
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 11082–11092
December 6-10, 2023 ©2023 Association for Computational Linguistics

TreePiece: Faster Semantic Parsing via Tree Tokenization

Sid Wang
Meta Inc. USA

yuwang2020@meta.com

Akshat Shrivastava
Meta Inc. USA

akshats@meta.com

Aleksandr Livshits
Meta Inc. USA
alll@meta.com

Abstract

Autoregressive (AR) encoder-decoder neural
networks have proved successful in many NLP
problems, including Semantic Parsing – a task
that translates natural language to machine-
readable parse trees. However, the sequential
prediction process of AR models can be slow.
To accelerate AR for semantic parsing, we in-
troduce a new technique called TreePiece that
tokenizes a parse tree into subtrees and gener-
ates one subtree per decoding step. On TOPv2
benchmark, TreePiece shows 6.1 times faster
decoding speed than standard AR, and compa-
rable speed but significantly higher accuracy
compared to Non-Autoregressive (NAR).

1 Introduction

Autoregressive (AR) modeling (Sutskever et al.,
2014) is a commonly adopted framework in NLP
where the next prediction is conditioned on the pre-
viously generated tokens. This paper focuses on
AR approach for Semantic Parsing (Wong, 2005),
an NLP task that converts a natural language ut-
terance to a machine-interpretable symbolic rep-
resentation called logical form. The sequence of
actions to derive a logical form is isomorphic to a
directed tree and often referred to as a parse tree
(Zettlemoyer and Collins, 2005).

The runtime latency of AR linearly correlates
to the output length and could result in low
inference speed (Gu et al., 2017; Wang et al.,
2018). Non-Autoregressive (NAR) modeling (Gu
et al., 2017; Wei et al., 2019; Ma et al., 2019),
on the other hand, is able to produce outputs
in parallel and reduce latency by an order of
magnitude (Ghazvininejad et al., 2019). However,
NAR performs considerably worse than its AR
counterparts without extra training recipes (Wang
et al., 2019; Zhou and Keung, 2020; Su et al.,
2021). The quality benefits of AR models therefore
motivates us to improve their speed, rather than
exploring NAR.

AR TreePiece
Decoder

N AR Utterance
Decoder

Utterance

Utterance
predictions

Utterance Encoder

TreePiece
predictions

Figure 1: TreePiece-based parse tree modeling design.

Our contributions
• We propose a novel approach of tokenizing

parse trees into large units called TreePiece units,
and then building an AR model that predicts one
TreePiece unit at a time, thus reducing the number
of steps needed to generate a full parse tree. To the
best of our knowledge, we are the first to extend
subword-tokenizer algorithm to semantic trees such
that each token is a subtree.
• We validate our approach on TOPv2 bench-

mark and show that TreePiece decoding is 6.1 times
faster than standard AR with less than 0.15% accu-
racy degradation, and nearly as fast as NAR with
up to 0.7% accuracy gains.
•We provide theoretical proofs to support our

main algorithms and their variants.

2 Methods

2.1 Parse tree

In this paper, we utilize the hierarchical seman-
tic representations based on intent and slot (Gupta
et al., 2018), allowing for modeling complex com-
positional queries in task-oriented dialog systems.
See Figure 2 (LHS) for an example. Now let us

11082

in:create_rem inder

sl:person_rem inded sl: todo

in: send_m essage

sl:recipient sl:content_exact

in:get_event

sl:category_event sl:date_tim e

m e

Susan

the m eeting tonight

in:create_rem inder

sl:person_rem inded sl: todo

m e M ISSIN G

in: send_m essage

sl:recipient sl:content_exact

M ISSIN GSusan

in:get_event

sl:category_event sl:date_tim e

the m eeting tonight

Replace

Replace

Assem ble

Tokenize

Create placeholder

Create placeholder

Figure 2: Illustration of tokenizing parse tree/assembling TreePiece units with the placeholder design for given
utterance “Remind me to send Susan an email about the meeting tonight”.

define a few recurring notions in the paper:

Definition 2.1 (Ontology). A parse tree node is
called an ontology iff it represents an intent/slot,
prefixed by in: and sl: respectively.

Definition 2.2 (Skeleton). The skeleton of a parse
tree is the subtree that consists of all ontologies.

Definition 2.3 (Utterance leaf). A text-span node
is called an utterance leaf iff its parent is a slot1.

2.2 TreePiece tokenizer
2.2.1 Tokenizer algorithm
Definition 2.4. TreePiece tokenizer is an algorithm
that segments any skeleton into subtrees of an open
vocabulary. The minimal open vocabulary of a
TreePiece tokenizer is called a TreePiece vocabu-
lary, where an element is called a TreePiece unit.
Definition 2.5 (TreePiece simplex). Let V be a
TreePiece vocabulary and t be any TreePiece unit.
A TreePiece simplex p is a mapping from V to the
unit interval [0, 1] such that

∑
t∈V p(t) = 1.

We propose Algorithm 1 as our TreePiece
tokenizer, a Viterbi-type (Viterbi, 1967) forward-
backward (Nagata, 1994a) algorithm which

1We adopt the decoupled form proposed in (Aghajanyan
et al., 2020), which simplifies compositional representations
by ignoring text spans that are not utterance leaves.

computes the optimal tokenization and probability
for given skeleton S.

