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Abstract

The performance of sentence encoders can be
significantly improved through the simple prac-
tice of fine-tuning using contrastive loss. A
natural question arises: what characteristics
do models acquire during contrastive learning?
This paper theoretically and experimentally
shows that contrastive-based sentence encoders
implicitly weight words based on information-
theoretic quantities; that is, more informative
words receive greater weight, while others re-
ceive less. The theory states that, in the lower
bound of the optimal value of the contrastive
learning objective, the norm of word embed-
ding reflects the information gain associated
with the distribution of surrounding words. We
also conduct comprehensive experiments using
various models, multiple datasets, two meth-
ods to measure the implicit weighting of mod-
els (Integrated Gradients and SHAP), and two
information-theoretic quantities (information
gain and self-information). The results provide
empirical evidence that contrastive fine-tuning
emphasizes informative words.

� https://github.com/kuriyan1204/
sentence-encoder-word-weighting

1 Introduction

Embedding a sentence into a point in a high-
dimensional continuous space plays a founda-
tional role in the natural language processing
(NLP) (Arora et al., 2017; Reimers and Gurevych,
2019; Chuang et al., 2022, etc.). Such sentence
embedding methods can also embed text of var-
ious types and lengths, such as queries, pas-
sages, and paragraphs; therefore, they are widely
used in diverse applications such as information
retrieval (Karpukhin et al., 2020; Muennighoff,
2022), question answering (Nguyen et al., 2022),
and retrieval-augmented generation (Chase, 2023).

One of the earliest successful sentence embed-
ding methods is additive composition (Mitchell
and Lapata, 2010; Mikolov et al., 2013), which
embeds a sentence (i.e., a sequence of words)
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Figure 1: Overview of our study. We quantify the
word weighting within contrastive-based sentence en-
coders by XAI techniques: Integrated Gradients (IG)
or Shapley additive explanations (SHAP). We found
that the quantified weightings are close to infromation-
theoretic quantities: information-gain KL(w) and self-
information − logP (w).

by summing its static word embeddings (SWEs;
Mikolov et al., 2013; Pennington et al., 2014). Be-
sides, weighing each word based on the inverse of
word frequency considerably improved the quality
of the sentence embeddings, exemplified by TF-
IDF (Arroyo-Fernández et al., 2019) and smoothed
inverse word frequency (SIF; Arora et al., 2017).

Recent sentence embeddings are built on masked
language models (MLMs; Devlin et al., 2019; Liu
et al., 2019; Song et al., 2020). Although sen-
tence embeddings from the additive composition of
MLMs’ word embeddings are inferior to those of
SWEs (Reimers and Gurevych, 2019), fine-tuning
MLMs with contrastive learning objectives has ele-
vated the quality of sentence embeddings (Reimers
and Gurevych, 2019; Gao et al., 2021; Chuang
et al., 2022, etc.) and is now the de-facto stan-
dard. Interestingly, these contrastive-based sen-
tence encoders do not employ explicit word weight-
ing, which is the key in the SWE-based methods.

In this paper, we demonstrate that a reason for
the success of contrastive-based sentence encoders
is implicit word weighting. Specifically, by com-
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bining explainable AI (XAI) techniques and infor-
mation theory, we demonstrate that contrastive-
based sentence encoders implicitly weight each
word according to two information-theoretic quan-
tities (Figure 1). To measure the contribution (i.e.,
implicit weighting) of each input word to the output
sentence embedding within the encoders, we used
two XAI techniques: Integrated Gradients (IG; Sun-
dararajan et al., 2017) and Shapley additive expla-
nations (SHAP; Lundberg and Lee, 2017) (Sec-
tion 3.1). To measure the information-theoretic
quantities of each word, we used the two sim-
plest quantities, information-gain KL(w) and self-
information − logP (w) (Section 3.2). To demon-
strate our hypothesis, we first provided a theoret-
ical connection between contrastive learning and
information gain (Section 4). We then conducted
comprehensive experiments with a total of 12 mod-
els and 4 datasets, which found a strong empirical
correlation between the encoders’ implicit word
weighting and the information-theoretic quantities
(Section 5). The results of our study provide a
bridge between SWE-era explicit word weighting
techniques and the implicit word weighting used
by recent contrastive-based sentence encoders.

2 Contrastive-Based Sentence Encoders

This section provides an overview of contrastive-
based sentence encoders such as SBERT (Reimers
and Gurevych, 2019) 1 and SimCSE (Gao et al.,
2021). These models are built by fine-tuning
MLMs with contrastive learning objectives.

Input and Output: As shown in Figure 1, a
contrastive-based sentence encoder m : Rn×d →
Rd calculates a sentence embedding s ∈ Rd

from a sequence of input word embeddings W =
[w1, . . . ,wn] ∈ Rn×d corresponding to input
words and special tokens. For example, for the sen-
tence “I like playing the piano,” the input to the en-
coder m is W = [w[CLS],wI,wlike, . . . ,w[SEP]],
and sentence embedding s is calculated as follows:

s := m(W ) = [m1(W ), . . . ,md(W )], (1)

where mi : Rn×d → R denotes the computation of
the i-th element of s.

Architecture: The encoder architecture consists
of (i) Transformer layers (same as MLM architec-
ture) and (ii) a pooling layer. (i) Transformer layers

1A classification loss is used in the training of SBERT;
however, this can be roughly regarded as a contrastive loss
(see Appendix A).

update input word embeddings to contextualized
word embeddings wi 7→ ei. (ii) The pooling layer
then pools the n representations [e1, . . . , en] into
a single sentence embedding s ∈ Rd. There are
two major pooling methods, MEAN and CLS: MEAN
averages the contextualized word embeddings, and
CLS just uses the embeddings for a [CLS] token
after applying an MLP on top of it.

Contrastive fine-tuning: The contrastive fine-
tuning of MLMs is briefly described below. In
contrastive learning, positive pairs (s, spos), i.e.,
semantically similar pairs of sentence embeddings,
are brought closer, while negative pairs (s, sneg)
are pushed apart in the embedding space. Positive
examples spos and negative examples sneg for a
sentence embedding s are created in different ways
depending on the method. For instance, in the
unsupervised SimCSE (Gao et al., 2021), a positive
example spos is created by embedding the same
sentence as s by applying a different dropout; and
a negative example sneg is created by embedding a
sentence randomly sampled from a training corpus.

3 Analysis Method

We compare the implicit word weighting within
the contrastive-based sentence encoders with
information-theoretic quantities of words. Here
we introduce (i) quantification of the implicit word
weighting within the encoders using two XAI
techniques (Section 3.1) and (ii) two information-
theoretic quantities of words (Section 3.2).

3.1 Implicit Word Weighting within Encoder

Contrastive-based sentence encoders are not given
explicit word weighting externally but are expected
to implicitly weight words through the complicated
internal network. We quantify the implicit word
weighting using two widely used feature attribution
methods (Molnar, 2022): Integrated gradients (Sun-
dararajan et al., 2017) and Shapley additive expla-
nations (Lundberg and Lee, 2017).

