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Abstract

Theory of Mind (ToM) is the ability to rea-
son about one’s own and others’ mental states.
ToM plays a critical role in the development of
intelligence, language understanding, and cog-
nitive processes. While previous work has pri-
marily focused on first and second-order ToM,
we explore higher-order ToM, which involves
recursive reasoning on others’ beliefs. We in-
troduce HI-TOM, a Higher Order Theory of
Mind benchmark. Our experimental evaluation
using various Large Language Models (LLMs)
indicates a decline in performance on higher-
order ToM tasks, demonstrating the limitations
of current LLMs. We conduct a thorough analy-
sis of different failure cases of LLMs, and share
our thoughts on the implications of our findings
on the future of NLP.

1 Introduction

Theory of Mind (ToM) refers to the ability to un-
derstand and reason about the mental states of
others such as intentions and beliefs, and also to
distinguish them from one’s own (Premack and
Woodruff, 1978). Such an ability has been con-
sidered a crucial point in the development of intel-
ligence functions (Premack and Woodruff, 1978;
Bretherton and Beeghly, 1982; Frith and Frith,
2003), and previous research has demonstrated that
ToM reasoning is highly related to linguistic and
cognitive processes (Perner, 1991; Sperber and Wil-
son, 2002). ToM has thus been widely used as a pro-
tocol to evaluate the language understanding and
reasoning ability of intelligence agents (Premack
and Woodruff, 1978; Takano et al., 2006), such as
young children (Osterhaus and Koerber, 2021).

With the recent advance in large language mod-
els (LLMs), research has been undertaken to eval-
uate the language skills of LLMs using ToM (Sap
et al., 2022; Ullman, 2023). Most of the previous
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Figure 1: A scene shot from the TV series Friends that
exhibits fourth-order Theory of Mind (ToM).

work has been confined to first-order and second-
order ToM, where LLMs are asked to perform in-
ference on others’ belief of reality in one or two
passes, e.g., the first and second-order questions in
Figure 2 (see Section 2 for a more comprehensive
discussion of ToM background and the evaluation
of ToM in LLMs).

Higher-order ToM, referring to third-order rea-
soning and beyond, requires recursive reasoning on
others’ beliefs in multiple passes. Figure 1 shows
a higher-order ToM example from the TV series
Friends. In Figure 1, a character says “They don’t
know that we know they know we know” when she
and the other character try to recursively identify
the situation. Such an example underscores that
human beings are capable of higher-order ToM in
daily interactions. In addition, evidence shows that
higher-order ToM is not only essential to commu-
nicate effectively in complicated scenarios, such as
multi-party conversations (Liddle and Nettle, 2006;
De Weerd et al., 2015; Ridinger and McBride,
2017; De Weerd et al., 2022), but it also enables
better emotional support and empathetic commu-
nication (Mitchell and Phillips, 2015). However,
because of a lack of higher-order ToM datasets in
the NLP community, there is significantly less re-
search on higher-order ToM compared to the lower
orders.

Previous work has mainly constructed ToM
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Figure 2: A sample from HI-TOM dataset, which con-
tains communications among agents, and questions that
address 0-th (reality) to 3-rd ToM reasoning..

benchmarks using automatic story generation
scripts. Although simple and inexpensive, this
method cannot be directly extended to generating
stories of higher-order ToMs because the generated
stories contain insufficient information for raising a
higher-order question. In this paper, we build upon
previous work and introduce HI-TOM, a multiple-
choice question benchmark consisting of Sally-
Anne-like stories (Figure 2), specifically designed
for higher-order ToM evaluation. Unlike previous
datasets, HI-TOM contains questions from zeroth-
order to fourth-order ToM, and incorporates agent
communications in the stories. We manually check
the quality of the constructed data, and empirically
find that HI-TOM presents greater diversity and
challenges compared to previous datasets.

We experiment with various LLMs, including
GPT-4 (OpenAI, 2023), GPT-3.5-turbo (OpenAI,
2022), Claude, and Guanaco (Dettmers et al.,
2023), on HI-TOM under a zero-shot setting. Fur-
thermore, we test the chain-of-thought prompt-
ing (Wei et al., 2022) and conduct a thorough
analysis of LLMs’ performances on different story
types in HI-TOM and their failure cases. Our work
demonstrates that the claim of LLMs having gen-
uine ToM abilities (Kosinski, 2023; Bubeck et al.,
2023) is questionable, especially in the cases of
higher-order ToM, where several rounds of recur-
sive reasoning are required. To our knowledge, we
are the first to introduce a benchmark for evaluat-

ing higher-order ToM reasoning and analyzing the
abilities of current LLMs on high-order ToM. Fur-
thermore, we share our thoughts on the future of
NLP and the way forward with LLMs of enhancing
LLMs from the perspective of human intelligence,
understanding humans through the lens of LLMs,
and enhancing LLMs’ ToM abilities for better NLP
applications. We release our dataset and code
at https://github.com/ying-hui-he/Hi-ToM_
dataset.