Notations in Algorithm 1:
(1) T is the set of all subtrees of S that share the

same root as S denoted by T ; T admits a natural
filtration T0 ⊆ · · · ⊆ Td−1 ⊆ Td ⊆ · · · ⊆ T ,
where Td is the set of all depth-d-subtrees.

(2) L is the log probability on T as follows:

L (t) =

{
log p(t) if t ∈ V,
−∞ otherwise

where V is the TreePiece vocabulary and p the
TreePiece simplex.

(3) for efficiency we apply Filter(·, t) to re-
strict to subtrees t′ such that (a) t′ is a subtree of
t, (b) the set difference t′∆t has exactly one con-
nected component and it is a TreePiece unit.

In summary, the forward step uses dynamic pro-
gramming inductive on tree-depth to update all
subtrees’ log-probabilities and eventually obtain
P(S;p) – the probability of the skeleton S. The
forward step also returns a map P that stores for
each t ∈ T the optimal position of its previous
partition. Then in the backward step we can back-
track along the path S, P(S),P(P(S)), · · · to
recover the optimal partition πS(p).

11083

Algorithm 1 Forward-backward algorithm

Input: TreePiece vocabulary V , TreePiece sim-
plex p, and skeleton S.

Output: Partition πS(p) and probability P(S;p).
T ← All subtrees of S with the same root.
L ← Log(p)
P ← Constant map from T to BOS token
dmax ← Depth of S
for d = 1, 2, · · · , dmax do // Forward begins

for t ∈ Td do
for d′ = 1, 2, · · · , d do

for t′ ∈ Filter(Td′ , t) do
∆∗ ← t′∆t
L∗ ← L (t′) +

∑
τ∈∆∗ log p(τ)

if L∗ > L (t) then
L (t)← L∗, P(t)← t′

P(S;p)← exp(L (S)) // Forward ends
tcurr ← S, πS(p)← ∅ // Backward begins
while tcurr ̸= BOS token, do

tprev ←P(tcurr), ∆∗ ← tprev∆tcurr
πS(p)← πS(p)

⋃
∆∗, tcurr ← tprev

πS(p)← πS(p)
⋃{tcurr} // Backward ends

return πS(p),P(S;p)

2.2.2 Tokenizer training
The performance of Algorithm 1 relies on the qual-
ity of TreePiece vocabulary V and TreePiece sim-
plex p. To improve the quality of V and p, we
propose a two-stage training procedure:

Stage 1, Generate V: Let S represent all skele-
tons of a given training corpus. Similar to Byte
Pair Encoding (BPE) (Gage, 1994; Sennrich et al.,
2015), we obtain the TreePiece vocabulary V and
map F0 between TreePiece units and their frequen-
cies in S . For details see Appendix A.

Stage 2, Update p: initialize the TreePiece
simplex p0 as the normalized frequency p0(t) =:

F0(t)/
∑

τ∈V F0(τ) for all t ∈ V and then solve
for pi+1 iteratively as follows:

pi+1 = argmaxp
∑

S∈S

EΠS

[
logP(S, π;p)

∣∣S;pi

]
.

(1)
In general, problem (1) is NP-hard as it involves
summing over ΠS , the set of all possible partitions
π of a skeleton S:

EΠS

[
logP(S, π;p)

∣∣S;pi

]

=
∑

π∈ΠS

logP(S, π;p) · P(S, π;pi)

P(S;pi)
.

(2)

Algorithm 2 EM algorithm

Choose N0 ∈ N+, ϵ0 > 0; initialize i ← 0,
∆← +∞, Lprev ← −∞.
while i < N0 and ∆ > ϵ0 do
Lcurr ← 0, F∗ ← Zero function on V
for S ∈ S do

Compute πS(pi) and P(S;pi) ▷ E-step
Lcurr ← Lcurr + logP(S;pi)
for t ∈ πS(pi) do
F∗(t)← F∗(t) + 1

for t ∈ V do
pi+1(t)← F∗(t)∑

τ∈V F∗(τ) ▷ M-step

i← i+ 1,∆← Lcurr − Lprev
Lprev ← Lcurr

To solve (1) in polynomial time, we propose Al-
gorithm 2 (whose E-step uses Algorithm 1) and
impose the following assumption on the joint dis-
tribution of S and π:

P(S, π;p) ∝
{ ∏

τ∈π p(τ) if π = πS(p)
0 otherwise,

(3)

where πS(p) = argmaxπ∈ΠS

∏
τ∈πp(τ). Applying

(3), we see that all but one summand in (2) vanish.
The following Theorem claims that Algorithm 2
solves for (1) under assumption (3):

Theorem 2.6. Let p0,p1, · · · be TreePiece sim-
plices obtained from Algorithm 2. If (3) is true,
then (1) holds. Moreover,

∑
S∈S logP(S;pi) is

monotonically non-decreasing in i.

For proof of Theorem 2.6, see Appendix B.

2.3 Modeling

We describe the model that generates parse tree
components and the method to piece them together.

