
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 10994–11005
December 6-10, 2023 ©2023 Association for Computational Linguistics

Toward Human Readable Prompt Tuning:
Kubrick’s The Shining is a good movie, and a good prompt too?

Weijia Shi∗ Xiaochuang Han∗

Hila Gonen Ari Holtzman Yulia Tsvetkov Luke Zettlemoyer
Paul G. Allen School of Computer Science & Engineering,

University of Washington, Seattle, WA
{swj0419, xhan77, hilagnn, ahai, yuliats, lsz}@cs.washington.edu

Abstract

Large language models can perform down-
stream tasks in a zero-shot fashion, given nat-
ural language prompts that specify the desired
behavior. Such prompts are typically hand en-
gineered, but can also be learned with gradient-
based methods from labeled data. However,
it is underexplored what factors make the
prompts effective, especially when the prompts
are in natural language. In this paper, we in-
vestigate common attributes shared by effec-
tive prompts in classification problems. We
first propose a human readable prompt tuning
method (FLUENTPROMPT) based on Langevin
dynamics that incorporates a fluency constraint
to find a distribution of effective and fluent
prompts. Our analysis reveals that effective
prompts are topically related to the task do-
main and calibrate the prior probability of out-
put labels. Based on these findings, we also
propose a method for generating prompts using
only unlabeled data, outperforming strong base-
lines by an average of 7.0% accuracy across
three tasks. We release our code and data in
github.com/swj0419/FluentPrompt.

1 Introduction

Large language models (LMs) can perform down-
stream tasks by simply conditioning on a prompt–a
short sequence of text specific to the task. Such nat-
ural language prompts are either carefully hand en-
gineered (e.g., manual prompt engineering, Kojima
et al. 2022) or automatically learned from labeled
data (e.g., gradient-based prompt tuning, Shin et al.
2020). Despite their effectiveness, it remains un-
clear what makes these prompts work and what
attributes effective prompts share. In this paper,
we aim to identify key characteristics of effective
prompting, and use this knowledge to generate ef-
fective and human readable prompts without any
labeled data.

∗Equal contribution. Order randomly determined.

Figure 1: Compared with previous discrete prompt tun-
ing method AutoPrompt (Shin et al., 2020) which gen-
erates gibberish prompts, FLUENTPROMPT can identify
effective and more readable prompts, useful for down-
stream analyses. We find that in prompt tuning, the
good prompts are topically relevant to the task do-
main (e.g., mentioning a film director "Kubrick" in a
movie sentiment classification task), and calibrate the
prior probability of output labels (e.g., including neg-
ative words to balance an overly optimistic model).

There are two main challenges for performing
this type of analysis. First, manual prompt tuning
produces a limited number of effective prompts
for each task, making it difficult to infer common
features of good prompts where contrast with less
effective prompts is needed. On the other hand,
the prompts found by gradient-based tuning meth-
ods are often disfluent and unnatural, making them
difficult to interpret (e.g., AutoPrompt in Figure 1).

To overcome these challenges, we first propose
a human readable prompt tuning method called
FLUENTPROMPT. Inspired by prior work in con-
trollable text generation (Kumar et al., 2022), FLU-
ENTPROMPT uses Langevin dynamics to generate
a set of human readable prompts for any task. Our
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method adds a progressive noise to the tuning pro-
cedure to obtain a distribution of effective prompts,
while also maintaining the fluency of the prompts
through a perplexity constraint. As shown in Fig-
ure 1, compared to the baseline gibberish prompts
produced by AutoPrompt, FLUENTPROMPT gen-
erates prompts that are more fluent (i.e., lower per-
plexity) and perform competitively. The resulting
fluent prompts not only facilitate our further analy-
sis, but can also lead to better trust and engagement
from both researchers and end users.

After obtaining a broad set of effective and
human-readable prompts, we analyze the factors
that contribute to the effectiveness of prompts.
Specifically, we show that effective prompts are
both (1) topically related to the task domain and
(2) more calibrated to the prior probability of
output labels. Specifically, calibration measures
how balanced the LM’s prior probability of output
labels (i.e., in the absence of a specific example) is.

