB , resulting in dispersal of Fairchild ’s B-52 and KC-135
aircraft to various bases while around-the-clock shifts removed the volcanic ash from facilities within the base perimeter. ”
(a) St. does not belong to any known entities.
(b) St. is a natural disaster event.
(c) St. is a geographic position about mountain.
Analysis: According to the context, St. is an abbreviation of Saint, used in the name of Mount St. Helens, which is an
active volcano in the state of Washington. However, St. itself does not refer to anything. So St. do/does not belong to any
known entities.
Answer: (a)

Instruct: Read following sentence and identify what is the entity type of Ridzuan quoted by <t>.
Sentence: <t> Ridzuan <t> was promoted to Harimau Muda A for 2014 season .
(a) Ridzuan does not belong to any known entities.
(b) Ridzuan is a person, but not affiliated with following professions: actor, artist, author, director, politician, scholar,
soldier.
(c) Ridzuan is an athlete.
Analysis: The mention of ’Harimau Muda A’ indicates that it is a sports-related context, and ’promoted’ implies a
progression or advancement within the sports team. So Ridzuan is an athlete.
Answer: (c)
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Table 17: Demo examples used in TACREV dataset. We color the subject and object entities in blue.

Instruct: Read the sentence and determine the relation between she and lawyer quoted by <t>.
Sentence: The <t> lawyer <t> denied Italian news reports that she wept while addressing the court, but said Knox was
upset as <t> she <t> recounted “ the pressure, the aggressiveness of the police who called her a liar . ”
(a) she is the other family member of lawyer
(b) she is a lawyer
(c) she has no known relations to lawyer
Analysis: In the sentence, the word ’she’ refers to someone who was upset while recounting certain events in court.
The word ’lawyer’ refers to someone who denied a news report about that same person weeping in court. There is no
information in the sentence to indicate that the two individuals are related in any way. So she has no known relations to
lawyer.
Answer: (c)

Instruct: Read the sentence and determine the relation between MEF and Myanmar Equestrian Federation quoted by <t>.
Sentence: YANGON , Dec. 27 -LRB- Xinhua -RRB- – Myanmar will hold a horse race in Yangon to commemorate the
country ’s 63rd Anniversary Independence Day , the <t> Myanmar Equestrian Federation <t> -LRB- <t> MEF <t> -RRB-
confirmed to Xinhua on Monday.
(a) MEF is also known as Myanmar Equestrian Federation
(b) MEF has political affiliation with Myanmar Equestrian Federation
(c) MEF has no known relations to Myanmar Equestrian Federation
Analysis: The symbols -LRB- and -RRB- in the sentence stand for left and right round brackets and are used to enclose
the abbreviation ’MEF’ to indicate that it is a replacement for the longer name ’Myanmar Equestrian Federation. So MEF
is also known as Myanmar Equestrian Federation.
Answer: (a)

Instruct: Read the sentence and determine the relation between Douglas Flint and chairman quoted by <t>.
Sentence: At the same time , Chief Financial Officer <t> Douglas Flint <t> will become <t> chairman <t> , succeeding
Stephen Green who is leaving to take a government job.
(a) Douglas Flint has no known relations to chairman
(b) Douglas Flint is a chairman
(c) Douglas Flint is the employee of chairman
Analysis: The sentence states that Chief Financial Officer Douglas Flint Douglas Flint will succeed Stephen Green as a
chairman. So Douglas Flint is a chairman.
Answer: (b)

Instruct: Read the sentence and determine the relation between FAA and U.S. quoted by <t>.
Sentence: On its Web site , the <t> U.S. <t> <t> FAA <t> says the Category 2 rating means the country lacks the laws or
regulations that are needed for the certification and oversight of air carriers , according to minimum international standards.
(a) FAA is also known as U.S.
(b) FAA has no known relations to U.S.
(c) FAA has a headquarter in the country U.S.
Analysis: The sentence states that the FAA says the Category 2 rating means the country lacks the laws or regulations
needed for the certification and oversight of air carriers, indicating that the FAA is responsible for overseeing aviation
regulations in the country. Actually the FAA (Federal Aviation Administration) is a U.S. government agency responsible
for regulating and overseeing civil aviation in the United States, and it has its headquarters in Washington, D.C.. So FAA
has a headquarter in the country U.S..
Answer: (c)
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Table 18: Demo examples used in ACE05 dataset. We color the trigger word in blue.