2.3.1 Modeling mechanism
As illustrated in Figure 1, an encoder computes the
hidden states of a given utterance, then an AR de-
coder consumes the encoder hidden states and gen-
erate TreePiece units autoregressively. The tech-
nique in Subsection 2.3.2 will allow us to put these
units together and obtain a full skeleton. The skele-
ton then uniquely determines the number (denoted
by N) and positions of all utterance leaves (see
Figure 2), which offers us the convenience to use
an NAR decoder to generate all utterance leaves
within one step. For NAR utterance decoder, we
closely follow (Ghazvininejad et al., 2019): first

11084

EM (%) EM-S (%)
CPU Decoding

time (ms)
CPU Inference

time (ms)
GPU Decoding

time (ms)
GPU Inference

time (ms)

Baselines

AR 86.99 89.13 45.53 63.81 44.87 55.77
NAR 86.29 88.56 7.00 25.21 6.42 17.56

Our method

TreePiece-1200 86.51 89.05 7.61 25.89 6.66 17.75
TreePiece-800 86.73 89.13 7.79 26.04 7.09 18.12
TreePiece-600 86.86 89.26 7.85 26.14 7.34 18.45
TreePiece-500 86.65 89.10 7.94 26.53 7.81 19.84
TreePiece-400 86.56 89.02 7.86 26.21 7.91 19.97
TreePiece-300 86.47 89.04 8.09 26.79 7.94 19.83
TreePiece-200 86.51 89.02 8.09 26.57 8.19 20.18
TreePiece-100 86.57 89.05 8.51 27.19 8.65 20.60

TreePiece-0 86.31 88.56 11.57 29.73 12.01 24.02

Table 1: Quality and latency of all models on TOPv2. We train each model with 3 random seeds, and report
the averaged EM/EM-S scores and latency on test split of TOPv2 dataset. We measure the decoding and overall
inference latency of all models on both CPU and NVIDIA V100 32 GB GPU, and report the averaged milliseconds
over all test samples. The number suffix for a TreePiece model represents the expansion size when creating
TreePiece vocabulary. The best entry for each metric is bolded.

prepare the NAR decoder’s input by concatenating
the embeddings of the predicted TreePieces and N
mask tokens. Then each decoder layer performs
self-attention as well as cross attention with en-
coder hidden states. Lastly the decoder generates
utterance predictions at these N masked positions.

2.3.2 Assemble TreePiece units
Unlike subword-tokenization, where original sen-
tence can be trivially recovered from subword units
via string concatenation, there is no canonical way
to reassemble TreePiece units. To overcome this
issue, we allow TreePiece units to have placehold-
ers2, and require that two units can only be joined at
a placeholder node. This design provides a unique
way to glue a sequence of ordered (e.g. pre/level-
ordered) TreePiece units, as shown in Figure 2.

3 Experiments

3.1 Datasets

We train, validate, and test our approach on
the publicly available benchmark TOPv2 (Chen
et al., 2020), a multi-domain task-oriented seman-
tic parsing dataset. The dataset provides a train-
ing/validation/test split. Throughout our experi-

2Finding all possible placeholder patterns is NP-hard and
unnecessary. In Appendix D we provide a practical solution.

2 4 6 8 10 12 14 16 18 20
#AR steps

1

2

3

4

5

#s
te

ps

TreePiece-100
TreePiece-200
TreePiece-300
TreePiece-400
TreePiece-500
TreePiece-600
TreePiece-2200
NAR

Figure 3: Plot of averaged TreePiece decoding steps
against AR decoding steps for skeleton generations.

ments, we use the training split to train the models,
the validation split for earlystopping, model check-
pointing, and hyperparameter tuning, and the test
split to report the best model’s performance.

3.2 Metrics

We evaluate the model performance on two metrics:
Exact Match (EM) respectively Exact Match of
Skeleton (EM-S), defined to be the percentage of ut-
terances whose logical forms respectively skeletons
are correctly predicted (Shrivastava et al., 2022).

11085

3.3 Baselines

We compare our approach against 2 baselines: AR
and NAR. Both baselines are sequence-to-sequence
(seq2seq) that produces subword units of serialized
logical forms. Their output space consists of on-
tologies (prefixed by left bracket “[”), utterance
leaves3, and right bracket “]”.

AR baseline admits a standard AR structure. It has
an autoregressive decoder that generates serialized
logical forms by producing one token at a time.

NAR baseline adopts mask-predict (Ghazvininejad
et al., 2019) with beam size 1, which predicts the
output length first and then generates all tokens in
one step using a non-autoregressive decoder.

3.4 Experiment setup

For TreePiece models, we experiment with 9 dif-
ferent expansion sizes (used in Stage 1, Subsection
2.2.1) varying from 0 to 1200. We optimize the
hyperparameters for both baselines and TreePiece-
600, and apply the same hyperparameters from
TreePiece-600 to all other TreePiece models. We
defer the model configurations, training details, hy-
perparameter choices to Appendix E.

4 Results

4.1 Quality

As shown in Table 1, TreePiece model sees up to
0.7% relative improvements over NAR and less
than 0.15% degradation from AR in terms of EM,
while achieving the best EM-S score among all
approaches, especially showing 0.8% relative im-
provement over NAR. We attribute TreePiece’s
high quality on skeleton predictions to its ability to
respect the tree structure of logical forms and gen-
erating 100% valid outputs by design so that the
model can better focus on utterance-understanding
without being distracted by any structure issue.

Table 2 further shows TreePiece’s privilege
over NAR in handling tasks of higher complex-
ity, achieving > 2% improvements for frames with
more than 1 intents.

4.2 Latency

Table1 indicates that TreePiece makes decoding
6.1\5.8 times faster and overall inference 3.0\2.5
times faster than AR on GPU\CPU, with only 5%
inference latency growth compared to NAR. In

3We represent utterance leaves in span-pointers (Shrivas-
tava et al., 2021) form to simplify the parsing task.