Based on our findings, we propose a novel
method UNSUPERVISED FLUENTPROMPT, for au-
tomatically searching for effective prompts using
only unlabeled data. UNSUPERVISED FLUENT-
PROMPT optimizes the prompts for both better cal-
ibration and better domain relevance. Our exper-
imental results show that UNSUPERVISED FLU-
ENTPROMPT outperforms strong zero-shot base-
line (Holtzman et al., 2021) by 7.0% in accuracy.
We summarize our contributions as follows:

• We introduce FLUENTPROMPT, a human-
readable prompt tuning method that can gener-
ate a broad set of effective and fluent prompts
(§3). This method not only serves as the foun-
dation for our analysis, but also helps bridge
the gap between manual prompt engineering
and gradient-based prompt tuning.

• We analyze the factors that contribute to the
effectiveness of prompts and show that topic
relatedness and calibration of the prompts are
key to their success (§4).

• Inspired by our findings, we introduce a
new method for discovering effective prompts
without the need for labeled data (§5).

2 Related Work

2.1 Prompt Tuning

Continuous Prompt Continuous prompts are
continuous vectors inserted to the task input for

a prompted language model (Qin and Eisner, 2021;
Ding et al., 2021; Lester et al., 2021; Liu et al.,
2021). Such continuous prompts are typically
tuned by gradient-based methods, which are guided
by the task training examples with labels. While
these prompts usually improve the model per-
formance, their continuous nature makes them
difficult for humans to understand or interpret
(Khashabi et al., 2021; Hambardzumyan et al.,
2021).

Discrete Prompt Discrete prompts are com-
posed of discrete tokens from natural language vo-
cabulary. Such prompts can be either written by
human or searched automatically. Human-written
prompts (Kojima et al., 2022; Wang et al., 2022;
Sanh et al., 2021; Su et al., 2022) typically con-
sist of meaningful texts such as task descriptions
(Schick and Schütze, 2021) or instructions (e.g.,
“let’s think step by step”, Kojima et al. 2022), which
are not only human readable but also align with our
understanding of tasks. In-context demonstration
examples can also be considered as human-written
prompts (Brown et al., 2020; Liu et al., 2022) but
are not the focus of this work.

Prior work has also focused on searching dis-
crete prompts automatically. One method is
gradient-based similar to the continuous prompt
setup but with projections to a discrete vocabulary
(Shin et al., 2020). The drawback of this method
is that the resulting prompts are usually disfluent
and difficult to read. Other work searching for
discrete prompts include edit-based enumeration
(Prasad et al., 2022), reinforcement learning (Deng
et al., 2022), and large language model continua-
tion and filtering (Zhou et al., 2022). The goal for
these prompt tuning methods is mainly to achieve
competitive task performance without modifying
language model parameters.

The purpose of our work is to analyze what as-
pects of the tuned natural language prompts make
them effective for zero-shot inference of language
models. To facilitate such analysis, we need prompt
readability as in human-written prompts and also
a large search space as in gradient-based discrete
prompt tuning. FLUENTPROMPT bridges the gap
and provides a distribution of effective and human-
readable prompts.

2.2 Analyses of Prompts

A growing body of literature tries to understand
the mechanisms behind prompts via various per-
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spectives. For example, prompts in the form
of in-context examples are analyzed under per-
turbations w.r.t. order, label, editing, etc. (Lu
et al., 2022; Min et al., 2022; Chen et al., 2022).
Human-written instructions (Mishra et al., 2021)
have also been studied and show weak sensitivity
to semantic-changing perturbations (Webson and
Pavlick, 2021). Gonen et al. (2022) use paraphras-
ing and back-translation on a set of human-written
prompts and find on these natural prompts there is
a correlation between lower perplexity and better
resulting performance.