3.1.1 Integrated Gradients (IG)

Integrated Gradients (IG) is a widely XAI tech-
nique used to calculate the contribution of each
input feature to the output in neural models. IG has
two major advantages: (i) it is based on the gradient
calculations and thus can be used to arbitrary neural
models; and (ii) it satisfies several desirable proper-
ties, for example, the sum of the contributions for
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each input feature matches the output value (Com-
pleteness described in Sundararajan et al., 2017).
It has also been actively applied to the analysis of
MLM-based models (Hao et al., 2021; Prasad et al.,
2021; Bastings et al., 2022; Kobayashi et al., 2023).

The formal definition of IG is as follows: Let
f : Rn×d → R be a model (e.g., each element of
sentence encoder) and X ′ ∈ Rn×d be a certain
input (e.g., word vectors). IG calculates a contribu-
tion score IGi,j for the (i, j) element of the input
X ′[i, j] (e.g., each element of each input word vec-
tor) to the output f(X ′):

f(X ′) =
n∑

i=1

d∑

j=1

IGi,j(X
′; f,B) + f(B) (2)

IGi,j(X
′; f,B) := (X ′[i, j]−B[i, j])

×
∫ 1

α=0

∂f

∂X[i, j]

∣∣∣∣
X=B+α(X′−B)

dα. (3)

Here B denotes a baseline vector, often an uninfor-
mative or neutral input is employed. Notably, IG
decomposes the output value into the sum of the
contribution scores of each input (Equation 2).

Application to the sentence encoder: We aim
to measure the contribution of each input word to
the output sentence embedding. However, when
applying IG to the sentence encoder m (its k-th
element is mk) and input W = [w1, . . . ,wn], it
can only compute the fine contribution score of the
j-th element of the each input word vector wi to the
k-th element of the sentence vector s = m(W ).
Thus, we aggregates the contribution scores across
all the (j, k) pairs by the Frobenius norm:

ci(W ;m,B) :=

√√√√
d∑

j=1

d∑

k=1

IGi,j

(
W ′;mk,B

)2,

B = [wCLS,wPAD,wPAD, ...,wPAD,wSEP], (4)

where we used a sequence of input word vectors
for an uninformed sentence “[CLS] [PAD] [PAD]
. . . [PAD] [SEP]” as the baseline input B. In
addition, the word contribution ci is normalized
with respect to the sentence length n to compare
contributions equally among words in sentences of
different lengths: c′i := ci/(

1
n

∑n
j=1 cj).

3.1.2 SHapley Additive exPlanations (SHAP)
Shapley additive explanations (SHAP) is a feature
attribution method based on Shapley values (Shap-
ley, 1953). Similar to IG, SHAP satisfies the desir-
able property: it linearly decomposes the model

output to the contribution of each input (Lund-
berg and Lee, 2017). Its formal definition and
application to the word weighting calculation of
contrastive-based sentence encoders are shown in
Appendix D.

Though we can apply SHAP to analyze sen-
tence encoders, SHAP is often claimed to be unre-
liable (Prasad et al., 2021). Thus, we discuss the
experimental results using IG in the main text and
show the results using SHAP in Appendix E.

3.2 Information-Theoritic Quantities

Here, we introduce two information-theoretic quan-
tities that represent the amount of information a
word conveys.

3.2.1 Information Gain KL(w)

The first quantity is the information gain, which
measures how much a probability distribution
(e.g., the unigram distribution in some sentences)
changes after observing a certain event (e.g., a
certain word). Information gain of observing a
word w in a sentence is denoted as KL(w) :=
KL(Psent(·|w) ∥ P (·)), where Psent(·|w) is the
word frequency distribution in sentences contain-
ing word w, and P (·) is a distribution without con-
ditions. Intuitively, KL(w) represents the extent
to which the topic of a sentence is determined by
observing a word w in the sentence. For exam-
ple, if w is “the”, KL(“the”) becomes small be-
cause the information that a sentence contains “the”
does not largely change the word frequency dis-
tribution in the sentence from the unconditional
distribution (Psent(·|“the”) ≈ P (·)). On the other
hand, if w is “NLP”, KL(“NLP”) becomes much
larger than KL(“the”) because the information
that a sentence contains “NLP” is expected to sig-
nificantly change the word frequency distribution
(Psent(·|“NLP”) ̸= P (·)). Recently, Oyama et al.
(2023) showed that KL(w) is encoded in the norm
of SWE. Also, χ2-measure, which is a similar quan-
tity to KL(w), is useful in keyword extraction (Mat-
suo and Ishizuka, 2004). We provide a theoretical
connection between KL(w) and contrastive learn-
ing in Section 4.

3.2.2 Self-Information − logP (w)

The second quantity which naturally represents
the information of a word is self-information
− logP (w). − logP (w) is based on the inverse
of word frequency and actually very similar to
word weighting techniques used in SWE-based sen-
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tence encoding methods such as TF-IDF (Arroyo-
Fernández et al., 2019) and SIF weighting (Arora
et al., 2017). Note that the information gain KL(w)
introduced in Section 3.2.1 is also correlated with
the inverse of word frequency (Oyama et al., 2023),
and both quantities introduced in this section are
close to the word weighting techniques. Detailed
comparison between the two quantities and the
word weighting techniques is shown in Appendix B.
If the contrastive-based sentence encoder’s word
weighting is close to KL(w) and − logP (w), the
post-hoc word weighing used in SWE-based meth-
ods is implicitly learned via contrastive learning.

4 Theoretical Analysiss

This section provides brief explanations of the theo-
retical relationship between KL(w) and contrastive
learning. Given a pair of sentences (s, s′), con-
trastive learning can be regarded as a problem of
discriminating whether a sentence s′ is a positive
(semantically similar) or negative (not similar) ex-
ample of another sentence s. We reframe this dis-
crimination problem using word frequency distribu-
tion. After observing w in s, the positive example
is likely to contain words that co-occur with w; i.e.,
the word distribution of the positive example likely
follows Psent(·|w). Contrary, the negative example
is likely to contain random words from a corpus
regardless of the observation of w; i.e., the word
distribution of the negative example likely follows
P (·). Hence, KL(Psent(·|w) ∥ (P (·)) = KL(w)
approximately represents the objective of the dis-
crimination problem (i.e., contrastive learning).
See Appendix C for a more formal explanation.

5 Experiments

In this section, we investigate the empirical relation-
ship between the implicit word weighting within
contrastive-based sentence encoders (quantified by
IG or SHAP) and the information-theoretic quanti-
ties (KL(w) or logP (w)).