2 Background and Related Work

Theory of Mind. Most of prior work focuses on
first or second-order ToM (Nematzadeh et al., 2018;
Le et al., 2019; Sap et al., 2022), while higher-
order ToM (third-order and beyond) remains under-
explored. The concept of “orders” refers to the
number of mental state attributions that are required
to answer a particular question or reason about a
particular scenario. For instance, a third-order ToM
question can be “Where does Anne think that Sally
thinks that Isabella searches for the milk?”, where
Sally’s reasoning about Isabella is of second-order,
and Anna’s reasoning on Sally’s reasoning is of
third-order.

Higher-order ToM is useful in social interac-
tion such as maintaining social networks (Lid-
dle and Nettle, 2006), winning limited bidding
(de Weerd and Verheij, 2011), efficiently coopera-
tion (De Weerd et al., 2015; Ridinger and McBride,
2017), and unpredictable negotiations (De Weerd
et al., 2022). Researchers from cognitive science
investigate second-order and higher-order ToM
among young children via complex forms of false-
belief tests, such as the Sally-Anne false-belief
experiment (Baron-Cohen et al., 1985).

Evaluating ToM in LLMs. Sap et al. (2022) find
that GPT-3’s ToM ability is well below humans on
the TOMI dataset (Le et al., 2019), which is a ToM
evaluation dataset consisting of questions up to the
second order. Kosinski (2023); Bubeck et al. (2023)
show the promising performance of recent LLMs
such as GPT-3.5 and GPT-4 on ToM tasks. How-
ever, it is questionable whether LLMs have genuine
ToM ability, especially for higher-order ToM. Ull-
man (2023) find that for GPT-3.5, small variations
that maintain the principles of ToM can cause a
flip of the answer. Different from previous work
that only evaluates LLMs’ ToM ability up to the
second order, we take a step forward and evaluate
LLMs’ ability in higher-order ToM settings. Also,
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Component Num. Example

Room 30 kitchen , bedroom
Object 37 lemon , peach
Container 39 red_envelope , blue_bottle
Agent 40 Jack , Ella , Noah

Table 1: Basic components, numbers of choices for each
component (Num.), and their examples in HI-TOM sto-
ries.

we are the first one pioneering in adding the decep-
tive communication protocol in ToM setups, which
takes an initial step toward evaluating LLMs’ abil-
ity in real-world scenarios. Concurrent to our work,
Ma et al. (2023) surveyed the existing ToM bench-
marks and conducted preliminary experiments on
situated evaluation of ToM for LLMs.

3 The HI-TOM Dataset

To systematically examine how effectively LLMs
reason Theory of Mind (ToM) at different orders,
each story is coupled with five questions that re-
quire the zeroth to fourth level of ToM reasoning,
respectively. Following Nematzadeh et al. (2018)
and Le et al. (2019), we automatically generate HI-
TOM stories. Additionally, we manually review
the generated stories, questions, and answers to
ensure that they are consistent with each other, and
they are logically correct.

3.1 Dataset Design
Story Design. HI-TOM stories consist of four
fundamental elements: rooms, objects, containers,
and agents, as shown in Table 1. A story narrates
events occurring in one or more rooms, where mul-
tiple objects are placed inside their respective con-
tainers. Each story features five rational agents.

Each story comprises one to three chapters. Each
chapter corresponds to a single round in the object-
finding game. In each chapter, we design multi-
ple actions and optional communication protocols
among agents:

• Entry: At least one agent enters one room, where
they observe all the objects, other agents, and
their actions in that room (e.g., Figure 2 Scene
1).

• Object Movement: When in a room, each agent
can choose whether to move an object before
their exit. Such actions are done in a sequential
manner. In other words, the later agent can only
perform such an action after the former agent

HI-TOM One-Chapter Story

1 Emma, Charlotte, Benjamin, Aiden and Isabella en-
tered the workshop.

2 The pear is in the red_treasure_chest.
3 Emma moved the pear to the blue_suitcase.
4 Emma exited the workshop.
5 Charlotte exited the workshop.
6 Benjamin lost his watch.
7 Benjamin exited the workshop.
8 Aiden moved the pear to the blue_crate.
9 Aiden exited the workshop.
10 Isabella moved the pear to the red_treasure_chest.
11 Isabella likes the red_box.
12 Isabella exited the workshop.
13 Aiden publicly claimed that the pear is in the

blue_drawer now.
14 Emma privately told Isabella that the radish is in the

red_suitcase now.

Table 2: An example HI-TOM one-chapter story with
agent communications. Random distractors are inserted
in lines 6 and 11, where the latter introduces “red_box”
as a distractive answer choice.

moves the object (or not) and leaves the room
(Scenes 2, 3, and 4).

• Agent communication: Outside the room,
agents may be involved in two types of com-
munications: public, where an agent shares infor-
mation with every agent, and private, where an
agent only speaks to another agent privately, or
they can remain silent (Scene 5).

For agent communications, we set the shared
information to be deceptive in order to emulate the
dynamics of the complicated social life. It also adds
another layer of complexity to the ToM reasoning
process, which requires the answerers to not only
reason about an agent’s perceptions of other agents
knowledge of the objects location, but also reason
about whether an agent would trust another agent.
In this way, we evolved the simplistic toy stories in
the previous dataset (Le et al., 2019), and solved a
core problem in the previous evaluations that the
answers may be simply found from the objects
original or final location.