Our work focuses on natural language prompts
derived from gradient-based prompt tuning.
Khashabi et al. (2021) tune continuous prompts
and show that effective continuous prompts may
transfer poorly to their nearest discrete prompts. In
contrast, we perform prompt tuning in the discrete
space directly with FLUENTPROMPT, demonstrat-
ing the feasibility of searching for readable prompts
using gradient-based method. This approach gives
us a more faithful understanding of the factors that
contribute to the effectiveness of natural language
prompts.

3 FLUENTPROMPT

We introduce FLUENTPROMPT, a prompt tuning
method that generates a group of highly effective
and human-readable prompts. Our approach uti-
lizes Langevin dynamics to incorporate fluency
constraints into the prompt tuning process, mak-
ing it a novel application of controllable text gen-
eration and constrained sampling within the field
of discrete prompt tuning. With human-readable
prompts, we aim to explore the relationship be-
tween the features of the prompts and their perfor-
mance.

3.1 Background: continuous prompt tuning

Given an input example x with an output label
y ∈ Y , we can prompt an autoregressive language
model with parameters θ as follows. We refor-
mulate the task as a language modeling problem
by inserting a task-specific template t to x, and
defining a verbalizer v mapping from a label y to
a label word (i.e, a token in the LM’s vocabulary
that semantically implies the label). For example,
to determine the sentiment of “I like the movie”,
we can pass “I like the movie. It was [MASK]” to
the LM and inspect the probability of “good” as a

label word.1 Specifically, the probability of a label
y given an input x and template t is estimated by:

pθ(v(y) | x, t) =
exp logitθ(v(y) | x, t)∑
y′ exp logitθ(v(y′) | x, t)

(1)

Lester et al. (2021) add a sequence of M soft
embeddings ẽ0:M (simplified as ẽ; 0:M refers to
the positional subscript for the sequence from po-
sition 0 to M − 1) in front of the input. There-
fore, the probability of the label is computed by
pθ(v(y) | ẽ,x, t), where ẽ is embeddings that by-
pass the word embedding layer of the LM θ and
is learned based on a set of training data. These
learned embeddings are sometimes referred to as
soft prompts, and the learning of such prompts as
soft prompt tuning. For example, if stochastic gra-
dient descent (SGD) is used as an optimizer, the
soft prompt ẽ is updated as

ẽi = ẽi−1 − η∇ẽ(− log pθ(v(y) | ẽi−1,x, t))
(2)

where i is the timestep superscript, referring to i-th
optimization step, and η is the learning rate.

3.2 Method
3.2.1 Discrete prompt tuning with Langevin

dynamics
There are two challenges for the above soft prompt
tuning. First, the resulting embeddings cannot
be mapped to the natural language vocabulary.
Khashabi et al. (2021) show that naively mapping
an effective soft prompt to its nearest tokens sig-
nificantly drops the performance. Second, we only
obtain a single embedding instead of a range of
embeddings with varying levels of performance.
This makes it difficult to analyze the characteristics
of the prompts and compare their effectiveness in
specific tasks.

Following Kumar et al. (2022), we use Langevin
dynamics to sample discrete prompts that lead to
a better performing model in the task. Overall, the
method is similar to SGD but adds a progressive
Gaussian noise to the embeddings, with the scale
decreasing over time. Additionally, at each opti-
mization step, the updated embedding is projected
to the nearest embedding in the LM vocabulary.

ẽi = ProjE[ẽ
i−1 − η∇ẽE(ẽi−1) +

√
2ηβiz]

(3)
1Table 7 shows the exact templates and verbalizers used

throughout this work.
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where:

• E is an energy function (lower is better),
E(ẽi−1) = − log pθ(v(y) | ẽi−1,x, t).

• z is a Gaussian noise, z ∼ N (0, I|ẽ|).

• β is the variance of the noise following a geo-
metric progression, βstart > βi > βend −→ 0.

• E is the embedding table (layer) of the LM θ,
one embedding for each token in the vocabu-
lary.

• ProjE is a projection operation finding
a nearest neighbor for each soft embed-
ding in the LM’s vocabulary, ProjE(ẽ) =
argminev∈E(∥ev − ẽ∥2).