5.1 Experimental Setup

Models: We used the following 9 sentence en-
coders: SBERT (Reimers and Gurevych, 2019),
Unsupervised/Supervised SimCSE (Gao et al.,
2021), DiffCSE (Chuang et al., 2022), both
for BERT and RoBERTa-based versions, and
all-mpnet-base-v22. As baselines, we also

2https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.0 0.2
→ U.SimCSE-BERT 32.4 (+32.4) 17.3 (+17.1)
→ S.SimCSE-BERT 30.8 (+30.8) 16.9 (+16.7)
→ DiffCSE-BERT 31.6 (+31.6) 13.1 (+12.9)

BERT (MEAN) 24.4 7.9
→ SBERT 22.9 (−1.5) 16.1 (+8.1)

RoBERTa (CLS) 2.0 5.0
→ U.SimCSE-RoBERTa 29.7 (+27.7) 17.5 (+12.5)
→ S.SimCSE-RoBERTa 29.1 (+27.1) 20.2 (+15.2)
→ DiffCSE-RoBERTa 28.4 (+26.4) 16.5 (+11.4)

RoBERTa (MEAN) 4.2 5.5
→ SRoBERTa 31.4 (+27.2) 24.0 (+18.4)

MPNet (MEAN) 0.6 −2.6
→ all-mpnet-base-v2 21.6 (+21.0) 21.0 (+23.5)

Table 1: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by IG on the information gain
KL for the STS-B dataset. The R2 and β is reported as
R2 × 100 and β × 100. The values inside the brackets
represent the gain from pre-trained models.

analyzed 3 pre-trained MLMs: BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019) and MP-
Net (Song et al., 2020). All models are base size.

Dataset: We used STS-Benchmark (Cer et al.,
2017), a widely used dataset to evaluate sentence
representations, for input sentences to encoders
and calculating − logP (w) and KL(w). We used
the validation set, which includes 3,000 sentences.
We also conducted experiments using Wikipedia,
STS12 (Agirre et al., 2012), and NLI datasets (Bow-
man et al., 2015; Williams et al., 2018) for the
generalizability, which are shown in Appendix F.2.

Experimental procedure: First, we fed all sen-
tences to the models and calculated the word
weightings by IG or SHAP (Section 3.1). Then
we applied OLS regression to the calculated word
weightings on − logP (w) or KL(w) (Section 3.2)
for each model. Although we experimented with all
four possible combinations from the two XAI meth-
ods and two quantities for each model, we report
here the results only for the combination of IG and
KL(w). Other results are shown in Appendix E.

5.2 Quantitative Analysis

Table 1 lists the coefficient of determination (R2)
and regression coefficient (β) of the linear regres-
sion on IG and KL(w). Figure 2 shows the plots
of the word weightings and their regression lines
for BERT and Unsupervised SimCSE.
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Figure 2: Linear regression plots between KL(w) and
the word weighting of BERT (CLS) (left) and Unsper-
vised (U.) SimCSE-BERT (right) using IG. We plot-
ted subsampled 3000 tokens from the tokens with the
top 99.5% of small KL values for visibility. The plots
− logP (w) experiments are shown in Figure 6 in Ap-
pendix E.

Table 1 shows that R2 and β are much higher in
contrastive-based encoders than pre-trained mod-
els.3 Similar trends were obtained with other
XAI method, information-theoretic quantity, and
datasets (Appendix E, F.2). These indicate that
contrastive learning for sentence encoders induces
word weighting according to the information-
theoretic quantities (Figure 2). In other words,
contrastive-based encoders acquired the inner
mechanism to highlight informative words more.
Furthermore, given that KL(w) and logP (w) are
close to the weighting techniques employed in the
SWE-based sentence embeddings (Section 3.2),
these results suggest that the contrastive-based sen-
tence encoders learn implicit weightings similar to
the explicit ones of the SWE-based methods.

5.3 Qualitative Analysis

Figure 3 shows the word weighting within BERT
( ) and Unsupervised SimCSE (▲) and KL(w)
(■) for three sentences: “a man is playing guitar.”,
“a man with a hard hat is dancing.”, and “a young
child is riding a horse.”. The contrastive-based en-
coder (Unsup. SimCSE; ▲) has more similar word
weighting to KL(w) (■) than the MLM (BERT; ),
which is consistent with the R2 in the Table 1. Also,
the contrastive-based encoder (▲) tends to weight
input words more extremely than the MLM ( ),
which is consistent with the β in Table 1. For ex-
ample, weights for nouns such as “guitar”, “hat”,

“child”, and “horse” are enhanced, and weights for
non-informative words such as “is”, and “.” are

3Exceptionally, R2 does not change much from BERT
(MEAN) to SBERT, while β indeed increases.

BERT (CLS) Unsup. SimCSE KL(w)
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Figure 3: Sentence-level examples of the word weight-
ing of BERT (CLS) and Unsupervised SimCSE-BERT
using IG. Same as IG, KL(w) is normalized so that the
sum of KL(w) becomes the sentence length for visi-
bility. For words like “man”, “child”, “guitar”, “is”,

“hat”, “horse” and “.” the word weightings of the con-
trastive fine-tuned model (▲) are closer to KL(w) (■)
than the pre-trained model ( ), which means that con-
trastive fine-tuning induces word weighting by KL(w).

discounted by contrastive learning ( → ▲). On
the other hand, weights for words such as “a” and

“with”, whose KL(w) is very small, are not changed
so much. Investigating the effect of POS on word
weighting, which is not considered on KL(w) and
− logP (w), is an interesting future direction.

6 Conclusion

We showed that contrastive learning-based sen-
tence encoders implicitly weight informative words
based on information-theoretic quantities. This in-
dicates that the recent sentence encoders learn im-
plicit weightings similar to the explicit ones used
in the SWE-based methods. We also provided the
theoretical proof that contrastive learning induces
models to weight each word by KL(w). These pro-
vide insights into why contrastive-based sentence
encoders succeed in a wide range of tasks, such
as information retrieval (Muennighoff, 2022) and
question answering (Nguyen et al., 2022), where
emphasizing some informative words is effective.
Besides sentence encoders, investigating the word
weighting of retrieval models is an interesting fu-
ture direction.
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Limitations

There are three limitations in this study. First is
the limited experiment for baseline input of IG.
For the IG experiment, we only tested the baseline
input with PAD tokens explained in Section 3.1.1.
Although there is no consensus on the appropriate
baseline inputs of IG for contrastive-based sentence
encoders, a comparison of results with different
baseline inputs is left to future work. Second, our
findings do not cover contrastive text embeddings
from retrieval models. Analyzing contrastive-based
retrieval models such as DPR (Karpukhin et al.,
2020), Contriever (Izacard et al., 2022), and inves-
tigating the effect on text length would also be an
interesting future direction. Third is the assump-
tions made in the sketch of proof in Section C. In
our proof, we assume that the similarity of sentence
embeddings is calculated via inner product. How-
ever, in practice, cosine similarity is often used
instead. Also, we do not consider the contextual-
ization effect of Transformer models on the word
embeddings in the proof. The theoretical analysis
using cosine similarity or considering the contextu-
alization effect is left to future work.

