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Abstract

High-quality span representations are crucial
to natural language processing tasks involv-
ing span prediction and classification. Most
existing methods derive a span representation
by aggregation of token representations within
the span. In contrast, we aim to improve span
representations by considering span-span inter-
actions as well as more comprehensive span-
token interactions. Specifically, we introduce
layers of span-level attention on top of a normal
token-level transformer encoder. Given that at-
tention between all span pairs results in O(n4)
complexity (n being the sentence length) and
not all span interactions are intuitively mean-
ingful, we restrict the range of spans that a
given span could attend to, thereby reducing
overall complexity to O(n3). We conduct ex-
periments on various span-related tasks and
show superior performance of our model sur-
passing baseline models. Our code is publicly
available at https://github.com/jipy0222/
Span-Level-Attention.

1 Introduction

Many natural language processing tasks involve
spans, making it crucial to construct high-quality
span representations. In named entity recognition,
spans are detected and typed with different labels
(Yuan et al., 2022; Zhu et al., 2022); in coreference
resolution, mention spans are located and grouped
(Lee et al., 2017, 2018; Gandhi et al., 2021; Liu
et al., 2022); in constituency parsing, spans are
assigned scores for constituent labels, based on
which a parse tree structure is derived (Stern et al.,
2017; Kitaev and Klein, 2018; Kitaev et al., 2019).

Most existing methods compute span represen-
tations by shallowly aggregating token representa-
tions. They either pool over tokens within the span
(Shen et al., 2021; Hashimoto et al., 2017; Con-
neau et al., 2017), or concatenate the starting and
ending tokens (Ouchi et al., 2018; Zhong and Chen,
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(a) Inside-Token (b) Containment

(c) Adjacency (d) All-Token

Figure 1: Diagrams for four attention patterns. Each
cell represents a span, e.g., the orange cell in each dia-
gram represents the span consisting of tokens from x1

to x3. Orange cells represent target spans and blue cells
represent spans they can attend to.

2021). The limitation of these methods lies in: (i)
Span representations are dominated by a subset of
tokens, resulting in a potential lack of crucial in-
formation. (ii) Intuitively, span interactions should
play an important role in span encoding. For ex-
ample, meanings of spans, especially constituents,
can be composed from their sub-spans and disam-
biguated by their neighbouring spans. However,
such span interactions are completely ignored in
these methods.

Inspired by the utilization of self-attention in
Transformer (Vaswani et al., 2017), we introduce
span-level self-attention to capture span interac-
tions and improve span representations. However,
computing attention scores for all span pairs leads
to O(n4) complexity (n for sequence length). In
addition, not all span interactions are intuitively
meaningful. Therefore, we design four different
span-level patterns to restrict the range of spans
that a given span could attend to: Inside-Token,
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Figure 2: Architecture of our model.

Containment, Adjacency and All-Token (Fig. 1).
Each of them allows only O(n) spans for attention,
reducing the overall complexity to O(n3).

Many existing studies also aim at improving
span representations. Yuan et al. (2022) utilize
entity labels to define specific span representations
for nested NER. Zhou et al. (2022) use syntactic
parse trees to enhance span encoding. Zhu et al.
(2022) improve span representations by stacking
multiple span-token attention layers. Wang et al.
(2022) introduce intra-span attention to enhance
span representations by computing attention be-
tween each given span and all other spans. Com-
pared to existing works, our method offers unique
advantages: (i) We design span representations for
a wide range of tasks without relying on external
information such as labels and parse trees. (ii)
We lay more emphasis on span interactions by in-
corporating span-level attention. (iii) We design
span-level attention patterns to capture meaningful
span interactions and reduce the overall complex-
ity to an acceptable level, thereby ensuring both
effectiveness and efficiency.

2 Method

Fig. 2 illustrates the architecture of our model,
which we describe from bottom up.

Token representations. Given a sentence w =
w0, w1, . . . , wn, we pass it through BERT (Devlin
et al., 2019) to do tokenization and obtain contex-
tualized token representations c = c0, c1, . . . , cT
by taking a weighted average of the outputs from
all layers. We then feed them into a linear pro-

jection layer to obtain final token representations
x = x0, x1, . . . , xT .

Initial span representations. We follow Toshni-
wal et al. (2020) to initialize span representations
from contextualized token representations. During
pilot experiments1, we observe that among the five
pooling methods (max pooling, average pooling,
attention pooling, endpoint, diff-sum), max pool-
ing performs the best. Therefore, we choose max
pooling as the default initialization method. Specif-
ically, given a span ⟨i, j⟩ and the corresponding
token representations {xi, . . . , xj} within the span,
the initial span representation sij is computed by
selecting the maximum value over each dimension
of the token representations.

Span-level attention. We enumerate all the spans
and input their representations to a Transformer
encoder with span-level attention. Note that com-
puting attention scores for all span pairs leads to
O(n4) time and memory complexity because self-
attention has a quadratic complexity and there are
a total of O(n2) spans. To reduce the complexity
as well as encourage more meaningful span inter-
actions, we design different attention patterns to
restrict the range of spans that a given span could
attend to (Fig. 1). We use rel(⟨i, j⟩) to denote the
set of spans that span ⟨i, j⟩ can attend to.