Without the progressive noise in Langevin dy-
namics, our prompt search procedure is gradient-
based and shares a similar intuition with Auto-
Prompt (Shin et al., 2020). Both methods use the
gradient of the loss w.r.t. the embeddings, though
AutoPrompt applies greedy substitution whereas
we use projected gradient descent, aligning with
soft prompt tuning and enabling the subsequent
prompt sampling. AutoPrompt also incorporates
verbalizer word selection, which is not a focus of
the analysis in this work. We use our gradient-
based, discrete prompt tuning method without
Langevin dynamics as a baseline, referred to as
AutoPromptSGD.

3.2.2 Fluency constraint
Sampling from projected Langevin dynamics en-
sures that the tuned prompt contains natural lan-
guage tokens. However, with no extra constraints,
they can form a disfluent sentence.

We explicitly incorporate a fluency objective to
the Langevin energy function. This objective re-
sembles the regular perplexity loss, but the labels
(next token in the prompt) are not ground-truth. In-
stead, we measure an embedding-based sequence
probability according to Kumar et al. (2022). For
simplicity, below we drop the timestep superscript
on the prompt embeddings and only keep the posi-
tional subscript.

The first step is to obtain the probability of gen-
erating the embedding at position m (i.e., ẽm)
based on the previous m − 1 embeddings (i.e.,
ẽ0:m). We extract the last hidden state from the
LM (i.e., output embedding) at position m − 1:
hθ,m−1 = hθ(ẽ0:m). Then the probability is:

pθ(ẽm | ẽ0:m) =
exp(hθ,m−1 · ẽm)∑

ev∈E exp(hθ,m−1 · ev)
(4)

where we equivalently compute the logits for each
embedding’s corresponded vocabulary and take the
softmax.2 Subsequently, the sequence probability
is pθ(ẽ0:M ) =

∏M−1
m=1 pθ(ẽm | ẽ0:m).

We define a prompt fluency loss as the neg-
ative log-likelihood of the prompt embeddings,
− log pθ(ẽ0:M ). Along with the task labeling loss
(§3.2.1), we modify our energy function as:

E(ẽ0:M ) =− λtask log pθ(v(y) | ẽ0:M ,x, t)

− λfluency log pθ(ẽ0:M ) (5)

where λtask + λfluency = 1. Through the whole
FLUENTPROMPT tuning procedure, the language
model parameters θ are fixed while the embeddings
ẽ0:M are tuned.

3.3 Experimental Setup
Target tasks We evaluate performance on
two sentiment analysis tasks: Amazon Polar-
ity (McAuley and Leskovec, 2013) and SST-
2 (Socher et al., 2013), and one topic classi-
fication task: AGNEWS (Zhang et al., 2015).
These tasks were selected since vanilla soft prompt
tuning (Lester et al., 2021) substantially im-
proves model performance. In contrast, tasks like
RTE (Dagan et al., 2005) are more difficult; soft
prompt tuning did not yield a significant improve-
ment (57.4% accuracy from prompt tuning com-
pared with 52.1% from random guess) in our pilot
study, and we therefore did not pursue further anal-
ysis using FLUENTPROMPT. The verbalizer words
and templates used for each task are listed in Ta-
ble 7.

Model We optimize prompts for GPT-2 large
(774M parameters, Radford et al. 2019) using FLU-
ENTPROMPT. We use a batch size of 16 and
train for 5,000 steps with an AdamW optimizer
(Loshchilov and Hutter, 2018). We select the best
prompt based on the validation performance. For
our method FLUENTPROMPT, we use a step size
η ∈ {0.3, 1.0, 3.0, 10.0}, βstart = 1.0, βend =
0.0001, λfluency ∈ {0.003, 0.01, 0.03, 0.1, 0.3}. We
search for both 5-token prompts (M = 5) and 10-
token prompts (M = 10) and use 10 random seeds

2This is equivalently computing the logits since ev and the
projected ẽm from the last optimization step are both in the
embedding table.
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Prompt Acc. PPL