Instruct: Read following sentences and identify what event is triggered by the word loan quoted by <t>.
Sentence: Separately , former WorldCom CEO Bernard Ebbers failed on April 29 to make a first repayment of 25 million
dollars, plus interest, on a 400-million - dollar <t> loan <t> from MCI, the Journal said, citing SEC documents.
(a) The word loan does not trigger any known event.
(b) The word loan triggers a TRANSFER-MONEY event: giving, receiving, borrowing, or lending money when it is NOT
in the context of purchasing something.
(c) The word loan triggers a DECLARE-BANKRUPTCY event: an Entity officially requests legal protection from debt
collection due to an extremely negative balance sheet.
Analysis: In the given sentence, the word loan is used to describe the 400-million-dollar loan from MCI to former
WorldCom CEO Bernard Ebbers, which he failed to repay on time. This situation clearly involves a transfer of money
without the context of purchasing something, which falls under the TRANSFER-MONEY event. So the word loan
triggers a TRANSFER-MONEY event: giving, receiving, borrowing, or lending money when it is NOT in the context of
purchasing something.
Answer: (b)

Instruct: Read following sentences and identify what event is triggered by the words treated quoted by <t>.
Sentence: When she ’s in Germany , Lynch will be <t> treated <t> for bullet wounds and broken bones .
(a) The word treated triggers an INJURE event: a PERSON gets/got injured whether it occurs accidentally, intentionally
or even self-inflicted.
(b) The word treated does not trigger any known event.
(c) The word treated triggers a TRANSPORT event: an ARTIFACT (WEAPON or VEHICLE) or a PERSON is moved
from one PLACE (GEOPOLITICAL ENTITY, FACILITY, LOCATION) to another.
Analysis: The sentence suggests that Lynch has already been injured and will receive medical treatment in Germany for
her injuries. The word ’treated’ simply describes the medical care she will receive and does not indicate a new event or
action taking place. So the word treated does not trigger any known event.
Answer: (b)

Instruct: Read following sentences and identify what event is triggered by the words buy quoted by <t>.
Sentence: And I won’t dwell on the irony of an Oracle employee being driven out of Oracle , starting his own company ,
and forcing Ellison to spend $ 10.3 billion to get his company – but not him – back ( though it does rather delightfully
remind me of Coca - Cola basically giving away the bottling franchise and then spending billions to <t> buy <t> it back ) .
(a) The word buy triggers a DECLARE-BANKRUPTCY event: an Entity officially requests legal protection from debt
collection due to an extremely negative balance sheet.
(b) The word buy triggers a TRANSFER-OWNERSHIP event: The buying, selling, loaning, borrowing, giving, or
receiving of artifacts or organizations by an individual or organization.
(c) The word buy does not trigger any known event.
Analysis: In the given sentence, the word buy is used to describe the action of Oracle spending $10.3 billion to get a
company back. This clearly involves the transfer of ownership of the company from one entity to another. So the word buy
triggers a TRANSFER-OWNERSHIP event: The buying, selling, loaning, borrowing, giving, or receiving of artifacts or
organizations by an individual or organization.
Answer: (b)

Instruct: Read following sentences and identify what event is triggered by the words set quoted by <t>.
Sentence: British forces also began establishing the country’s first postwar administration Tuesday, granting a local sheik
power to <t> set <t> up an administrative committee representing the groups in the region.
(a) The word set triggers a START-POSITION event: a PERSON elected or appointed begins working for (or changes
offices within) an ORGANIZATION or GOVERNMENT.
(b) The word set triggers a START-ORG event: a new ORGANIZATION is created.
(c) The word set does not trigger any known event.
Analysis: The phrase ’set up’ specifically implies the creation or establishment of a new organization or entity, rather than
simply the word ’set’. So the word set does not trigger any known event.
Answer: (c)
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Table 19: Templates for FewNERD dataset, where {ent} is the placeholder for entity type.