Ethics Statement

Our study showed that sentence encoders im-
plicitly weight input words by frequency-based
information-theoretic quantities. This suggests that
sentence encoders can be affected by biases in the
training datasets, and our finding is a step forward
in developing trustful sentence embeddings without
social or gender biases.
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A The classification loss in
SBERT/RoBERTa

SBERT and SRoBERTa (Reimers and Gurevych,
2019) are fine-tuned with softmax classifiers on top
of original MLMs architectures. Before the soft-
max, the models calculate the element-wise differ-
ence of two sentence embeddings and concatenate
them with the original two sentence embeddings.
Then the concatenated embedding is linearly trans-
formed and fed into a softmax classifier. Here,
the element-wise difference is expected to work as
an implicit similarity function. Thus, SBERT and
SRoBERTa can be roughly regarded as contrastive-
based sentence encoders.

B Comparison of KL(w) and
− logP (w) with Existing Weighting
Methods

Here, we compare the two information-theoretic
quantities KL(w) and − logP (w) with existing
weighting methods used in SWE-based sentence
embedding: TF-IDF (Arroyo-Fernández et al.,
2019) and SIF-weighting (Arora et al., 2017). Fig-
ure 4 and 5 are the scatter plots of IDF and SIF-
weighitng against KL(w) and − logP (w), respec-
tively. We removed the term frequency part in
TF-IDF and only used IDF to eliminate contex-
tual effects and reduce the variance of the values
for the comparison, and all quantities were cal-
culated on the STS-Benchmark (Cer et al., 2017)
dataset. From the figures, we can see that the
two information-theoretic quantities KL(w) and

W
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KL(w)

Figure 4: Scatter plot of KL(w) , IDF, and SIF-
Weighting. All weightings are normalized within the
same weighting method.

W
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− log𝑃(𝑤)

Figure 5: Scatter plot of − logP (w) , IDF, and SIF-
Weighting. All weightings are normalized within the
same weighing method.

− logP (w) are highly correlated with existing
word weighting TF-IDF (Arroyo-Fernández et al.,
2019) and SIF-weighting (Arora et al., 2017).

C The Theoretical Relationship between
Contrastive Learning and Information
Gain

Formally, the following theorem holds:

Theorem 1. Let S be the set of sentences,
{((s, s′), C)} be the dataset constructed from S
where s ∼ S, s′ = s (when C = 1), and s′ ∼ S
(when C = 0). Suppose that the sentence en-
coder parametrized by θ takes a sentence s =
(w1, . . . , w|s|) as the input and returns word embed-
dings (w1, . . . ,w|s|) and its mean-pooled sentence

embedding s = 1
|s|

∑|s|
i=1wi as the output, and the

contrastive fine-tuning maximizes Lcontrastive(θ),
the log-likelihood of P (C|(s, s′); θ) = σ(⟨s, s′⟩).
Then, in the lower bound of the optimal value of
Lcontrastive(θ), 1

2∥w∥2 ≈ KL(w).
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In other words, KL(w) is encoded in the norm
of word embeddings, which construct the sentence
embedding. The proof is shown in Section C.2.

C.1 Assumptions
Dataset: Let S be the training corpus for con-
trastive learning. When training a sentence encoder
with contrastive fine-tuning, the set of sentence
pairs {(s, s′)} is used as the training data, and
the sentence encoder is trained with the objective
which discriminates whether the sentence pair is a
positive example (the pair of semantically similar
sentences) or negative example (the pair of seman-
tically dissimilar sentences). For the theoretical
analysis, we make the following three reasonable
assumptions:

1. An anchor sentence s is sampled from S .

2. Positive exmaple： For semantically similar
sentence s′ with s, s itself is used (s′ = s).

3. Negative example： For semantically dissimi-
lar sentence s′ with s, randomly sampled sen-
tence s′ from S is used (s′ ∼ S).

Assumption 1 is a commonly used setting for the
training data of contrastive fine-tuning of sentence
encoders (Gao et al., 2021; Chuang et al., 2022,
etc.). Assumption 2 considers data augmentation
techniques based on perturbations such as token
shuffling (Yan et al., 2021) or dropout augmen-
tation (Gao et al., 2021). Noting that these data
augmentations do not affect the word frequency
distributions, this simplification has little effect
on the theory. Assumption 3 considers the most
simple way to create dissimilar sentence s′ of the
anchor sentence s, especially in unsupervised set-
tings (Yan et al., 2021; Gao et al., 2021; Chuang
et al., 2022, etc.). In typical supervised settings,
hard negatives are often created with NLI supervi-
sion, and considering these settings in the theory
is an important future work. Also, for simplicity,
we assume the sentence length is fixed to n in the
proof (|s| = |s′| = n).

Model: We make the following three assump-
tions on contrastive-based sentence encoders (Sec-
tion 2):

1. The sentence embedding is constructed by the
mean pooling (Section 2).

2. The inner product is used to calculate the sim-
ilarity of sentence embeddings s and s′

3. Sentence embedding is not normalized.

For assumption 2, one can also use the inner prod-
uct instead of cosine similarity, as discussed in Gao
et al. (2021), for example. Using the inner prod-
uct for calculating sentence embedding similarity
is an important assumption for the proof 4, and
extending our theory to cosine similarity is a chal-
lenging and interesting future work. Assumption
3 makes the conclusion of our theory meaningful,
which uses the norm of word embedding. Typical
contrastive sentence encoders compute sentence
embedding without normalization (Reimers and
Gurevych, 2019; Gao et al., 2021, etc.).

C.2 Proof

First, P (C = 1|(s, s′); θ) has the following lower
bound:

P (C = 1|(s, s′); θ)
= σ(⟨s, s′⟩) (5)

= σ(
∑

w∈s

∑

w′∈s′

1

|s||s′| ⟨w,w′⟩) (6)

≥
∏

w∈s

∏

w′∈s′
σ(⟨w,w′⟩)

1
|s||s′| (7)

=
∏

w∈s

∏

w′∈s′
P (C = 1|(w,w′); θ)

1
|s||s′| . (8)

Here, we used the mean pooling assumption and
the property of bilinear form for Equation 6 and
Theorem 3.2 in Nantomah (2019) for Equation 7.