SST-2
Empty Prompt 66.5 -
AutoPromptSGD

Compl disgustingÃÂÃÂ Rated jer 87.6 > 106

FLUENTPROMPT
Kubrick, "The Shining 87.5 13.1
Paramount, "The Shining 86.8 12.2
Kubrick\’s "The Man 86.3 9.3
disappointing.\n\n" 84.4 4.1

AMAZON
Empty Prompt 75.8 -
AutoPromptSGD

Reviewed experien audition lashesrible 82.2 > 106

FLUENTPROMPT
scathing.\n\n" 83.1 5.1
upset.\n\n" 82.6 3.67
cigars: \n\n 82.4 20.9
mascara\n\n\n 82.2 47.1

AGNEWS
Empty Prompt 49.7 -
AutoPromptSGD

EStreamFramenetflixnetflixobookgenre 69.3 > 105

FLUENTPROMPT
netflix/genre/netflix 71.1 281.0
netflix AnimeMoviegenre\n 70.1 1925.0
Synopsis\n\nThe story is 69.2 9.6
pmwiki.php/main/Superhero 65.0 2.4

Table 1: Accuracy (Acc.) and Perplexity (PPL) of
prompts. Both FLUENTPROMPT and AutoPromptSGD
use M=5 tunable tokens. FLUENTPROMPT shows com-
parable performance to the AutoPromptSGD but with
significantly lower perplexity. Prompts discovered by
FLUENTPROMPT show domain relevance and potential
calibration for model outputs.

for each hyperparameter setup. Additionally, we
perform experiments with βstart = βend = 0 (i.e,
no progressive noise) and λfluency = 0 (i.e, no flu-
ency constraint) as ablations to FLUENTPROMPT

purposed for analysis.

3.4 Results

Table 1 shows example prompts found by
AutoPromptSGD and FLUENTPROMPT, along with
their associating accuracy and perplexity. We ad-
ditional show the accuracy of an empty prompt
(i.e., ẽ is null). We see that FLUENTPROMPT per-
forms comparably to AutoPromptSGD and signifi-
cantly better than the empty prompt. In terms of
readability, FLUENTPROMPT generates more flu-
ent prompts than AutoPromptSGD.

In Table 2, we quantitatively compare
AutoPromptSGD and FLUENTPROMPT. For
each task, we use each method to generate 40
prompts with a length M = 10, under 4 step sizes

η ∈ {0.3, 1.0, 3.0, 10.0} and 10 random seeds.
AutoPromptSGD does not have a perplexity con-
straint over its prompt tuning process (λfluency = 0).
For FLUENTPROMPT, we apply an optimal per-
plexity constraint at λfluency = 0.003, 0.003, 0.01
for SST-2, Amazon, and AGNEWS, respectively.
We observe that on Amazon, FLUENTPROMPT

achieves both a better average prompt accuracy
and a better maximum accuracy. On SST-2 and
AGNEWS, FLUENTPROMPT also achieves better
average accuracy, while having a nearly as high
maximum accuracy as AutoPromptSGD. For all
three tasks, FLUENTPROMPT leads to prompts
with a significantly lower perplexity (p < 0.0001
in t-tests). Without sacrificing performance,
prompts with lower perplexity are preferred for
their potentially better readability for downstream
analyses.

4 What Makes Good Prompts?

In this section, we analyze common attributes of
the effective tuned prompts. Specifically, we study
the 10-token prompts found by FLUENTPROMPT

on SST-2, Amazon and AGNEWS.

4.1 Effective prompts calibrate the output
distribution over label words

Language models are known to be biased towards
label words that are common in its pretraining dis-
tribution (Holtzman et al., 2021; Zhao et al., 2021).
In this section, we aim to investigate whether ef-
fective prompts found by prompt tuning implic-
itly adjust for the bias (calibration). To measure
this bias, we follow Holtzman et al. (2021) to use
task-specific domain string d as the test input and
compute the entropy of the labels. Table 3 lists
the task-specific domain d for each dataset. As the
task-specific domain strings do not imply any label
information (i.e., label-neutral), we expect the out-
put of the language model to be uniform over the
label words when only conditioned on the domain
string. The entropy of the label words is computed
as follows:

H(y) = Ey∈Y [− log p(y)] =

−
∑

y∈Y
pθ(v(y) | ẽ,d, t) log pθ(v(y) | ẽ,d, t)

(6)

Higher entropy of the label word prediction implies
a more balanced (calibrated) label words distribu-
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SST-2 Amazon AGNEWS

Mean Acc Max Acc log PPL Mean Acc Max Acc log PPL Mean Acc Max Acc log PPL

AutoPromptSGD 84.99 90.48 13.89 83.36 86.95 13.33 69.74 80.50 15.68
FLUENTPROMPT 87.54 90.14 9.27 85.20 88.20 10.20 73.34 79.50 10.93

Table 2: Prompt effectiveness and perplexity of AutoPromptSGD and FLUENTPROMPT. Each model derives 40
prompts with a length of 10. AutoPromptSGD does not have the progressive noise z and the perplexity constraint
(λfluency = 0). FLUENTPROMPT applies the perplexity constraint with λfluency = 0.003, 0.003, 0.01 for SST-2,
Amazon, and AGNEWS, respectively. The prompts found by FLUENTPROMPT are overall more effective and
have a significantly lower perplexity, indicating better readability.

(a) (b) (c)

Figure 2: Frequency of prompts (y-axis) at different entropy levels (x-axis). We compare effective prompts with the
empty and human-written prompt.

Task Domain String d

SST-2 This is a movie review
Amazon This is an Amazon product review
AGNEWS This is a news

Table 3: Tasks and their task-specific domain strings.
The task-specific domain strings do not imply any label
information.

tion. When the label word probabilities are uni-
form, the entropy reaches its maximum at log(|Y |).

As listed in Table 1, some effective prompts
found by FLUENTPROMPT for sentiment analy-
sis contain negative sentiment words (e.g., “disap-
pointing” and “complained” in prompts for SST-2 ),
which may implicitly reduce the probabilty of posi-
tive labels and calibrate the label word distribution.
To validate this hypothesis, we filter a set of effec-
tive prompts by FLUENTPROMPT and compute the
entropy of the label predictions conditioned on the
concatenation of the prompt and the task-specific
domain string. Figure 2 shows the density plot com-
paring the label word entropy of effective prompts,
with empty and human-written prompts taken from
Bach et al. (2022). We observe that the entropy
of effective prompts has a higher mode than the
entropy of empty and human-written prompts with

lower accuracy.
To further explore the relation between the task

performance and calibration, we compute corre-
lation between the task accuracy and the label
word entropy of all prompts obtained by FLUENT-
PROMPT and report Spearman’s rank correlation.
From Figure 3, we observe that the label word en-
tropy exhibits significant positive correlations with
the task accuracy (all p < 0.0001). The Spearman’s
coefficients are +0.61, +0.75 and +0.43 for SST-2,
Amazon and AGNEWS, respectively.

4.2 Effective prompts are topically related to
the task domain

Qualitative Analysis As shown in Table 1, most
of the effective prompts obtained by FLUENT-
PROMPT contain domain-related words. For ex-
ample, the prompt Kubrick, "The Shining in SST-
2 contains a movie director name and a movie
title, relevant to the domain of movie reviews.
Similarly, the prompts mascara\n\n and cigars\n\n
found for the Amazon dataset contain product
names relevant to the domain of product reviews.
Additionally, AGNEWS is a news topic classifica-
tion task. Some of the effective prompts in AG-
NEWS contain topic classification-related words
such as “genre”, while others contain URLs that
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(a) (b) (c)

Figure 3: Correlation between task performance and label word entropy. Spearman rank correlation coefficients for
SST-2, Amazon and AGNEWS are +0.42, +0.76 and +0.57. All p-values are smaller than 0.0001.

link to websites such as netflix3 and pmwiki.4

The target pages of these URLs also contain
topic classification-related information, such as
the prompt pmwiki/pmwiki.php/Main/Superhero
which links to a wiki page containing the following
information: “Genre: Action Adventure Comedy
Commercials”.