#Intents 1 2 3 4

TreePiece
-600

EM 88.10 83.21 69.46 46.51
EM-S 90.01 87.23 72.73 50.00

NAR
EM 87.72 80.95 67.60 23.26

EM-S 89.65 84.81 69.93 24.42

Table 2: Comparison on TOPv2 tasks with different
level of complexity in terms of number of intents.

Figure 3, we compare the decoding steps needed to
generate full skeletons between TreePiece decoder
(of 7 different expansion sizes) and AR decoder.
The plot illustrates the acceleration effects of our
approach, showing that TreePiece with just 200
expansion-size can already reduce the averaged
decoding steps by 83.3% compared to AR.

Related work Autoregressive modeling have been
used in a range of Semantic Parsing works (Tai
et al., 2015; Cheng et al., 2017b; Dong and Lapata,
2018). Especially, the Sequence-to-Tree scheme
was adopted by (Dong and Lapata, 2016). To
speed up the inference time, Non-autoregressive
modeling were introduced to the field of Machine
Translation (Gu et al., 2017; Lee et al., 2018;
Libovický and Helcl, 2018), and later become pop-
ular in Semantic Parsing as well (Ghazvininejad
et al., 2019; Babu et al., 2021; Shrivastava et al.,
2021). However, to match the quality of AR, extra
training stages are necessary such as Knowledge
Distillation from AR models (Gu et al., 2017; Lee
et al., 2018; Wei et al., 2019; Stern et al., 2019).
On the other hand, (Rubin and Berant, 2020)
improves AR decoding’s efficiency via Bottom-Up
Parsing (Cheng et al., 2017a). Our paper takes a
completely different path from all previous work
by extending the subword tokenization algorithms
(Nagata, 1994b; Scott, 2002; Sennrich et al., 2015;
Kudo, 2018; Kudo and Richardson, 2018) to trees.

Conclusion

This paper proposes a novel way to model and
speed up Semantic Parsing via tokenizing parse
trees into subtrees. We provide thorough elucida-
tions and theoretical supports for our technique,
and demonstrate significant improvements in terms
of speed and quality over common AR and NAR
baselines on the TOPv2 benchmark.

11086

Limitations

The proposed TreePiece technique, while evaluated
on TOPv2 dataset, is not intrinsically bound to it.
Indeed, our approach requires only two conditions
on a dataset for applicability:

• offers a closed vocabulary of ontologies;

• logical forms inherently carry tree structures.

As a matter of fact, TreePiece can seamlessly
adapt to a broad range of datasets, including Wik-
iSQL (Zhong et al., 2017), WEBQUESTIONS
(Berant et al., 2013), SequentialQA (Iyyer et al.,
2017), GEOquery (Davis and Meltzer, 2007), Spi-
der (Yu et al., 2018), ATIS (Hemphill et al., 1990),
etc. Despite this, we solely focused on showcas-
ing its effectiveness in the specific case of "task-
oriented natural language understanding based on
intent and slots". Additionally, our approach em-
ploys standard autoregressive decoding for sub-
tree generation, neglecting the exploration of even
more efficient decoding techniques. Lastly, our
current tokenization algorithm may introduce out-
of-vocabulary (OOV) tokens; while we proposed
effective ways to reduce OOV rates, it however
cannot fully eliminate the OOV phenomena.

Ethics Statement

Our proposed method presents a novel tokenization
operation for tree-like data, yielding substantial
practical implications in semantic parsing domains
such as natural language understanding, SQL gen-
eration, code generation, etc. However, it is crucial
to acknowledge that, similar to many other tok-
enization algorithms, our approach may introduce
biases from the training data into vocabulary and
tokenization patterns. Consequently, practitioners
needs to be mindful of this when curating the train-
ing corpus before utilizing our method.

References
Armen Aghajanyan, Jean Maillard, Akshat Shrivastava,

Keith A. Diedrick, Mike Haeger, Haoran Li, Yashar
Mehdad, Ves Stoyanov, Anuj Kumar, Mike Lewis,
and S. Gupta. 2020. Conversational semantic pars-
ing. In Conference on Empirical Methods in Natural
Language Processing.

Arun Babu, Akshat Shrivastava, Armen Aghajanyan,
Ahmed Aly, Angela Fan, and Marjan Ghazvinine-
jad. 2021. Non-autoregressive semantic parsing for

compositional task-oriented dialog. In North Amer-
ican Chapter of the Association for Computational
Linguistics.

Jonathan Berant, Andrew K. Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on freebase
from question-answer pairs. In Conference on Em-
pirical Methods in Natural Language Processing.

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke
Zettlemoyer, and S. Gupta. 2020. Low-resource do-
main adaptation for compositional task-oriented se-
mantic parsing. In Conference on Empirical Methods
in Natural Language Processing.

Jianpeng Cheng, Siva Reddy, Vijay A. Saraswat, and
Mirella Lapata. 2017a. Learning an executable
neural semantic parser. Computational Linguistics,
45:59–94.

Jianpeng Cheng, Siva Reddy, Vijay A. Saraswat, and
Mirella Lapata. 2017b. Learning structured natural
language representations for semantic parsing. ArXiv,
abs/1704.08387.