Moreover, we pose a constraint that the listener
would update their world knowledge based on the
information given by the speaker if the speaker ex-
its the room later than the listener. This is based on
the assumption that the listener would be unaware
of any changes after their exit, but the speaker
might possess more up-to-date knowledge as they
leave later. Additionally, we assume that Alex and
Sally, who give out information publicly or pri-
vately, will believe that all the listeners trust their

10693



respective information. A full assumption list is
attached to each story, as shown in Table 7 in Ap-
pendix B.1.

Each chapter involves entry and object move-
ment, while agent communication is optional. In
HI-TOM, half of the stories have at least one chap-
ter with agent communications, while the other half
only contains chapters without communications.

Question-Answer Design. Following Le et al.
(2019), for each story, we provide five questions
that are progressively built from lower-order ques-
tions to higher ones as shown in Table 3.

Order Question

0th Where is O really?
1st Where does A1 think O is?
2nd Where does A2 think A1 thinks O is?
3rd Where does A3 think A2 thinks A1 thinks O is?

4th Where does A4 think A3 thinks A2 thinks A1
thinks O is?

Table 3: Questions asked in a story involving object O
and five agents. A1 to A4 are randomly chosen from
the five agents. 0th, 1st, 2nd, 3rd, and 4th represent the
ToM orders of the questions.

Following Sap et al. (2022), we adopt the
multiple-choice setting and provide the correct an-
swer along with several distractor choices.

3.2 Data Generation

To generate the aforementioned ToM stories with
higher-order questions among agents, we adapt the
generation scripts from Nematzadeh et al. (2018),
which are originally limited to first or second-order
ToM stories.

Our script takes a list of story components
Rooms, Objects, Containers, Agents, as well
as the number of chapters ` as inputs, and outputs
a story with ` chapters along with five questions
from zeroth to fourth order ToM.

For the generation of each chapter, we randomly
choose the story components and fit them into the
chapter template. Specifically, we randomly deter-
mine whether or not each agent moves the object
to another container. Then, we incorporate agent
communications in certain chapters, where we use
the phrases “publicly claim” and “privately tell” to
encode public and private communications.

To generate the questions and answers for each
story, we integrate the relevant story components
into a predefined question template. Subsequently,
we utilize an answer generator to track the actions

Datasets ToM/ToM-easy TOMI HI-TOM

1st
2nd
3rd
4th

Comm.
#Line 15.05 8.86 26.47

#Agent 3.22 2.75 5
#Container 5 2 7.39

Table 4: Comparison between HI-TOM and other
datasets. 1st, 2nd, 3rd, and 4th refer to whether a dataset
contains story-question pairs of a specific ToM order.
Comm. stands for the existence of agent communica-
tions. #Line, #Agent, and #Container represent average
number per story.

of all agents and derive the correct answer to each
question. Further details and pseudocode related
to our story generation process can be found in
Appendix B.2.

Additionally, based on Le et al. (2019), we fur-
ther incorporate distractor sentences that relate an
agent with a random container, such as “Jack likes
the red_container”. This reduces the regularity and
predictability of the stories. Table 2 shows an exam-
ple one-chapter story with agent communications
and random distractors.

3.3 Dataset Characteristics

Table 4 shows a comparison between HI-TOM and
the other ToM datasets. First, unlike previous
datasets, HI-TOM is the only benchmark that con-
tains third and fourth-order stories, which suggests
that HI-TOM is more challenging and requires
higher-order ToM reasoning. Also, we first intro-
duce communications among agents, which poses
greater challenges to LLMs to reason about human
interactions. In addition, stories in HI-TOM are
significantly longer, with a larger number of agents
and containers per story. This requires the LLMs’
capability to comprehend the complete storyline
and reason about each agent’s beliefs.

Notably, HI-TOM features a larger pool of poten-
tial answers and a balanced distribution of correct
answers throughout the story. In ToM/ToM-easy
and TOMI, all the correct answers appear within
the last two containers or the only two containers
in the corresponding story. In contrast, the pro-
portions of correct answers appearing in the first,
second, third, and final quarters of the HI-TOM sto-
ries are 28.7%, 27.2%, 18.8%, and 25.3%, respec-
tively. The even distribution of correct answers
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eliminates the position bias of correct answers be-
ing concentrated in specific segments of the stories
in HI-TOM.

4 Experimental Setup

4.1 Models
We evaluate the following four LLMs on HI-TOM:

1. GPT-3.5-Turbo (OpenAI, 2022) and GPT-
4 (OpenAI, 2023) are closed-sourced models
from OpenAI. We use gpt-4-32k and gpt-
3.5-turbo for experiments, which are con-
ducted on June 14th∼15th 2023.

2. Claude-instant is a close-sourced model pub-
lished by Anthropic†.

3. Guanaco (65B) is an open-sourced model fine-
tuned from LLaMA (Touvron et al., 2023).

We adhere to the default parameter configura-
tions across all the examined language models.