Quantitative Analysis Based on our qualitative
analysis, we hypothesize that effective prompts are
topically related to the task domain. To validate this
hypothesis, we compare domain word frequency
in effective prompts and random sentences. First,
we select a set of domain words for each task (see
Table 4), which consist of the task label words
(e.g., “positive” and “negative” for SST-2) and com-
mon words in the task domain (e.g., “movie” and
“film” for the movie domain of SST-2). Since our
prompts are very short (10 tokens), we augment
each prompt with its continuation generated by
GPT-3 (Brown et al., 2020), based on the assump-
tion that the continuation by the large LM follows
the same domain as the prompt. For each prompt,
we sample 5 distinct continuations from GPT-3 us-
ing nucleus sampling p = 0.95 at a length of 100
tokens. We compare the top 10 effective prompts
with 10 random sentences from PILE (Gao et al.,
2020) augmented by the same continuations. We
then count the domain words in the concatenation
of the prompt and its continuation.

Table 5 lists the average accuracy and the num-
ber of domain words in the effective and the ran-
dom sentences with their continuations. The ac-
curacy of effective prompts is higher than that of
random sentences on all three datasets. Moreover,
the domain words frequency of effective prompts is

3www.netflix.com
4www.pmwiki.org

Task Domain Words

SST-2 movie, film, cinima, director, positive, negative
Amazon book, amazon, product, furniture, positive, neg-

ative
AGNEWS topic, category, politics, sports, business, tech-

nology

Table 4: Domain words for each task.

SST-2 Amazon AGNEWS

Acc. Freq. Acc. Freq. Acc. Freq.

Effective 89.4 23.4 86.5 5.8 77.6 3.7
Random 67.2 1.3 74.2 2.2 49.3 0.8

Table 5: Average domain words frequency (Freq.) and
average accuracy (Acc.) for effective prompts and ran-
dom sentences. Effective prompts and their continua-
tion contain substantially more domain words than
random sentences and their continuation. The p-
values from the paired t-test for SST-2, Amazon, and
AGNEWS were 0.004, 0.003, and 0.0002, respectively.

significantly higher than that of random sentences
with p-values of 0.004, 0.003, and 0.0002 for SST-
2, Amazon, and AGNEWS, respectively. Both our
qualitative and quantitative analysis provide strong
evidence that effective prompts obtained by our
prompt tuning are topically related to the task’s
domain.

5 UNSUPERVISED FLUENTPROMPT

Our analysis in Section 3 shows that effective
prompts exhibit calibration and have high domain
relevance to the task. Since these two features are
both highly indicative and do not require ground-
truth labels for computation, we propose UNSU-
PERVISED FLUENTPROMPT, a method for auto-
matically identifying effective prompts without la-
beled data. The key idea is to optimize the prompts
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for improved calibration and domain relevance. In
the following sections, we will detail the methodol-
ogy of UNSUPERVISED FLUENTPROMPT (§5.1),
describe the experimental setup (§5.2), and present
the results (§5.3).

5.1 Method
Calibration loss In Section 4.1, we find a strong
positive correlation between the degree of calibra-
tion and performance of the prompts. We there-
fore explicitly optimize the prompt towards greater
calibration (i.e., maximizing the entropy of label
words). Ideally, we need a large set of label-neutral
domain strings to prevent the model from learn-
ing noises in the procedure. Since these domain
strings are not always easy to obtain, we use the
training inputs of the task (without ground-truth
labels), and expect that the aggregation of them
should be label-neutral. Therefore, we define a
calibration loss based on the entropy of the label
words distribution:

Lentropy(ẽ) = Ey∈Y [logEx∈Xpθ(v(y) | ẽ,x, t)]

Intuitively, the calibration loss encourages the
prompt to help the model generate more balanced
predictions at a dataset (macro) level rather than
instance (micro) level.