Entity Template

no-entity {ent} do/does not belong to any known entities.

person-artist/author {ent} is an artist or author.

person-actor {ent} is an actor.

art-writtenart {ent} is a kind of writtenart.

person-director {ent} is a director.

person-other {ent} is a person, but not affiliated with following professions: actor, artist, athlete,
author, director, politician, scholar, soldier.

organization-other {ent} pertains to an organization that does not fall under the categories of company,
educational institution, government, media, political party, religion, sports league,
sports team, band or musical group.

organization-company {ent} is a company

organization-sportsteam {ent} is a sports team

organization-sportsleague {ent} is a sports league

product-car {ent} is a kind of car

event-protest {ent} refers to a protest, uprising or revolution event

organization-
government/governmentagency

{ent} refers to a government or governmental agency

other-biologything {ent} is a special term about biology / life science.

location-GPE {ent} is a kind of geopolitical entity

location-other {ent} is a geographic locaton that does not fall under the categories of geopolitical
entity, body of water, island, mountain, park, road, railway and transit.

person-athlete {ent} is an athlete or coach.

art-broadcastprogram {ent} is a broadcast program.

product-other {ent} is a kind of product that does not fall under the categories of airplane, train,
ship, car, weapon, food, electronic game and software.

building-other {ent} is a kind of building that does not fall under the categories of airport, hospital,
hotel, library, restaurant, sports facility and theater

product-weapon {ent} is a kind of weapon.

building-airport {ent} is an airport.

building-sportsfacility {ent} is a sports facility building.

person-scholar {ent} is a scholar.

art-music {ent} is a music.

event-other {ent} refers to some event except attack, election, natural disaster, protest, revolution
and sports

other-language {ent} is a kind of human language.

other-chemicalthing {ent} is some special term about chemical science.

art-film {ent} is a film.

building-hospital {ent} is a hospital.

other-law {ent} is a legal document, a term or a convention in legal sense.

product-airplane {ent} is kind of airplane product.

location-
road/railway/highway/transit

{ent} is a geographic position about roadways, railways, highways or public transit
systems.

person-soldier {ent} is a soldier

location-mountain {ent} is geographic position about mountain.

organization-education {ent} is an educational institute/organization.

organization-media/newspaper {ent} is a media/newspaper organization.
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product-software {ent} is a software product.

location-island {ent} is geographic position about island.

location-bodiesofwater {ent} is geographic position situated near a body of water.
building-library {ent} is a library.

other-astronomything {ent} is a special term about astronomy.

person-politician {ent} is a politician or lawyer or judge.

building-hotel {ent} is a hotel building.

product-game {ent} is a electronic game product.

other-award {ent} is a kind of award.

event-sportsevent {ent} refers to some event related to sports.

organization-showorganization {ent} is a band or musical organization.

other-educationaldegree {ent} is a kind of educational degree.

building-theater {ent} is a theater.

other-disease {ent} is a kind of disease.

event-election {ent} is an event about election.

organization-politicalparty {ent} is a political party/organization.

other-currency {ent} is a kind of currency.

event-
attack/battle/war/militaryconflict

{ent} is an event about attack, battle, war or military conflict.

product-ship {ent} is a ship.

building-restaurant {ent} is a restaurant.

other-livingthing {ent} is a living animal/creature/organism.

art-other {ent} is a work of art, but not belong to the categories of music, film, written art,
broadcast or painting.