4.2 Methods
For each HI-TOM story, we conduct trials using
two prompting styles: Vanilla Prompting (VP)
and Chain-of-Thought Prompting (CoTP). In VP
prompting, the model needs to pick the best answer
from a given set of options without explanation.
CoTP prompting requires the model to offer a step-
by-step explanation of its thought process along
with the answer. Appendix C.1 provides an exam-
ple (Table 8) and more details of our prompting
methods.

4.3 Evaluation
We evaluate the model performance using both
standard accuracy (hereafter referred to as accu-
racy) and joint accuracy. Adapted from (Le et al.,
2019), joint accuracy represents a more stringent
metric than standard accuracy. It considers an
answer as correct only when the related question,
along with all preceding, lower-order questions
within the same story are answered correctly. For
instance, the third-order question in Table 3 is con-
sidered correct only if the model correctly answers
the zeroth, first, second, and third-order questions
above it. Joint accuracy effectively reveals the
model’s genuine ability in higher-order ToM rea-
soning, as the model may only reason the higher-
order ToM correctly if it is able to reason the lower-
order ToM because the higher-order question is a

†www.anthropic.com/index/introducing-claude

Model Accuracy (%)

& Methods w/o w/ Overalldec. dec.

Guanaco VP 33.33 33.33 33.33 32.17
65B CoTP 35.00 26.99 30.99

+1.67 -6.34 -2.34

Claude VP 49.33 42.00 45.67 46.00
-instant CoTP 52.33 40.33 46.33

+3.00 -1.67 +0.66

GPT-3.5 VP 28.67 26.33 27.50 31.50
-turbo CoTP 35.67 35.33 35.50

+7.00 +9.00 +8.00

GPT-4 VP 60.42 55.81 58.11 58.99
-32k CoTP 64.04 55.72 59.88

+3.60 -0.09 +1.77

Table 5: Standard accuracy results of the four tested
models on HI-TOM stories. “w/o dec.” and “w/ dec.”
indicate accuracy in stories with and without deception,
respectively. The performance increase and decrease
from VP to CoTP prompting style are highlighted.

recursive successor of the lower-order ones for the
same story.

5 Experimental Results

Table 5 presents the accuracy scores of the four
LLMs. All the LLMs we evaluate exhibit less
than 60% accuracy scores, demonstrating that HI-
TOM is challenging even for the most sophisticated
LLMs. Figure 3 depicts the joint accuracy scores of
GPT-4 and GPT-3.5 under various settings. As the
story length decreases or the ToM order increases,
LLMs’ performance decreases across various set-
tings. In addition, LLMs perform worse when there
are deceptive agent communications involved in the
story. The trend observed in Guanaco and Claude
aligns with that of GPT-4 and GPT-3.5, as shown
in Appendix C.2.

The experimental results also reveal the follow-
ing noteworthy patterns:

CoTP prompting yields insignificant perfor-
mance gains. We observe no substantial improve-
ment in accuracy when transitioning from VP to
CoTP in 5. Furthermore, in the assessments involv-
ing stories with deception, the switch in prompting
methods even leads to a decrease in accuracy. We
hypothesize that as there are more steps involved,
there are higher chances of deceptive information
misleading steps in between. The chain may then
amplify the error in that step, leading to a cascade
of errors throughout the reasoning process.
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Figure 3: Joint accuracy of GPT-4 and GPT-3.5 on HI-TOM stories w/ or w/o deceptive agent communications. The
x-axis stands for ToM orders, and the y-axis is for story lengths (number of chapters). CoTP and VP respectively
represent chain-of-thought and multiple-choice-w/o-explanation prompting styles. The devil sign (
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Figure 4: Joint accuracy of GPT-4 on HI-TOM stories
with 0 to 4 sentences of deceptive agent communication.
0th-order (reality) accuracy is not included, since the
answer to the real room of the objects is not affected by
deceptive communications.

Increased ToM order leads to decreased perfor-
mances. As the ToM order increases from the
zeroth to the fourth, the joint accuracy goes from
near perfect to near zero. We also observe the dras-
tic decline in the conventional accuracy scores in
Appendix C.2.

LLMs’ performance decreases as there are more
deception communications involved. The per-
formance drops when deception communications
are involved. Table 5 and Figure 3 reveals a worse
performance on stories with agent communications.
To further investigate the models’ reasoning abili-
ties in handling deceptive agent communications,
we plot the resulting accuracy versus the number
of deceptive communication sentences (“deception
times”) per story for GPT-4 in Figure 4. As shown
in Figure 4, as deception times increase from 0
to 4, the joint accuracy experiences drops of 32%,
18.1%, 16%, and 11% respectively for the four
ToM orders. This suggests that the deceptive agent

communications challenge the LLMs in their ToM
reasoning process.

6 Discussion and Analyses

6.1 Underlying Patterns in Correct LLM
Predictions

Although the overall accuracy of the models leaves
room for improvement, we observe a higher fre-
quency of correct model choices under specific
conditions. We thus examine the scenarios where
models have higher answer accuracy.