S. Davis and Paul S. Meltzer. 2007. Geoquery: a bridge
between the gene expression omnibus (geo) and bio-
conductor. Bioinformatics, 23 14:1846–7.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. ArXiv, abs/1810.04805.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. ArXiv, abs/1601.01280.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Annual Meet-
ing of the Association for Computational Linguistics.

Philip Gage. 1994. A new algorithm for data compres-
sion. The C Users Journal archive, 12:23–38.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Constant-time machine
translation with conditional masked language models.
ArXiv, abs/1904.09324.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K.
Li, and Richard Socher. 2017. Non-autoregressive
neural machine translation. ArXiv, abs/1711.02281.

S. Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar, and
Mike Lewis. 2018. Semantic parsing for task ori-
ented dialog using hierarchical representations. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The atis spoken language systems
pilot corpus. In Human Language Technology - The
Baltic Perspectiv.

Mohit Iyyer, Wen tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In Annual Meeting of the
Association for Computational Linguistics.

11087

https://api.semanticscholar.org/CorpusID:6401679
https://api.semanticscholar.org/CorpusID:6401679
https://api.semanticscholar.org/CorpusID:11524978
https://api.semanticscholar.org/CorpusID:11524978
https://api.semanticscholar.org/CorpusID:11524978
https://api.semanticscholar.org/CorpusID:1094063
https://api.semanticscholar.org/CorpusID:1094063
https://api.semanticscholar.org/CorpusID:2623009
https://api.semanticscholar.org/CorpusID:2623009

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Annual Meeting of the Asso-
ciation for Computational Linguistics.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Con-
ference on Empirical Methods in Natural Language
Processing.

Jindřich Libovický and Jindřich Helcl. 2018. End-to-
end non-autoregressive neural machine translation
with connectionist temporal classification. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3016–
3021, Brussels, Belgium. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neu-
big, and Eduard H. Hovy. 2019. Flowseq: Non-
autoregressive conditional sequence generation with
generative flow. ArXiv, abs/1909.02480.

Masaaki Nagata. 1994a. A stochastic japanese mor-
phological analyzer using a forward-dp backward-a*
n-best search algorithm. In International Conference
on Computational Linguistics.

Masaaki Nagata. 1994b. A stochastic Japanese morpho-
logical analyzer using a forward-DP backward-A*
n-best search algorithm. In COLING 1994 Volume 1:
The 15th International Conference on Computational
Linguistics, Kyoto, Japan.

Ohad Rubin and Jonathan Berant. 2020. Smbop: Semi-
autoregressive bottom-up semantic parsing. In North
American Chapter of the Association for Computa-
tional Linguistics.

Steven L Scott. 2002. Bayesian methods for hidden
markov models. Journal of the American Statistical
Association, 97(457):337–351.

Andrew W. Senior, Georg Heigold, Marc’Aurelio Ran-
zato, and Ke Yang. 2013. An empirical study of
learning rates in deep neural networks for speech
recognition. 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages
6724–6728.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. ArXiv, abs/1508.07909.

Akshat Shrivastava, Pierce I-Jen Chuang, Arun Babu,
Shrey Desai, Abhinav Arora, Alexander Zotov, and
Ahmed Aly. 2021. Span pointer networks for non-
autoregressive task-oriented semantic parsing. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Akshat Shrivastava, Shrey Desai, Anchit Gupta,
Ali Mamdouh Elkahky, Aleksandr Livshits, Alexan-
der Zotov, and Ahmed Aly. 2022. Retrieve-and-fill
for scenario-based task-oriented semantic parsing.
ArXiv, abs/2202.00901.

Mitchell Stern, William Chan, Jamie Ryan Kiros, and
Jakob Uszkoreit. 2019. Insertion transformer: Flexi-
ble sequence generation via insertion operations. In
International Conference on Machine Learning.

Yixuan Su, Deng Cai, Yan Wang, David Vandyke, Si-
mon Baker, Piji Li, and Nigel Collier. 2021. Non-
autoregressive text generation with pre-trained lan-
guage models. In Conference of the European Chap-
ter of the Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks.
ArXiv, abs/1503.00075.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

Andrew J. Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding algo-
rithm. IEEE Trans. Inf. Theory, 13:260–269.

Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018. Semi-
autoregressive neural machine translation. In Con-
ference on Empirical Methods in Natural Language
Processing.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang
Zhai, and Tie-Yan Liu. 2019. Non-autoregressive
machine translation with auxiliary regularization. In
AAAI Conference on Artificial Intelligence.

Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang
Lin, and Xu Sun. 2019. Imitation learning for non-
autoregressive neural machine translation. ArXiv,
abs/1906.02041.

Yuk Wah Wong. 2005. Learning for semantic parsing
using statistical machine translation techniques.

11088

https://doi.org/10.18653/v1/D18-1336
https://doi.org/10.18653/v1/D18-1336
https://doi.org/10.18653/v1/D18-1336
https://aclanthology.org/C94-1032
https://aclanthology.org/C94-1032
https://aclanthology.org/C94-1032
https://doi.org/10.1198/016214502753479464
https://doi.org/10.1198/016214502753479464

Tao Yu, Rui Zhang, Kai-Chou Yang, Michihiro Ya-
sunaga, Dongxu Wang, Zifan Li, James Ma, Irene Z
Li, Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir R. Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-sql task. ArXiv,
abs/1809.08887.