Domain relevance loss In Section 4.2, we find
that effective prompts are overall more related to
the task domain. To explicitly make the prompt rel-
evant to the domain, we extend the existing fluency
(perplexity) loss from Section 3.2.2, modeling the
perplexity of both the prepending prompt and the
input example:

Ldomain(ẽ) =− log pθ(ẽ0:M ) (7)

−
∑

i

log pθ(xi | ẽ,x<i) (8)

−
∑

j

log pθ(tj | ẽ,x, t<j) (9)

Intuitively, log pθ(x | ẽ) − log pθ(x) would mea-
sure the pointwise mutual information between the
task data x and the tuned prompt ẽ, with the part
log pθ(x) not involved in the prompt optimization.

Overall, our unsupervised energy function E is
updated to:

E(ẽ0:M ) =− λcalibrationLentropy(ẽ) (10)

− λdomainLdomain(ẽ) (11)

where λcalibration + λdomain = 1.

SST-2 Amazon AGNEWS

Unsupervised Method
Emtpy 66.5 75.8 49.7
PMIDC 85.6 76.2 64.1
UNSUP. F.P. 88.2 85.3 68.0

Table 6: Accuracy of different unsupervised prompting
methods on the three datasets. UNSUP. F.P. refers to
our UNSUPERVISED FLUENTPROMPT.

5.2 Experimental Setup

Inheriting the notations of FLUENTPROMPT, we
consider the following hyperparameters: η ∈ {1.0,
3.0}, βstart = 1.0, βend = 0.0001, λdomain ∈ {0,
0.0003, 0.001, 0.003, 0.01, 0.05, 0.2, 0.5}, M =
10. We use five random seeds for each setup and
report the average performance.

5.3 Results

In Table 6, we compare the performance of our pro-
posed method, UNSUPERVISED FLUENTPROMPT,
with the empty prompt and the strong unsupervised
baseline PMI calibration PMIDC (Holtzman et al.,
2021) on three datasets. Our results show that UN-
SUPERVISED FLUENTPROMPT consistently out-
performs PMIDC with an average improvement of
7.0% across the datasets. This demonstrates that
the incorporated calibration and domain informa-
tion are helpful to finding effective prompts.

6 Conclusion

In this paper, we investigate the factors that con-
tribute to the effectiveness of prompts. To facilitate
this study, we develop a human-readable prompt
tuning method FLUENTPROMPT and apply it to the
GPT-2 large model to generate effective and read-
able prompts. Our analysis reveals that effective
prompts are topically related to the task domain
and calibrate the prior probability of label words.

Although the prompts generated by FLUENT-
PROMPT are effective and readable, they still carry
limited semantic meanings. For instance, we did
not find any prompts directly indicating the task
definition or instructions. One potential reason
is that the GPT-2 large model is not instruction-
tuned. Future work can apply FLUENTPROMPT to
an instruction-tuned model to see if instruction-like
prompts can be discovered.
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Limitations

The FLUENTPROMPT approach is a versatile
method for optimizing human-readable prompts
in both classification and generation tasks. How-
ever, our investigations into calibration are specific
to classification tasks. It would be intriguing to
explore the characteristics of effective prompts in
generation tasks in future studies. It is worth not-
ing that FLUENTPROMPT employs Langevin dy-
namics to incorporate perplexity constraints during
training, making it directly applicable to autoregres-
sive models and not to masked language models or
encoder-decoder models.

Due to resource limitations, we applied FLUENT-
PROMPT to GPT-2 large. Our current GPU was not
sufficiently efficient to handle larger models within
our budget. It is important to note that our focus
was not solely on performance, but rather on ana-
lyzing the properties of effective prompts. In the
future, it would be valuable to extend our method to
different-sized language models and explore alter-
native constrained sampling techniques to identify
fluent and effective prompts for various types of
language models.
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Task Template Label words through verbalizer

SST-2 Illuminating if overly talky documentary. It was positive, negative
Amazon Terrible service. It was positive, negative
AGNEWS Economic growth in Japan slows down as the country experiences.

It is about
politics, sports, business, technology

Table 7: The template, example (colored black) and verbalizer used for each dataset.
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