LLMs handle answers that appear at the begin-
ning and end better. When dealing with long
three-chapter stories, LLMs frequently overlook
key information, such as the movement of a spe-
cific container or agent conversations. Yet, they
tend to pay special attention to the beginning and
the end of the story.

In Figure 5, we highlight GPT-4’s higher perfor-
mance when the correct answer aligns with the first
or last container mentioned in the story, as com-
pared to other cases, as demonstrated by the higher
values on the diagonal. This suggests that LLMs
are better at handling answers that appear at the
beginning or at the end. In contrast, The accuracy
when the correct answers are the middle contain-
ers (i.e. neither the first nor the last) is similar to
those that are not in those containers, as shown in
Figure 14 in Appendix C.2. We observe similar
patterns of the Claude model focusing on the be-
ginning and end of stories, as shown in Figure 15
in Appendix C.2. Our findings about position bias
in LLMs align with other works on LLMs (Wang
et al., 2023).
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Correct Incorrect

Last

¬Last

0.7 0.3

0.46 0.54

Correct Incorrect

First

¬First

0.62 0.38

0.38 0.62 0.4

0.6 Frequency

Figure 5: Frequency of GPT-4 correctly or incorrectly
answering a question of a three-chapter story, based
on whether or not the correct answer is the last or first
container mentioned in the story. “Last”/“First” and
“¬Last”/“¬First” indicate whether or not the correct
answer lies at the last/first container.

LLMs perform better if the answers across or-
ders are the same. We observe that LLMs per-
form better on question sets where the higher-order
answer coincides with a lower-order answer. In
Figure 6, we see a clear performance disparity be-
tween LLMs answering correctly if the answers are
the same across orders versus the answers being dif-
ferent across orders. However, this may result from
LLMs’ tendency to predict the same answers across
orders. We find that 72.4%, 64.6%, and 59.8% of
GPT-4’s second, third, and fourth-order answers
match their first-order responses. In contrast, only
30.9%, 20.9%, and 22.2% of the corresponding
correct answers in HI-TOM are the same as their
first-order answers. This suggests that GPT-4’s en-
hanced performance on certain questions may be
due to the coincidence of correct answers across
different ToM orders.

6.2 Classifying Reasoning Errors
To provide a comprehensive overview of the fail-
ure cases of LLMs in ToM reasoning, we manu-
ally evaluate a total of 300 step-by-step responses
across all ToM orders by ourselves, comprising
150 from each of GPT-4 and GPT-3.5. Table 6
describes the five most prevalent error types with
corresponding examples. Figure 7 provides the
frequencies of these errors in GPT-4’s responses
across different orders. We also show the results
for GPT-3.5 and do a comparison between the two
LLMs in Appendix C.2. As the ToM order in-
creases, LLMs tend to demonstrate a higher fre-
quency of errors. Here we provide hypotheses and
discussions for each of the error types:
Insufficient reasoning depth. We notice that
LLMs tend to skip steps in their reasoning process
and end up with an answer to a lower-order ques-
tion, as we observed earlier in Section 6.1. One
reason can be that the pre-training corpus often

2nd 3rd 4th0
10
20
30
40
50
60
70

Ac
cu

ra
cy

Correct answer same as the 1st-order answer
Correct answer different  from the 1st-order answer

Figure 6: Standard accuracy of GPT-4 on 2nd, 3rd, and
4th-order questions, categorized by whether the correct
answer matches the corresponding 1st-order answer.

consists of simple patterns rather than complex and
nuanced reasoning scenarios, leading to its frequent
simplification of the questions. In addition, LLMs
may possess a limited contextual understanding of
the story. They may struggle to retain and integrate
information from multiple steps or make connec-
tions across different parts of the text, leading to
oversimplification of the question.
Commonsense errors. LLMs have demonstrated
remarkable performance on standard benchmarks
of commonsense reasoning (Bian et al., 2023).
However, when it comes to ToM reasoning, even
advanced models like GPT-4 are prone to mak-
ing mistakes in handling commonsense knowledge.
One key aspect that contributes to these errors is the
disparity between the models’ knowledge of com-
monsense facts and their ability to effectively apply
that knowledge in the complex reasoning process.
While LLMs may possess a vast amount of ex-
plicit commonsense knowledge, they can struggle
to appropriately utilize this knowledge while avoid-
ing overgeneralization. In addition, the frequent
commonsense errors in HI-TOM might be due to
that HI-TOM is newly constructed, and therefore
LLMs have never seen such data before. In con-
trast, LLMs’ pre-training corpus might contain the
data in the publicly available commonsense bench-
marks, leading to the high performances on LLMs
on those benchmarks (Magar and Schwartz, 2022).
Hallucinations. Hallucination is a well-
known phenomenon in LLMs’ generation process
(McKenna et al., 2023). In our experiments, LLMs
may have relied on superficial cues and statistical
associations to answer the questions, rather than
gaining a solid understanding of the underlying
context and meaning. Hence, they might resort
to fabricating baseless details to bridge the logic
gap between the true story and their erroneous re-
sponses.
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Error Types Description Example

I Insufficient
Reasoning-Depth

Oversimplify the question
and skip the required multi-
step reasoning.