Luke Zettlemoyer and Michael Collins. 2005. Learning
to map sentences to logical form: Structured classifi-
cation with probabilistic categorial grammars. ArXiv,
abs/1207.1420.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
ArXiv, abs/1709.00103.

Jiawei Zhou and Phillip Keung. 2020. Improving non-
autoregressive neural machine translation with mono-
lingual data. In Annual Meeting of the Association
for Computational Linguistics.

A Appendix: Vocabulary generation

This stage resembles the merging operation in Byte
Pair Encoding (BPE) (Gage, 1994; Sennrich et al.,
2015). Given a training corpus, denote its skeletons
by S . We initialize the TreePiece vocabulary V as
the set of ontologies extracted from S and F0 as
the map between ontologies and their frequencies
in S . Now repeat the steps below until V reaches
a pre-determined size:

• Count the frequencies of all adjacent but un-
merged TreePiece unit pairs in S . Find the
most frequent pair p∗ and its frequency n∗.

• Merge p∗ in every S ∈ S that contains p∗,
add p∗ to V , and updateF0 withF0(p

∗) = n∗.

B Appendix: Proof of Theorem 2.6

For convenience we adopt the following notations.
Notation B.1. Let p be a TreePiece simplex and
π =: [τ1, · · · , τk] be a partition where each τi is a
TreePiece unit. Define p(π) =:

∏
τ∈π p(τ).

Notation B.2. Let π =: [τ1, · · · , τk] be a partition
and τ be any TreePiece unit. Define n(π, τ) =:∑

τi∈π 1τ=τi . In other words, n(π, τ) is the num-
ber of appearances of τ in π.

Now we introduce a general hypothesis and will
prove a key lemma under this hypothesis.
Hypothesis B.1. The joint distribution of skeleton
S and partition π satisfies the following rule,

P(S, π;p) ∝
{ ∏

τ∈π p(τ) · χ(π,p) if π ∈ ΠS

0 otherwise,
(4)

where χ : ΠS×[0, 1]|V| → {0, 1} is locally smooth
almost everywhere (under Lebesgue measure on
[0, 1]). In other words, for a.e. p ∈ [0, 1]|V| and
every π ∈ ΠS there exists a neighborhood Bϵ(p)
where χ(π, ·) is constant.

Remark B.1. Assumption (3) is a special case of
hypothesis B.1, where χ(π,p) = 1 if π = πS(p)
and 0 otherwise.

Remark B.2. Without loss of generality, in equa-
tions (3) and (4) we replace the symbol “∝” with

“=”, which otherwise complicates all formulae ex-
pressions with a non-essential scalar constant.

Lemma B.1. Under Hypothesis B.1, pk+1 is a
solution to (1) iff the following holds ∀τ∗ ∈ V :

pk+1(τ
∗) =

∑
S∈S EΠS

[n(π, τ∗)|S;pk]∑
τ∈V

∑
S∈S EΠS

[n(π, τ)|S;pk]
.

(5)

proof of Theorem 2.6 assuming Lemma B.1 holds.
By following the E-step of Algorithm 2, we can
express the frequency F∗(t) as

∑

S∈S

∑

τ∈πS(pi)

1τ=t =
∑

S∈S

n(πS(pi), t). (6)

Assumption 3 says that the probability measure
P(π|S;pk) is supported on the singleton πS(pi),
therefore the following holds for all τ ∈ V:

n(πS(pi), τ) = EΠS
[n(π, τ)|S;pk]. (7)

Now inserting the identity (7) to the right hand side
of equation (6) we obtain

F∗(t) =
∑

S∈S

EΠS
[n(π, t)|S;pk]. (8)

Next, Inserting (8) to the M-step in Algorithm 2,
we have

pk+1(t) =

∑
S∈S EΠS

[n(π, t)|S;pk]∑
τ∈V

∑
S∈S EΠS

[n(π, τ)|S;pk]
.

(9)
Invoking Lemma B.1, we see that pk+1 is the solu-
tion to problem (1), which proves the first conclu-
sion in Theorem 2.6.

Secondly, the monotonicity of logP(S;pi) can

11089

https://api.semanticscholar.org/CorpusID:52815560
https://api.semanticscholar.org/CorpusID:52815560
https://api.semanticscholar.org/CorpusID:52815560
https://api.semanticscholar.org/CorpusID:25156106
https://api.semanticscholar.org/CorpusID:25156106

be achieved as follows:
∑

S∈S

logP(S;pk+1)

=
∑

S∈S

logP(S, πS(pk+1);pk+1)

=
∑

S∈S

pk+1(πS(pk+1))

≥
∑

S∈S

pk+1(πS(pk))

=
∑

S∈S

logP(S, πS(pk);pk+1)

=
∑

S∈S

E[logP(S, πS(pk);pk+1)|S;pk]

≥
∑

S∈S

E[logP(S, πS(pk);pk)|S;pk]

=
∑

S∈S

pk(πS(pk))

=
∑

S∈S

logP(S, πS(pk);pk)

=
∑

S∈S

logP(S;pk).

(10)

Here, all equalities are consequences of Assump-
tion 3, the first inequality follows from the defini-
tion of πS(pk+1), and the second inequality uses
the maximization property of pk+1:

pk+1 = argmaxp
∑

S∈S

E[logP(S, πS(pk);p)|S;pk].

(11)
Thus concludes Theorem 2.6.