Then the objective function Lcontrastive(θ) of the
probabilistic model P has the following approxi-

4More accurately, our theory requires the similarity func-
tion for the sentence embeddings to be a bilinear form. The
inner product is a (symmetric) bilinear form, while cosine is
not.
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mated lower bound:

Lcontrastive(θ)

=
∏

(s,s′)∼pos

P (C = 1|(s, s′); θ)

×
∏

(s,s′)∼neg

P (C = 0|(s, s′); θ) (9)

≥
∏

(s,s′)∼pos

(∏

w∈s

∏

w′∈s′
P (C = 1|(s, s′); θ)

1
|s||s′|

)

×
∏

(s,s′)∼neg

(∏

w∈s

∏

w′∈s′
P (Cs = 0|(s, s′); θ)

1
|s||s′|

)

(10)

≈
∏

(w,w′)∼pos

P (C = 1|(w,w′); θ)
1
n2

×
∏

(w,w′)∼neg

P (C = 0|(w,w′); θ)
1
n2 (11)

=

( ∏

(w,w′)∼pos

P (C = 1|(w,w′); θ)

×
∏

(w,w′)∼pos

P (C = 0|(w,w′); θ)

) 1
n2

(12)

Here, Equation 10 follows from Equation 6 to 8,
and |s| = |s′| = n is used in Equation 11. Hence,
the optimal value for Lcontrastive is bounded as
follows:

max
θ

Lcontrastive(θ)

≥ max
θ

( ∏

(w,w′)∼pos

P (Cs = 1|(w,w′); θ)

×
∏

(w,w′)∼pos

P (Cs = 0|(w,w′); θ)

) 1
n2

(13)

argmax
θ

(13)

= argmax
θ

( ∏

(w,w′)∼pos

P (Cs = 1|(w,w′); θ)

×
∏

(w,w′)∼pos

P (Cs = 0|(w,w′); θ)

)
(14)

Noting that argmaxθ (13) = argmaxθ (14),
Equation 14 corresponds to the objective function
of the skip-gram with negative sampling (SGNS)
model (Mikolov et al., 2013) with taking the con-
text window as a sentence. In other words, the
optimal value of the lower bound (Equation 13) cor-
responds to the optimal value of the SGNS model
(Equation 14).

(i) If (s, s′) is a positive example, the words w′ in
s′ can be considered sampled from the distribution
of words, co-occurring with w in sentences: w′ ∼
Ppos(·|w) = Psame sent(·|w). (ii) If s′ is a negative
example, the word in a negative example can be

considered sampled from the unigram distribution
P (·), followed from s′ ∼ S and w′ ∼ s′. By using
the property of the trained SGNS model shown
in Oyama et al. (2023), we have

1

2
∥w∥2 ≈ KL(Ppos(·|w) ∥ Pneg(·|w)) (15)

= KL(Psamesent(·|w) ∥ P (·)) (16)

C.3 Discussion

Here, we discuss the two implications from Theo-
rem 1.

First, Equation 16 represents the intuition
exaplined in Section 4. That is, the difference of the
word frequency distribution of the similar sentence
s′ and the dissimilar sentence s′ after observing the
word w in the anchor sentence s is implicitly en-
coded in ∥w∥. In other words, the information gain
on the word frequency distribution of the similar
sentence s′ is encoded in ∥w∥ by observing w ∈ s.

Secondly, the conclusion of our proof that the in-
formation gain KL(w) is encoded in the norm of w
justifies the means of quantifying the implicit word
weighting of the model using Integrated Gradients
(IG) or SHAP to a certain extent. When construct-
ing a sentence embedding by additive composition
(MEAN pooling), the contribution of each word is
approximately determined by the norm of the word
embedding (Yokoi et al., 2020). IG and SHAP also
additively decomposes the contribution of each in-
put feature (input word embedding) to the model
output (sentence embedding) (Sundararajan et al.,
2017; Lundberg and Lee, 2017). From the perspec-
tive of the additive properties, the result that IG
and SHAP can capture the contributions implicitly
encoded in the norm is natural. To preserve the
additive properties of IG and SHAP more properly,
further sophisticating the aggregation methods of
contributions (Equation 4, 20) is an interesting fu-
ture work.

D Quantifying word weighting within
sentence encoders with SHAP

In this section, we briefly describe Shapley aaddi-
tive explanations (SHAP; Lundberg and Lee, 2017),
the feature attribution method introduced in Sec-
tion 3.1.2, and then describe how to apply SHAP to
quantification of word weighting within sentence
encoders.
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D.1 Shapley value
SHAP is an extension for XAI of Shapley
value (Shapley, 1953), the classic method proposed
in the context of cooperative game theory. We
first explain Shapley value. Let us consider a co-
operative game, where a set of players forms a
coalition and gains payoffs. Shapley value is a
method to distribute the payoffs gained by coopera-
tion (forming a coalition) fairly among the players.
Let N := {1, 2, . . . , n} be the set of players in the
game and v : 2N → R be the function that deter-
mines the payoff gained based on a subset (coali-
tion) of players. Note that the empty set does not
gain payoff, v(∅) = 0. To compute the payoff (con-
tribution) ϕi distributed to the i-th player, Shapley
value calculates the expectation of the difference of
the payoff before and after the i-th player joins each
of the possible coalitions (all subsets made from
permutations of players). Formally, ϕi is calculated
as follows:

ϕi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

N !

(
v(S ∪ {i})− v(S)

)
.

(17)

Shapley value satisfies some ideal properties; for
example, the summation of each calculated contri-
bution ϕi becomes the payoff of the case where all
players join, i.e., v(N) =

∑
i ∈S ϕi(v).

D.2 SHAP
SHAP is an extension of the Shapley value to inter-
preting machine learning models. Let f : Rn → R
be a model and X ∈ Rn be a certain input.
SHAP maps machine learning models to coopera-
tive games: the input X corresponds to the set of
players N and the model f corresponds to the set
function v in Equation 17. However, in coopera-
tive games the input (subset of players) is discrete,
while in machine learning models the input (vector)
is continuous. SHAP fills this discrepancy as fol-
lows: the situation “the i-th player is not included
in the input subset” is mapped to “the i-th feature
of the input vector is replaced with its expected
value.” See the original SHAP paper (Lundberg
and Lee, 2017) for details.

D.3 Approximate calculation of SHAP
The exact calculation of Shapley value is compu-
tationally expensive (time complexity of O(2N ))
because it calculates all the permutations of the
input players (Equation 17). Its extension, SHAP,

is generally calculated through an approximation.
One of the typical approximated calculation of
SHAP is PartitionSHAP5 implemented in shap
library6, which hierarchically clusters input fea-
tures (or words) to decide coalitions, reducing the
total number of the permutations in Equation 17.
PartitionSHAP is widely used in interpreting NLP
models (Mosca et al., 2022; Attanasio et al., 2023;
Eksi et al., 2021, etc.); hence, we also use it in our
experiments.

D.4 Application to sentence encoder

When applying SHAP to NLP models, instead of
replacing a feature with its expected value, an input
word is often replaced with uninformative token
(e.g., [MASK] for BERT-based models).7 For sen-
tence encoders, SHAP calculates the contribution
of each input word to the output mj(W ) in the
form of decomposing mj(W ) into a sum:

mj(W ) =
n∑

i=1

SHAPi(W ;mj ,M) + f(M)

(18)

M = [w[MASK], . . . ,w[MASK]] ∈ Rn×d, (19)

where M denotes a masked input. Then, we can
calculate the contribution of i-th word to j-th ele-
ment of s by SHAP in the same aggregation as for
IG (see Section 3.1.1):

ci(W ;m,M) :=

√√√√
d∑

j=1

SHAPi

(
W ;mj ,M

)2.

(20)

In addition, the word contribution ci is normalized
with respect to the sentence length n same as IG
(see Section 3.1.1): c′i := ci/(

1
n

∑n
j=1 cj).