: Where does Jack think Hannah thinks William thinks the
carrot is?

: green_box, as that’s where Jack last saw it.

I Commonsense
Errors

Generate outputs that violate
common sense.

: . . . Aiden exited the pantry after step 8, but he can still
witness the move in the pantry after the exit, so . . .

I Hallucinations Fabricate ungrounded de-
tails or facts.

(In the story, Benjamin saw a cat, but did not talk about it)
: . . . But there’s another twist. Suppose Ella also learns that

Benjamin lied about seeing a cat to distract everyone from his
real plan . . .

I Temporal Ignorance Confuse or ignore the tempo-
ral order of events.

: . . . Lily exited the hallway (step 8) after Amelia moved
the corn to the red_basket (step 11), . . .

I Spurious Causal
Inference

Attribute a cause-and-effect
relationship between unre-
lated events.

: . . . Carter privately told Emma that the tomato is in the
green_drawer. Private communications are not heard by others,
so Emma has no reason to doubt Carter’s information.

Table 6: Types of reasoning errors commonly made by LLMs, with their description and example erroneous
responses ( ) to questions ( ) from our experiment results on GPT-4.

0th 1st 2nd 3rd 4th0.0
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Insufficient reasoning-depth
Commonsense errors
Hallucinations

Temporal ignorance
Spurious causal inference

Figure 7: Ratio of GPT-4 answers containing the five
reasoning errors. The x-axis corresponds to ToM orders.

Lack of temporal information. We observe that
LLMs’ understanding of the sequence of agent ac-
tions is often skewed, as the actions are closely
listed in HI-TOM stories. This confusion in tempo-
ral order is also found in Yuan et al. (2023). This
error may be attributed to biases inherent in the
pre-training corpus which leads to LLMs’ lack of
genuine understanding of temporal relations.
Spurious Causal Inference. The current learning
paradigm for LLMs is designed to capture the sta-
tistical correlations among the data (Devlin et al.,
2019). Through such a paradigm, it is difficult
for LLMs to capture the underlying logic behind
these correlations (Jin et al., 2023). As a result,
LLMs may make incorrect or misleading causal in-
ferences based solely on these superficial patterns.

7 Implications on the Future of NLP

We believe our work has important implications
on the future directions of NLP with respect to the

two-way relation between artificial intelligence and
human intelligence.

Enhance LLMs’ ToM ability from the perspec-
tive of human intelligence. According to Kah-
neman (2011), human decisions are supported and
guided by the cooperation of two capabilities or
two systems: System 1 for intuitive, imprecise,
fast, and often unconscious decisions (“thinking
fast”), and System 2 for more complex situations
with logical and rational thinking (“thinking slow”).
This theory has inspired works in computer vision
and natural language processing communities to
explicitly equip models with the two systems (Hill
et al., 2021; Miech et al., 2021).

Through our examination of LLMs’ ToM ability,
we find failure cases that resemble the character-
istics of System 1 thinking; for instance, LLMs
may invent causes and intentions (“hallucination”),
or substitute an easier question for a difficult one
(“insufficient reasoning-depth”). Furthermore, the
significant performance drop from zeroth to fourth
order ToM in HI-TOM suggests that LLMs may
be more inclined to System 1 thinking rather than
System 2 thinking, as higher-order ToM requires
careful in-depth logical inference.

However, there exists a line of research com-
bining the symbolic reasoning process (Simon and
Newell, 1971; Winograd, 1971), which aligns with
System 2 thinking, with connectionist paradigm
or neural learning (Rumelhart et al., 1986; Le-
Cun et al., 2015), which captures the intuitive and
pattern recognition aspects of System 1 thinking
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(Shavlik, 1994; Hitzler, 2022). This integration
holds the promise of enabling AI systems to per-
form complex tasks that require both logical de-
duction and statistical generalization. We believe
our findings of ToM limitations of LLMs alongside
this previous line of research clearly points to a
direction where neural and symbolic approaches
are combined in order to achieve abilities that are
more closely aligned to human intelligence.

Understanding humans through the lens of
LLMs. ToM plays a crucial role in understand-
ing human intelligence, as it is an important as-
pect of human cognition that enables us to make
inferences about others’ thoughts, emotions, and
behaviors. Enabling progress in ToM reasoning in
LLMs entails progress in emulating the function-
ing of human mind, which in turn offers intriguing
possibilities for gaining insights into human inter-
actions and the emergence of intelligence. While it
is important to recognize that the analogy between
human and artificial intelligence has its limitations
and is a subject of debate within the NLP com-
munity (Bender et al., 2021), recent research has
explored the extrinsic understanding of human in-
teractions through multi-agent systems (Park et al.,
2023). This approach allows us to observe how
LLMs can mimic and simulate aspects of human
behavior and communication. By studying LLMs
and their intrinsic properties, such as the emergence
of intelligence, we can gain valuable insights into
the fundamental processes underlying human cog-
nition (Wijmans et al., 2023). Researchers have
also developed methods to elicit human-like behav-
ior from LLMs, providing further opportunities to
explore and understand the capabilities and limita-
tions of these models (Belrose et al., 2023). While
LLMs offer a close-up view of human-like lan-
guage processing, it is crucial to approach the topic
with caution and recognize the complexities and
nuances of human intelligence and behavior.