To complete the proof of Theorem 2.6 it suffices
to prove Lemma B.1.

proof of Lemma B.1. Consider the following La-
grange multiplier of problem (1):

L(p, λ) =
∑

S∈S

E
[
logP(S, π;p)

∣∣S;pk

]

+ λ(
∑

τ∈V
p(τ)− 1).

(12)

Plugging (4) into the above equation, we get
∑

S∈S

∑

π∈ΠS

log p(π) · P(π
∣∣S;pk)

+
∑

S∈S

∑

π∈ΠS

logχ(π,p) · P(π
∣∣S;pk)

+λ(
∑

τ∈V
p(τ)− 1)

:=I + II + III.

(13)

Inserting equation (13) to the following identity:

∇p,λL = 0, (14)

we obtain for each τ∗ ∈ V that

∑

S∈S

∑

π∈ΠS

n(π, τ∗)
p(τ∗)

· P(π
∣∣S;pk) + λ = 0. (15)

Note the locally constant assumption in Hypothesis
B.1 makes the derivative of term II vanishes a.e..
Identity (15) then allows us to solve for p(τ∗):

p(τ∗) = − 1

λ
·
∑

S∈S

∑

π∈ΠS

n(π, τ∗) · P(π
∣∣S;pk).

(16)
Next, using the simplex property

∑
τ∈V p(τ) = 1

and summing up (16) over V , we find λ:

− 1∑
τ∈V

∑
S∈S

∑
π∈ΠS

n(π, τ) · P(π
∣∣S;pk)

.

(17)
Plugging the above value of λ back to (16), we
obtain the final expression of p(τ∗):

∑
S∈S

∑
π∈ΠS

n(π, τ∗) · P(π
∣∣S;pk)∑

τ∈V
∑

S∈S

∑
π∈ΠS

n(π, τ) · P(π
∣∣S;pk)

=

∑
S∈S E

[
n(π, τ∗)

∣∣S;pk

]
∑

τ∈V
∑

S∈S E
[
n(π, τ)

∣∣S;pk

] ,
(18)

which is precisely (5). This proves the if direction
of the Lemma. Indeed, a maximizer p must be a
critical point of the Lagrange multiplier and sat-
isfy (14), therefore identity (18) holds. Conversely,
identity (18) for arbitrary τ∗ ∈ V fully characterize
p, and by the if direction it can only be the unique
maximum. This proves the opposite direction, and
completes the proof of Lemma B.1.

C Appendix: An FFBS algorithm

We propose Algorithm 3, a Forward-Filtering
Backward-Sampling (FFBS) (Scott, 2002; Kudo,
2018; Kudo and Richardson, 2018) algorithm un-
der the setting of TreePiece. We highlight those
lines in Algorithm 3 that differ from Algorithm 1.
Their main distinctions lie in (1) update formula
for probabilities, (2) backward strategy.

Before forward, we call GetInitPairProbs to
initialize a probability function on the Cartesian
product space T × T ⋃{BOS} as follows:

P(t, t′) =

{
p(t) if t ∈ V and t′ = BOS token,
0 otherwise.

11090

During backward, we call Sampling to randomly
sample a previous subtree of t with respect to the
following distribution:

{ exp(θ · logP(t′, t))∑
s∈T (t) exp(θ · logP(s, t))

}
t′∈T (t)

(19)

where T (t) =: {t′ ∈ T : P(t, t′) > 0}. Here a
smaller θ leads to a more uniform sampling distri-
bution among all partitions, while a larger θ tend
to select the Viterbi partition picked by Algorithm
1 (Kudo, 2018).

Algorithm 3 Forward-Filtering Backward Sam-
pling (FFBS) Algorithm

Input: TreePiece vocabulary V , TreePiece sim-
plex p, skeleton S, sampling coefficient θ.

Output: Partition πS(p) and probability P(S;p).
T ← All subtrees of S with the same root.
L ← Log(p), Q ← exp ◦L
P ← GetInitPairProbs(p)
dmax ← Depth of S
for d = 1, 2, · · · , dmax do // Forward begins

for t ∈ Td do
for d′ = 1, 2, · · · , d do

for t′ ∈ Filter(Td′ , t) do
∆∗ ← t′∆t
Q∗ ← Q(t′) ·∏τ∈∆∗ p(τ)
Q(t)← Q(t) +Q∗

P(t, t′)← Q∗

P(S;p)← Q(S) // Forward ends
tcurr ← S, πS(p)← ∅ // Backward begins
while tcurr ̸= BOS token, do

tprev ← Sampling(P, tcurr, θ)
∆∗ ← tprev∆tcurr
πS(p)← πS(p)

⋃
∆∗, tcurr ← tprev

πS(p)← πS(p)
⋃{tcurr} // Backward ends

return πS(p),P(S;p)

Algorithm 3 allows us to sample from all possi-
ble partitions rather than generating fixed patterns.
In practice, this version is used in place of Algo-
rithm 1 to reduce the OOV rates; see Appendix D
for further discussions.