event-disaster {ent} is a natural disaster event.

organization-religion {ent} is a religious organization.

other-medical {ent} refers to some kind of medicine.entity

location-park {ent} is a park.

other-god {ent} is a god in some legend/religious story.

product-food {ent} is a kind of food.

product-train {ent} is a kind of train(vehicle).

art-painting {ent} is an art painting.
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Table 20: Templates for TACREV dataset, where {subj} and {obj} are the placeholders for subject and object
entities. Copied from (Lu et al., 2022a)

Relation Template

no_relation {subj} has no known relations to {obj}

per:stateorprovince_of_death {subj} died in the state or province {obj}

per:title {subj} is a {obj}

org:member_of {subj} is the member of {obj}

per:other_family {subj} is the other family member of {obj}

org:country_of_headquarters {subj} has a headquarter in the country {obj}

org:parents {subj} has the parent company {obj}

per:stateorprovince_of_birth {subj} was born in the state or province {obj}

per:spouse {subj} is the spouse of {obj}

per:origin {subj} has the nationality {obj}

per:date_of_birth {subj} has birthday on {obj}

per:schools_attended {subj} studied in {obj}

org:members {subj} has the member {obj}

org:founded {subj} was founded in {obj}

per:stateorprovinces_of_residence {subj} lives in the state or province {obj}

per:date_of_death {subj} died in the date {obj}

org:shareholders {subj} has shares hold in {obj}

org:website {subj} has the website {obj}

org:subsidiaries {subj} owns {obj}

per:charges {subj} is convicted of {obj}

org:dissolved {subj} dissolved in {obj}

org:stateorprovince_of_headquarters {subj} has a headquarter in the state or province {obj}

per:country_of_birth {subj} was born in the country {obj}

per:siblings {subj} is the siblings of {obj}

org:top_members/employees {subj} has the high level member {obj}

per:cause_of_death {subj} died because of {obj}

per:alternate_names {subj} has the alternate name {obj}

org:number_of_employees/members {subj} has the number of employees {obj}

per:cities_of_residence {subj} lives in the city {obj}

org:city_of_headquarters {subj} has a headquarter in the city {obj}

per:children {subj} is the parent of {obj}

per:employee_of {subj} is the employee of {obj}

org:political/religious_affiliation {subj} has political affiliation with {obj}

per:parents {subj} has the parent {obj}

per:city_of_birth {subj} was born in the city {obj}

per:age {subj} has the age {obj}

per:countries_of_residence {subj} lives in the country {obj}

org:alternate_names {subj} is also known as {obj}

per:religion {subj} has the religion {obj}

per:city_of_death {subj} died in the city {obj}

per:country_of_death {subj} died in the country {obj}

org:founded_by {subj} was founded by {obj}
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Table 21: Templates for ACE05 dataset, where {evt} is the placeholder for event type.

Event Template

no-event The word {evt} does not trigger any known event.

Movement.Transport The word {evt} triggers a TRANSPORT event: an ARTIFACT (WEAPON or
VEHICLE) or a PERSON is moved from one PLACE (GEOPOLITICAL ENTITY,
FACILITY, LOCATION) to another.

Personnel.Elect The word {evt} triggers an ELECT event which implies an election.

Personnel.Start-Position The word {evt} triggers a START-POSITION event: a PERSON elected or appointed
begins working for (or changes offices within) an ORGANIZATION or GOVERN-
MENT.

Personnel.Nominate The word {evt} triggers a NOMINATE event: a PERSON is proposed for a position
through official channels.

Conflict.Attack The word {evt} triggers an ATTACK event: a violent physical act causing harm or
damage.

Personnel.End-Position The word {evt} triggers an END-POSITION event: a PERSON stops working for
(or changes offices within) an ORGANIZATION or GOVERNMENT.

Contact.Meet The word {evt} triggers a MEET event: two or more entities come together at a
single location and interact with one another face-to-face.