Enhance LLMs’ ToM abilities for better NLP
applications. In daily life, our ToM ability plays
a vital role in understanding others’ intentions,
therefore helping us in our communication. In
HI-TOM, we enable higher-order ToM reasoning,
which in turn can lead to improvements in LLMs
performance on tasks such as deception detection,
emotional support, empathetic communication, and
others. Additionally, since LLMs represent foun-
dational models that are used across various NLP

tasks and applications, enhancing the abilities of
LLMs opens up exciting possibilities for improving
specific NLP tasks that benefit from these models.

8 Conclusion

In this paper, we introduce HI-TOM, the first ToM
benchmark that contains higher-order ToM tasks.
We demonstrated that LLMs’ performance suffers a
significant drop in ToM tasks from lower to higher
order. By proposing HI-TOM, we hope to address
the challenges of ToM in complicated scenarios and
spark further research on enhancing the reasoning
ability of LLMs.

Furthermore, we present our insights on the fu-
ture of NLP and discuss potential directions for
enhancing LLMs. Our aim is to stimulate research
that draws inspiration from human intelligence,
strives to understand humans better, and ultimately
leads to the development of NLP applications that
better cater to the needs of humans.
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Limitations

The limitations of our work can be stated from the
following perspectives.

1. Due to the constraint of computing resources
and budget, we only test four LLMs. However,
we try our best to select the representative
LLMs from close-sourced to open-sourced
LLMs including GPT-3.5 and GPT-4 from
OpenAI, Claude from Anthropic, and Gua-
naco from the community.

2. Due to the scope of this paper, we only demon-
strate the insufficient ToM abilities of LLMs.
Future works may further investigate how dif-
ferent training paradigms such as training with
or without reinforcement learning with human
feedback (RLHF) affect the ToM ability of
these LLMs.

3. We acknowledge that our dataset was con-
structed based on specific rules, which means
its dialog syntax may differ from genuine con-
versations. In the real world, higher-order
interactions might occur in a more implicit
manner, embedded within more intricate dia-
logues and questions. We plan to address this
in future research.

4. We share our thoughts on the future of NLP
and research with LLMs, hoping to stimulate
research that draws inspiration from human
intelligence, understands humans better, and
serves humans better. We admit that there
exist alternative ways of moving forward on
NLP research. We welcome feedback and
open discussion on how we can collectively
advance NLP research.
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B HI-TOM Details

B.1 Assumptions

Our simplified deception and belief mechanisms
are based on four assumptions. Table 7 shows the
original assumption list we attach to each story in
the dataset and prompt into LLMs.

Note: You should assume the following.
(1) An agent witnesses everything and every
movement before exiting a room.
(2) An agent A can infer another agent B’s
mental state only if A and B have been in
the same room, or have private or public
interactions.
(3) Note that every agent tend to lie. What
a character tells others doesn’t affect his
actual belief. An agent tend to trust a agent
that exited the room later than himself. The
exit order is known to all agents.
(4) Agents in private communications know that
others won’t hear them, but they know that
anyone can hear any public claims.

Table 7: Assumption list attached to each HI-TOM story
and prompt into LLMs.

B.2 Story Generation Details

Algorithm 1 and Algorithm 2 provide the pseu-
docode for the generation process of each chapter
and the whole story in HI-TOM.

In Algorithm 1, the function MOVE is employed
to populate the story components into the template,
thereby producing a sentence that describes the
movement. The function COMMUNICATE gener-
ates content related to the "tell" action. Meanwhile,
the RANDOM_DISTRACTOR function introduces
random distractors into the story.
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In Algorithm 2, the question generator Q_GEN

randomly picks the agents and the object appearing
in the story and populates them into a predefined
question template. Then, the answer generator
A_GEN generates the answer to the correspond-
ing question based on a dictionary that traces the
beliefs of different orders of each agent.

Algorithm 1 HI-TOM Chapter Generation Algorithm

Input: agents, room, conts, obj
Output: chap

1: function CHAP(agents, room, conts, obj)
2: for agent in agents do
3: set no_move to random boolean value
4: move← MOVE(agent, conts, obj, no_move)
5: add move into chap
6: end for
7: com← COMMUNICATE(agents)
8: rd← RANDOM_DISTRACTOR(agents, conts)
9: add com and rd into chap

10: return chap
11: end function

C Experiment Details

C.1 Prompting inputs
In our experiments, the average number of tokens
in a single prompt is 453.3, and the total token
number of our prompts on each model is 543968,
including VP and CoTP prompts on stories with or
without deception.

Table 8 is a sample CoTP prompt in our experi-
ments. We specify the range of the story, question,
choices, and assumptions to enhance the models’
understanding. We also order each line of the story
to indicate the chronological order. The provided
answer choices are all the containers appearing in
the story.

C.2 Supplementary Results
Figure 9 and Figure 8 shows the detailed joint accu-
racy results of Guanaco and Claude. The joint ac-
curacy generally decreases as the story length and
the ToM orders increase, aligning with the results
of GPT-4 and GPT-3.5. The overall joint accuracy
performance of Claude is better than Guanaco.