E Omitted results in Section 5

Tables 2 to 4 are the results of (IG,− logP (w)),
(SHAP, KL(w)) and (SHAP, − logP (w)) experi-
ments, respectively, and Figure 6 is the linear re-
gression plots between − logP (w) and IG.

5https://shap.readthedocs.io/en/latest/
generated/shap.PartitionExplainer.html

6https://github.com/shap/shap
7The approach replacing inputs with a certain baseline is

an instance of Baseline SHAP (BSHAP; Sundararajan and
Najmi, 2020).
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Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.2 −0.5
→ U.SimCSE-BERT 37.9 (+37.7) 10.3 (+10.8)
→ S.SimCSE-BERT 36.7 (+36.5) 10.1 (+10.7)
→ DiffCSE-BERT 39.5 (+39.3) 8.0 (+8.6)

BERT (MEAN) 29.9 4.8
→ SBERT 28.4 (−1.5) 9.8 (+5.0)

RoBERTa (CLS) 1.9 3.1
→ U.SimCSE-RoBERTa 36.1 (+34.2) 12.0 (+8.9)
→ S.SimCSE-RoBERTa 36.8 (+34.9) 14.0 (+11.0)
→ DiffCSE-RoBERTa 35.1 (+33.1) 11.3 (+8.2)

RoBERTa (MEAN) 4.7 3.6
→ SRoBERTa 39.2 (+34.5) 16.6 (+12.9)

MPNet (MEAN) 1.4 −2.2
all-mpnet-base-v2 22.4 (+20.9) 11.7 (+14.0)

Table 2: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by IG on the self-information
− logP (w) for the STS-B dataset. The R2 and β is
reported as R2 × 100 and β × 100. The values inside
the brackets represent the gain from pre-trained models.
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𝑦 = −0.01𝑥 + 1.04

− log𝑃(𝑤)

Figure 6: Linear regression plots between − logP (w)
and the word weighting of BERT (CLS) (left) and Un-
spervised (U.) SimCSE-BERT (right) using IG. We plot-
ted subsampled 3000 tokens from the tokens with the
top 99.5% of small KL values for visibility.

F Experiments with Wikipedia, NLI, and
STS12 datasets

Here, we conduct experiments with Wikipedia,
NLI, and STS12 datasets other than STS-B datasets
in Section 5 for generalizability.

F.1 Experimental setup

The following datasets were used:

• Wikipedia: randomly sampled sentences of
Wikipedia used in the SimCSE paper (Gao
et al., 2021).8 We further randomly sampled
3000 sentences.

8https://huggingface.co/datasets/
princeton-nlp/datasets-for-simcse/resolve/main/
wiki1m_for_simcse.txt

Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.0 0.3
→ U.SimCSE-BERT 1.2 (+1.1) 2.0 (+1.6)
→ S.SimCSE-BERT 19.1 (+19.1) 15.9 (+15.6)
→ DiffCSE-BERT 0.7 (+0.7) 1.3 (+0.9)

BERT (MEAN) 0.5 −1.3
→ SBERT 10.7 (+10.2) 18.6 (+19.9)

RoBERTa (CLS) 1.3 −6.5
→ U.SimCSE-RoBERTa 11.2 (+9.8) 7.8 (+14.3)
→ S.SimCSE-RoBERTa 14.5 (+13.2) 10.7 (+17.2)
→ DiffCSE-RoBERTa 3.2 (+1.8) 5.0 (+11.5)

RoBERTa (MEAN) 0.0 0.3
→ SRoBERTa 14.4 (+14.4) 13.4 (+13.1)

MPNet (MEAN) 0.7 2.8
all-mpnet-base-v2 30.8 (+30.1) 21.9 (+19.0)

Table 3: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by SHAP on the information gain
KL for the STS-B dataset. The R2 and β is reported as
R2 × 100 and β × 100. The values inside the brackets
represent the gain from pre-trained models.

• NLI: concatenation of SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018)
datasets used in the SimCSE paper (Gao et al.,
2021).9 We further randomly sampled 3000
sentences.

• STS12: randomly sampled 3000 sentences
from the test set of STS12 (Agirre et al., 2012)
dataset.

We followed the same setting for models and
word weighting calculation in Section 5 and we
experimented with all the combinations of ({IG,
SHAP},{KL(w), − logP (w)}).

F.2 Results
Tables 5 to 16 are the results of the three
datasets. Except for SBERT in the IG experi-
ments10 and U.SimCSE-BERT/RoBERTa DiffCSE-
BERT/RoBERTa in the SHAP experiments, the
coefficient of determination R2 and regression co-
efficient β of contrastive-based sentence encoders
are higher than pre-trained models across all the
three datasets, verifying the consistency with the
experiments with STS-B in Section 5 and E. The
results suggest that contrastive-based sentence en-
coders learn to weight each word according to the

9https://huggingface.co/datasets/
princeton-nlp/datasets-for-simcse/resolve/main/
nli_for_simcse.csv

10R2 does not increase from BERT(MEAN), while β indeed
increases.

10943

https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt
https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt
https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt
https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/nli_for_simcse.csv
https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/nli_for_simcse.csv
https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/nli_for_simcse.csv


Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.0 −0.1
→ U.SimCSE-BERT 0.8 (+0.8) 0.9 (+0.9)
→ S.SimCSE-BERT 23.3 (+23.3) 9.7 (+9.7)
→ DiffCSE-BERT 0.5 (+0.5) 0.6 (+0.7)

BERT (MEAN) 1.4 −1.2
→ SBERT 14.1 (+12.8) 11.7 (+13.0)

RoBERTa (CLS) 3.2 −6.3
→ U.SimCSE-RoBERTa 11.9 (+8.6) 4.9 (+11.2)
→ S.SimCSE-RoBERTa 18.8 (+15.5) 7.5 (+13.7)
→ DiffCSE-RoBERTa 2.1 (−1.1) 2.5 (+8.8)

RoBERTa (MEAN) 0.1 −0.7
→ SRoBERTa 20.0 (+19.9) 9.8 (+10.5)

MPNet (MEAN) 0.6 1.4
all-mpnet-base-v2 37.0 (+36.4) 13.2 (+11.7)

Table 4: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by SHAP on the self-information
− logP (w) for the STS-B dataset. The R2 and β is
reported as R2 × 100 and β × 100. The values inside
the brackets represent the gain from pre-trained models.

information-theoretic quantities of words, irrespec-
tive of the dataset domains.

Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.6 2.2
→ U.SimCSE-BERT 39.3 (+38.7) 22.7 (+20.4)
→ S.SimCSE-BERT 36.5 (+35.9) 20.7 (+18.5)
→ DiffCSE-BERT 40.1 (+39.4) 16.8 (+14.6)

BERT (MEAN) 32.4 10.0
→ SBERT 23.6 (−8.8) 19.6 (+9.6)

RoBERTa (CLS) 0.8 5.5
→ U.SimCSE-RoBERTa 34.1 (+33.2) 22.3 (+16.8)
→ S.SimCSE-RoBERTa 31.9 (+31.1) 24.3 (+18.8)
→ DiffCSE-RoBERTa 31.5 (+30.6) 20.6 (+15.1)

RoBERTa (MEAN) 1.9 5.9
→ SRoBERTa 37.7 (+35.8) 26.8 (+21.0)

MPNet (MEAN) 0.2 −2.0
all-mpnet-base-v2 23.0 (+22.8) 25.4 (+27.5)

Table 5: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by IG on the information gain KL
for the Wikipedia dataset. The R2 and β is reported as
R2 × 100 and β × 100. The values inside the brackets
represent the gain from pre-trained models.

Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.2 0.6
→ U.SimCSE-BERT 41.1 (+40.9) 11.3 (+10.8)
→ S.SimCSE-BERT 39.5 (+39.4) 10.5 (+10.0)
→ DiffCSE-BERT 43.8 (+43.7) 8.6 (+8.0)

BERT (MEAN) 32.8 4.9
→ SBERT 26.9 (−5.9) 10.2 (+5.3)

RoBERTa (CLS) 0.9 3.0
→ U.SimCSE-RoBERTa 36.0 (+35.2) 12.5 (+9.5)
→ S.SimCSE-RoBERTa 35.0 (+34.1) 13.8 (+10.8)
→ DiffCSE-RoBERTa 34.5 (+33.7) 11.7 (+8.7)

RoBERTa (MEAN) 2.2 3.4
→ SRoBERTa 41.3 (+39.1) 15.3 (+11.9)

MPNet (MEAN) 0.4 −1.3
all-mpnet-base-v2 22.4 (+22.0) 12.3 (+13.6)

Table 6: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by IG on the self-information
− logP (w) for the Wikipedia dataset. The R2 and β is
reported as R2 × 100 and β × 100. The values inside
the brackets represent the gain from pre-trained models.
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Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.2 −1.6
→ U.SimCSE-BERT 1.3 (+1.1) 2.9 (+4.5)
→ S.SimCSE-BERT 11.4 (+11.2) 13.4 (+15.0)
→ DiffCSE-BERT 0.0 (−0.1) 0.3 (+1.9)

BERT (MEAN) 0.5 −1.5
→ SBERT 6.2 (+5.8) 15.4 (+16.9)

RoBERTa (CLS) 1.7 −10.3
→ U.SimCSE-RoBERTa 4.7 (+3.0) 6.9 (+17.2)
→ S.SimCSE-RoBERTa 8.0 (+6.3) 9.3 (+19.6)
→ DiffCSE-RoBERTa 2.5 (+0.8) 5.2 (+15.5)

RoBERTa (MEAN) 0.2 −1.9
→ SRoBERTa 8.2 (+8.0) 11.7 (+13.6)

MPNet (MEAN) 0.1 −1.4
all-mpnet-base-v2 21.5 (+21.4) 20.5 (+22.0)

Table 7: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by SHAP on the information gain
KL for the Wikipedia dataset. The R2 and β is reported
as R2×100 and β×100. The values inside the brackets
represent the gain from pre-trained models.

Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.3 −1.1
→ U.SimCSE-BERT 1.4 (+1.1) 1.5 (+2.6)
→ S.SimCSE-BERT 13.8 (+13.5) 7.2 (+8.3)
→ DiffCSE-BERT 0.0 (−0.3) 0.1 (+1.2)

BERT (MEAN) 0.8 −1.0
→ SBERT 8.3 (+7.5) 8.7 (+9.6)

RoBERTa (CLS) 2.8 −7.1
→ U.SimCSE-RoBERTa 3.9 (+1.2) 3.4 (+10.5)
→ S.SimCSE-RoBERTa 9.1 (+6.3) 5.4 (+12.5)
→ DiffCSE-RoBERTa 1.9 (−0.8) 2.5 (+9.6)

RoBERTa (MEAN) 0.6 −2.0
→ SRoBERTa 9.7 (+9.1) 6.9 (+8.9)

MPNet (MEAN) 0.2 −1.3
all-mpnet-base-v2 23.9 (+23.7) 10.6 (+11.9)

Table 8: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by SHAP on the self-information
− logP (w) for the Wikipedia dataset. The R2 and β is
reported as R2 × 100 and β × 100. The values inside
the brackets represent the gain from pre-trained models.

Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.0 0.0
→ U.SimCSE-BERT 34.9 (+34.9) 19.1 (+19.1)
→ S.SimCSE-BERT 31.0 (+31.0) 18.5 (+18.4)
→ DiffCSE-BERT 32.8 (+32.8) 14.2 (+14.2)

BERT (MEAN) 29.5 9.3
→ SBERT 24.8 (−4.7) 18.2 (+8.9)

RoBERTa (CLS) 1.8 5.8
→ U.SimCSE-RoBERTa 32.9 (+31.1) 20.0 (+14.2)
→ S.SimCSE-RoBERTa 31.5 (+29.7) 23.1 (+17.3)
→ DiffCSE-RoBERTa 30.2 (+28.4) 18.8 (+13.0)

RoBERTa (MEAN) 4.2 6.5
→ SRoBERTa 34.1 (+29.8) 28.2 (+21.7)

MPNet (MEAN) 0.6 −3.0
all-mpnet-base-v2 23.0 (+22.4) 22.4 (+25.4)

Table 9: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by IG on the information gain
KL for the NLI dataset. The R2 and β is reported as
R2 × 100 and β × 100. The values inside the brackets
represent the gain from pre-trained models.

Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.3 −0.6
→ U.SimCSE-BERT 40.1 (+39.9) 10.2 (+10.8)
→ S.SimCSE-BERT 36.0 (+35.7) 9.9 (+10.5)
→ DiffCSE-BERT 39.2 (+38.9) 7.7 (+8.3)

BERT (MEAN) 34.3 5.0
→ SBERT 29.8 (−4.6) 9.9 (+4.9)

RoBERTa (CLS) 1.9 3.3
→ U.SimCSE-RoBERTa 38.8 (+36.9) 12.1 (+8.8)
→ S.SimCSE-RoBERTa 38.6 (+36.7) 14.2 (+10.9)
→ DiffCSE-RoBERTa 36.2 (+34.3) 11.4 (+8.1)

RoBERTa (MEAN) 5.0 3.9
→ SRoBERTa 41.1 (+36.1) 17.2 (+13.3)

MPNet (MEAN) 1.4 −2.2
all-mpnet-base-v2 24.2 (+22.8) 11.5 (+13.7)

Table 10: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by IG on the self-information
− logP (w) for the NLI dataset. The R2 and β is re-
ported as R2 × 100 and β × 100. The values inside the
brackets represent the gain from pre-trained models.
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Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.2 1.6
→ U.SimCSE-BERT 1.2 (+0.9) 2.1 (+0.5)
→ S.SimCSE-BERT 18.4 (+18.2) 17.5 (+15.8)
→ DiffCSE-BERT 1.8 (+1.6) 2.0 (+0.4)

BERT (MEAN) 0.6 −1.5
→ SBERT 10.7 (+10.1) 20.3 (+21.8)

RoBERTa (CLS) 1.3 −7.2
→ U.SimCSE-RoBERTa 8.7 (+7.3) 7.6 (+14.8)
→ S.SimCSE-RoBERTa 15.1 (+13.8) 11.8 (+19.0)
→ DiffCSE-RoBERTa 3.2 (+1.9) 5.1 (+12.3)

RoBERTa (MEAN) 0.0 0.2
→ SRoBERTa 14.1 (+14.1) 14.8 (+14.6)

MPNet (MEAN) 0.8 3.1
all-mpnet-base-v2 30.9 (+30.1) 23.3 (+20.2)

Table 11: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by SHAP on the information gain
KL for the NLI dataset. The R2 and β is reported as
R2 × 100 and β × 100. The values inside the brackets
represent the gain from pre-trained models.

Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.2 0.8
→ U.SimCSE-BERT 0.9 (+0.7) 0.9 (+0.2)
→ S.SimCSE-BERT 23.3 (+23.1) 9.8 (+9.0)
→ DiffCSE-BERT 1.9 (+1.7) 1.0 (+0.3)

BERT (MEAN) 1.5 −1.1
→ SBERT 14.8 (+13.3) 11.8 (+12.9)

RoBERTa (CLS) 2.7 −5.7
→ U.SimCSE-RoBERTa 9.4 (+6.7) 4.4 (+10.1)
→ S.SimCSE-RoBERTa 19.5 (+16.9) 7.4 (+13.1)
→ DiffCSE-RoBERTa 2.4 (−0.3) 2.5 (+8.1)

RoBERTa (MEAN) 0.0 −0.4
→ SRoBERTa 19.4 (+19.4) 9.7 (+10.1)

MPNet (MEAN) 0.8 1.5
all-mpnet-base-v2 38.0 (+37.3) 12.9 (+11.4)

Table 12: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by SHAP on the self-information
− logP (w) for the NLI dataset. The R2 and β is re-
ported as R2 × 100 and β × 100. The values inside the
brackets represent the gain from pre-trained models.

Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.0 −0.4
→ U.SimCSE-BERT 37.9 (+37.9) 19.3 (+19.8)
→ S.SimCSE-BERT 31.5 (+31.5) 17.3 (+17.8)
→ DiffCSE-BERT 37.1 (+37.0) 14.9 (+15.3)

BERT (MEAN) 28.6 9.2
→ SBERT 24.0 (−4.6) 17.3 (+8.0)

RoBERTa (CLS) 1.6 5.3
→ U.SimCSE-RoBERTa 36.6 (+35.1) 21.1 (+15.8)
→ S.SimCSE-RoBERTa 33.9 (+32.3) 23.5 (+18.2)
→ DiffCSE-RoBERTa 35.6 (+34.1) 20.2 (+14.9)

RoBERTa (MEAN) 4.1 6.4
→ SRoBERTa 38.3 (+34.1) 28.6 (+22.2)

MPNet (MEAN) 0.8 −3.2
all-mpnet-base-v2 24.1 (+23.3) 23.1 (+26.3)

Table 13: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by IG on the information gain
KL for the STS12 dataset. The R2 and β is reported as
R2 × 100 and β × 100. The values inside the brackets
represent the gain from pre-trained models.

Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.4 −0.7
→ U.SimCSE-BERT 39.9 (+39.6) 10.4 (+11.1)
→ S.SimCSE-BERT 33.6 (+33.2) 9.4 (+10.1)
→ DiffCSE-BERT 40.7 (+40.3) 8.2 (+8.9)

BERT (MEAN) 29.6 4.9
→ SBERT 27.0 (−2.6) 9.6 (+4.7)

RoBERTa (CLS) 1.3 2.7
→ U.SimCSE-RoBERTa 38.0 (+36.7) 12.3 (+9.6)
→ S.SimCSE-RoBERTa 36.7 (+35.4) 14.0 (+11.3)
→ DiffCSE-RoBERTa 37.6 (+36.3) 11.9 (+9.2)

RoBERTa (MEAN) 3.9 3.6
→ SRoBERTa 40.4 (+36.5) 16.8 (+13.3)

MPNet (MEAN) 1.3 −2.2
all-mpnet-base-v2 23.3 (+21.9) 11.9 (+14.1)

Table 14: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by IG on the self-information
− logP (w) for the STS12 dataset. The R2 and β is
reported as R2 × 100 and β × 100. The values inside
the brackets represent the gain from pre-trained models.
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Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.0 −0.6
→ U.SimCSE-BERT 0.9 (+0.8) 1.9 (+2.4)
→ S.SimCSE-BERT 21.1 (+21.1) 17.0 (+17.5)
→ DiffCSE-BERT 0.4 (+0.4) 1.0 (+1.6)

BERT (MEAN) 1.2 −2.3
→ SBERT 11.8 (+10.6) 20.0 (+22.3)

RoBERTa (CLS) 2.4 −9.6
→ U.SimCSE-RoBERTa 11.0 (+8.7) 8.6 (+18.2)
→ S.SimCSE-RoBERTa 17.2 (+14.9) 12.9 (+22.5)
→ DiffCSE-RoBERTa 2.8 (+0.5) 5.0 (+14.6)

RoBERTa (MEAN) 0.1 −1.2
→ SRoBERTa 19.1 (+19.0) 16.7 (+17.9)

MPNet (MEAN) 0.4 2.5
all-mpnet-base-v2 34.1 (+33.6) 23.6 (+21.1)

Table 15: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by SHAP on the information gain
KL for the STS12 dataset. The R2 and β is reported as
R2 × 100 and β × 100. The values inside the brackets
represent the gain from pre-trained models.

Model (pooling) R2 × 100 ↑ β × 100 ↑

BERT (CLS) 0.1 −0.5
→ U.SimCSE-BERT 0.7 (+0.6) 0.8 (+1.3)
→ S.SimCSE-BERT 22.7 (+22.7) 9.2 (+9.7)
→ DiffCSE-BERT 0.2 (+0.2) 0.4 (+0.9)

BERT (MEAN) 2.0 −1.5
→ SBERT 13.8 (+11.8) 11.3 (+12.9)

RoBERTa (CLS) 3.8 −7.0
→ U.SimCSE-RoBERTa 10.7 (+6.9) 4.8 (+11.8)
→ S.SimCSE-RoBERTa 19.0 (+15.2) 7.7 (+14.7)
→ DiffCSE-RoBERTa 2.0 (−1.8) 2.4 (+9.4)

RoBERTa (MEAN) 0.3 −1.4
→ SRoBERTa 22.1 (+21.8) 10.3 (+11.7)

MPNet (MEAN) 0.3 1.0
all-mpnet-base-v2 36.7 (+36.5) 12.8 (+11.8)

Table 16: Coefficient of determination (R2) and regres-
sion coefficient (β) of the linear regression of the words’
weightings calculated by SHAP on the self-information
− logP (w) for the STS12 dataset. The R2 and β is
reported as R2 × 100 and β × 100. The values inside
the brackets represent the gain from pre-trained models.
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