Life.Marry The word {evt} triggers a MARRY event: two people are married under the legal
definition.

Contact.Phone-Write The word {evt} triggers a PHONE-WRITE event: two or more people directly
engage in discussion which does not take place ’face-to-face’.

Transaction.Transfer-Money The word {evt} triggers a TRANSFER-MONEY event: giving, receiving, borrowing,
or lending money when it is NOT in the context of purchasing something.

Justice.Sue The word {evt} triggers a SUE event: a court proceeding has been initiated for the
purposes of determining the liability of a PERSON, ORGANIZATION or GEOPO-
LITICAL ENTITY accused of committing a crime or neglecting a commitment

Conflict.Demonstrate The word {evt} triggers a DEMONSTRATE event: a large number of people come
together in a public area to protest or demand some sort of official action. For eample:
protests, sit-ins, strikes and riots.

Business.End-Org The word {evt} triggers an END-ORG event: an ORGANIZATION ceases to exist
(in other words, goes out of business).

Life.Injure The word {evt} triggers an INJURE event: a PERSON gets/got injured whether it
occurs accidentally, intentionally or even self-inflicted.

Life.Die The word {evt} triggers a DIE event: a PERSON dies/died whether it occurs acci-
dentally, intentionally or even self-inflicted.

Justice.Arrest-Jail The word {evt} triggers a ARREST-JAIL event: a PERSON is sent to prison.

Transaction.Transfer-
Ownership

The word {evt} triggers a TRANSFER-OWNERSHIP event: The buying, selling,
loaning, borrowing, giving, or receiving of artifacts or organizations by an individual
or organization.

Justice.Execute The word {evt} triggers an EXECUTE event: a PERSON is/was executed

Justice.Trial-Hearing The word {evt} triggers a TRIAL-HEARING event: a court proceeding has been
initiated for the purposes of determining the guilt or innocence of a PERSON,
ORGANIZATION or GEOPOLITICAL ENTITY accused of committing a crime.

Justice.Sentence The word {evt} triggers a SENTENCE event: the punishment for the DEFENDANT
is issued

Life.Be-Born The word {evt} triggers a BE-BORN event: a PERSON is given birth to.

Justice.Charge-Indict The word {evt} triggers a CHARGE-INDICT event: a PERSON, ORGANIZATION
or GEOPOLITICAL ENTITY is accused of a crime

Business.Start-Org The word {evt} triggers a START-ORG event: a new ORGANIZATION is created.

Justice.Convict The word {evt} trigges a CONVICT event: a PERSON, ORGANIZATION or
GEOPOLITICAL ENTITY is convicted whenever it has been found guilty of a
CRIME.

Business.Declare-Bankruptcy The word {evt} triggers a DECLARE-BANKRUPTCY event: an Entity officially
requests legal protection from debt collection due to an extremely negative balance
sheet.

Justice.Release-Parole The word {evt} triggers a RELEASE-PAROLE event.
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Justice.Fine The word {evt} triggers a FINE event: a GEOPOLITICAL ENTITY, PERSON or
ORGANIZATION get financial punishment typically as a result of court proceedings.

Justice.Pardon The word {evt} triggers a PARDON event: a head-of-state or their appointed repre-
sentative lifts a sentence imposed by the judiciary.

Justice.Appeal The word {evt} triggers a APPEAL event: the decision of a court is taken to a higher
court for review

Business.Merge-Org The word {evt} triggers a MERGE-ORG event: two or more ORGANIZATION
Entities come together to form a new ORGANIZATION Entity.

Justice.Extradite The word {evt} triggers a EXTRADITE event.

Life.Divorce The word {evt} triggers a DIVORCE event: two people are officially divorced under
the legal definition of divorce.

Justice.Acquit The word {evt} triggers a ACQUIT event: a trial ends but fails to produce a convic-
tion.
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