Figure 10 to Figure 13 show the standard ac-
curacy results of GPT-4, GPT-3.5-turbo, Claude-
instant and Guanaco 65B, as the break-down details
of Table 5. Among the four models, GPT-4 has
the highest and most stable performance, reaching
nearly perfect accuracy on the zeroth order and
higher than 20% on the fourth.

Under CoTP prompting, each model reaches a
high performance on zeroth-order questions, espe-
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Read the following story and answer the multiple-choice question. Think step-by-step.
Provide the answer first, and then explain it.
Story:
1 William, Jack, Charlotte, Noah and Hannah entered the hall.
2 Noah saw a monkey.
3 The carrot is in the red_basket.
4 William made no movements and stayed in the hall for 1 minute.
5 William exited the hall.
6 Hannah saw a mouse.
7 Jack made no movements and stayed in the hall for 1 minute.
8 Jack exited the hall.
9 Charlotte made no movements and stayed in the hall for 1 minute.
10 Charlotte exited the hall.
11 Charlotte dislikes the tomato.
12 Noah moved the carrot to the green_envelope.
13 Noah exited the hall.
14 Hannah moved the carrot to the red_basket.
15 Hannah exited the hall.
16 William, Jack, Charlotte, Noah and Hannah entered the waiting_room.
17 Charlotte publicly claimed that carrot is in the green_envelope.
18 Hannah privately told Charlotte that the carrot is in the blue_container.
Question: Where does Charlotte think Jack thinks Hannah thinks William thinks the carrot
is?
Choices: A. green_envelope, B. red_basket, C. blue_container, D. red_crate, E. green_drawer,
F. blue_bucket, G. green_cupboard, H. red_bottle, I. green_treasure_chest, J. blue_cupboard,
K. red_pantry, L. red_container, M. blue_bathtub, N. red_envelope, O. blue_pantry

Note: You should assume the following. (1) An agent witnesses everything and every
movements before exiting a room. (2) An agent A can infer another agent B’s mental state
only if A and B have been in the same room, or have private or public interactions. (3)
Note that every agent tend to lie. What a character tells others doesn’t affect his actual
belief. An agent tend to trust a agent that exited the room later than himself. The exit
order is known to all agents. (4) Agents in private communications know that others won’t
hear them, but they know that anyone can hear any public claims.

Table 8: An example CoTP prompt of a one-chapter HI-TOM story with a fourth-order question.

Algorithm 2 HI-TOM Story Generation Algorithm

Input: Number of chapters: ` ∈ {1, 2, 3}
Story components: Rooms, Objects,

Containers, Agents
Output: story, question, answer

1: function STORY(`, Rooms, Objects, Containers,
Agents)

2: for i← 1 to l do
3: randomly choose room,obj, conts, agents
4: chap← CHAP(room, obj, conts, agents)
5: add chap into story
6: end for
7: question← Q_GEN(Agents,Objects)
8: answer ← A_GEN(Agents,Objects)
9: return story, question, answer

10: end function

cially for stories without agent communications,
and their performance deteriorates with increased
ToM order and story length. Yet, under VP prompt-
ing, Claude and Guanaco exhibit a uniform perfor-
mance of around 50% across all the orders.
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Figure 10: Standard accuracy results of GPT-4.
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Figure 11: Standard accuracy results of GPT-3.5-turbo.
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Figure 12: Standard accuracy results of Claude-instant.
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Figure 13: Standard accuracy results of Guanaco 65B.

Figure 14 illustrates the performance compari-
son of GPT-4 between the case when the correct
answer is in a certain position in the middle of the
story, and the case when it is not. We observe that
GPT-4 does not significantly perform better when
the correct answer lies in the middle of the story.
This serves as a contrast to Figure 5, highlighting
the better ability of GPT-4 to capture answers at

the beginning or the end of a story.
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Figure 14: Performance of GPT-4 in the cases when the
correct answer does or does not lie in a certain position.

Figure 15 shows similar observations for Claude.
The plots for the last and first positions of con-
tainers show a higher frequency in the top-left and
bottom-right cells, while the plots for other posi-
tions do not imply such a pattern.
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Figure 15: Performance of Claude in the cases when the
correct answer does or does not lie in a certain position.

Figure 16 details the appearance frequency of the
five reasoning errors in the step-by-step responses
of GPT-3.5. Compared to the error ratios of GPT-4
(Figure 7), the frequencies of commonsense errors,
hallucinations, and spurious causal inference are
significantly higher, implying GPT-3.5’s immature
perceptions of the world and its deficient logical
reasoning abilities. The occurrence of insufficient
reasoning depth and temporal ignorance escalates
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Figure 16: Ratio of the five reasoning errors in GPT-
3.5’s responses.

in higher-order responses.
The comparison between Figure 7 and Figure 16

yields that GPT-4 has not resolved the errors of
commonsense, insufficient reasoning depth, and
temporal ignorance, while hallucinations and spuri-
ous causal inference have been largely addressed.
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