Remark C.1. Let us assume the following holds
in place of Assumption (3):

P(S, π;p) ∝
{ ∏

τ∈π p(τ) if π ∈ ΠS

0 otherwise,
(20)

another special case of Hypothesis B.1 with
χ(π,p) ≡ 1. By Lemma B.1, solving problem

(1) requires computing EΠS
[n(π, τ)|S;pk], which

now becomes NP-hard. But we can utilize Algo-
rithm 3 to obtain an approximate solution. Indeed,
if we iteratively run Algorithm 3 in place of the
E-step in Algorithm 1 K times to obtain a partition
sequence πS(p)

(1), πS(p)
(2), · · · , πS(p)(K), and

use the averaged partitions to update the frequency
F∗, then following similar lines in Appendix B,
we can prove an asymptotic version of Theorem
2.6 under Assumption 20, by showing that the av-
eraged frequency over K partitions converges to
E
[
n(π, τ)

∣∣S;pk

]
as K tends to infinity, a direct

consequence of Law of Large Numbers. We omit
the details.

D Appendix

As discussed in Subsection 2.3.2, a placeholder
structure is necessary for well-defined assembly
of TreePiece units. However, adding all possible
placeholder patterns to vocabulary is impractical
for both time and memory. Instead, we shall in-
clude only those patterns that most likely to occur.
To do so, we tokenize every training skeleton and
add the results to the TreePiece vocabulary. As
illustrated by the “Tokenize” direction in Figure 2,
when a node loses a child during tokenization, we
attach a placeholder to the missing child’s position.

Remark D.1. There may exist new placeholder
patterns that are Out-Of-Vocabulary (OOV) at in-
ference time. To mitigate OOV, we apply Algo-
rithm 3 (in place of Algorithm 1) to tokenize each
training skeleton K0 times. Both K0 and the sam-
pling coefficient θ0 will be specified in Appendix
E.1.2. Intuitively, with a larger K0 and a smaller
θ0, Algorithm 3 is able to generate more abundant
placeholder patterns to cover as many OOV place-
holders as possible.

E Appendix

E.1 Model configurations

E.1.1 Model architectures
Across all of our experiments, we use RoBERTa-
base encoder (Liu et al., 2019) and transformer
(Vaswani et al., 2017) decoders. For encoder archi-
tecture, we refer the readers to (Liu et al., 2019).
All models’ decoder have the same multi-head-
transformer-layer architecture (embedding dimen-
sion 768, 12 heads). Both AR and NAR’s decoders
have 2 layers. For TreePiece archtecture, TreePiece
decoder and Utterance decoder has 1 layer each.

11091

TreePiece model NAR baseline AR baseline

Modules Encoder
TreePiece
decoder

Utterance
decoder

Encoder
Length

predictor
Decoder Encoder Decoder

Learning
rates

4× 10−6 6× 10−5 4× 10−5 2× 10−5 1× 10−4 6× 10−5 4× 10−6 2× 10−5

Decay
coefficients

0.999 0.999 0.9999

Table 3: Optimization hyperparameter choices for all models

[intent | create rem inder [slot | person rem inded] [slot | todo [m issing |
[intent | send m essage [slot | recipient] [slot | content exact [m issing | [

intent | get event [slot | category event] [slot | date t im e]]]]]]]]

Figure 4: Serializing the skeleton in Figure 2 (LHS) using the “placeholder nest” design.

Note for fairness of comparisons, we let each model
have exactly 2 decoder layers in total.

E.1.2 TreePiece vocabulary
We extract from the TOPv2 dataset 162 ontologies
in total, and use TOPv2 training split as training
corpus to iteratively run vocabulary generation (ref.
Appendix A) 0, 100, 200, 300, 400, 500, 600 times
to obtain vocabularies of size 162, 262, 362, 462,
562, 762 respectively. Since we only optimize for
TreePiece-600 let us only focus on its vocabulary
(of size 762). We then apply the Algorithm 2 with
N0 = 30 and ϵ0 = 0.01 to train the tokenizer and
arrive at a vocabulary of 2153 different TreePiece
unit patterns with placeholders. Finally, we follow
Appendix D (with K0 = 10, θ0 = 0.15) and ex-
pand the TreePiece vocabulary to size 3817. Note
the vocabulary obtained this way has less than 0.1%
OOV rate on test dataset, compared to 0.45% were
we not using the sampling trick in Remark D.1.

E.2 Training details

E.2.1 TreePiece embedding
Within the TreePiece decoder, we tie the classifer
head’s weight to the TreePiece unit embedding ma-
trix, and found it beneficial to pretrain this weight
rather than randomly initializing it. We take inspira-
tions from (Shrivastava et al., 2022) and create the
pretraining corpus by serializing all skeletons in the
training dataset. To let the placeholder information
blend into the corpus, we introduce a placeholder
nest structure and add it to the serialized logical
forms, as illustrated by Figure 4. Finally, we use
the masked language model (MLM) (Devlin et al.,
2019) pre-training objective with mask-rate 0.15

and train for up to 20 epochs until convergence.

E.2.2 Hyperparameter choices
Across all experiments, we set the batch size to be
256, and total number of epochs to be 100 with
early stopping when validation EM (ref. Subsec-
tion 3.2) stops improving. For optimization, we
use Adam optimizer (Kingma and Ba, 2014) with
weight decay 0.01 and ϵ = 10−8. In addition, we
warm up the learning rate in 5 epochs and then
exponentially decay (Senior et al., 2013) at the end
of every epoch.

We also observe that each module favors learn-
ing rates with different magnitude, so we do
learning rate search separately for each module
among the interval [10−6, 10−4]. For exponen-
tial decay coefficients we optimize them among
{0.9, 0.99, 0.999, 0.9999}. Table 3 summarizes
our final choices of these hyperparameters.

11092