Inside-Token Each span attends to tokens within
this span. This pattern maintains the connec-
tion between spans and their internal tokens.

rel(⟨i, j⟩) = {⟨k, k⟩|k = i, . . . , j}

Containment Given a span, its super-spans and
sub-spans may provide meaningful informa-
tion of the span. However, the total number of
super-spans and sub-spans of a given span is
O(n2). Considering the importance of start-
ing and ending positions in span encoding,
we propose that each span attends to spans
that share the same starting or ending position.
This pattern takes into account the contain-
ment relationship as well as the starting and
ending positions of spans, while reducing the
number of spans to O(n).

rel(⟨i, j⟩) ={⟨i, k⟩|k = i, . . . , T}∪
{⟨k, j⟩|k = 0, . . . , j}

1Results can be found in Table 7 in Appendix B
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Pattern Task
(a) (b) (c) (d) NEL REF SRC CTL MED CTD Avg.

i Max pooling 95.61 95.58 92.85 98.00 97.98 98.19 96.37
ii Best pooling 95.78 95.78 92.86 98.00 98.10 98.24 96.46

iii Token-level 95.73 95.76 93.32 98.34 98.04 98.61 96.63
iv Fully-connected 95.77 95.63 93.11 98.36 98.12 98.69 96.61
1. ✓ ✗ ✗ ✗ 95.57 95.80 93.62 98.39 98.10 98.53 96.67
2. ✗ ✓ ✗ ✗ 95.85 95.93 93.46 98.45 98.19 98.79 96.78
3. ✗ ✗ ✓ ✗ 95.79 95.63 93.46 98.47 98.24 98.79 96.73
4. ✗ ✗ ✗ ✓ 95.85 96.06 93.31 98.35 98.05 98.62 96.71
5. ✓ ✓ ✗ ✗ 95.94 96.02 93.52 98.45 98.23 98.83 96.83
6. ✓ ✗ ✓ ✗ 95.78 95.78 93.50 98.50 98.28 98.83 96.78
7. ✓ ✗ ✗ ✓ 95.73 95.98 93.33 98.36 98.02 98.56 96.66
8. ✗ ✓ ✓ ✗ 95.76 95.92 93.50 98.47 98.19 98.79 96.77
9. ✗ ✓ ✗ ✓ 96.08 95.77 93.35 98.43 98.14 98.77 96.76

10. ✗ ✗ ✓ ✓ 95.95 95.80 93.31 98.44 98.23 98.80 96.75
11. ✓ ✓ ✓ ✗ 95.85 95.68 93.52 98.48 98.22 98.81 96.76
12. ✓ ✓ ✗ ✓ 95.87 95.89 93.36 98.44 98.18 98.80 96.76
13. ✓ ✗ ✓ ✓ 95.79 95.73 93.29 98.45 98.25 98.80 96.72
14. ✗ ✓ ✓ ✓ 95.80 95.81 93.33 98.41 98.24 98.77 96.73
15. ✓ ✓ ✓ ✓ 95.82 95.80 93.38 98.43 98.20 98.76 96.73

Table 1: Averaged F1 scores for 6 probing tasks with baselines and different pattern combinations. (a): Inside-Token,
(b): Containment, (c): Adjacency, (d): All-Token.

Adjacency Each span attends to spans that share
only the starting or ending positions of the
span. Intuitively, adjacent spans often have
strong correlations.

rel(⟨i, j⟩) ={⟨j, k⟩|k = j, . . . , T}∪
{⟨k, i⟩|k = 0, . . . , i}

All-Token Each span attends to all tokens in the
input text. This pattern enables the acquisition
of token information beyond span boundaries.

rel(⟨i, j⟩) = {⟨k, k⟩|k = 0, . . . , T}

It is worth noting that all four patterns ensure that
the number of spans each span can attend to is
O(n), which reduces the overall complexity to
O(n3). Moreover, we can combine these four pat-
terns arbitrarily to form new patterns when facing
different scenarios.

Inference and Training. After span-level atten-
tion, we obtain an enhanced version of sij for each
span. For single span tasks, we feed a span rep-
resentation into a two-layer MLP classifier. For
tasks involving two spans, we concatenate the two
span representations and feed them into the MLP
classifier. The classifier maps the input into a q-
dimensional vector, where q is the size of the label
set (including NoneType if necessary). We directly
utilize the loss function of downstream tasks to
train the model, such as the commonly used bi-
nary cross-entropy loss and cross-entropy loss in
multi-class classification tasks.

3 Experiment

3.1 Setup
We use BERT-base-cased to obtain contextualized
token representations and keep it frozen when con-
ducting probing tasks. We stack 4 Transformer
encoder layers and set the number of heads in
multi-head attention to 4 to do span-level attention.
Dataset details and other hyper-parameters can be
found in Table 5 and Table 6 in Appendix A. We
conduct all experiments on a single 24GB NVIDIA
TITAN RTX and report the micro-averaged F1-
scores. All results are averaged over three runs
with different random seeds.

3.2 Probing tasks results
We conduct 6 probing tasks: named entity labeling
(NEL), coreference arc prediction (REF), seman-
tic role classification (SRC), constituent labeling
(CTL), mention detection (MED) and constituent
detection (CTD), following Toshniwal et al. (2020).
In these 6 tasks, we only need to do classification
or prediction on given spans.

Table 1 shows probing tasks results. We pose (i)
max pooling, (ii) best performing pooling among
five pooling methods mentioned in section 2, (iii)
max pooling after four additional layers of normal
token-level attention, and (iv) fully-connected span-
level attention (i.e., the O(n4) full span-level atten-
tion without restriction) as four baselines2. Overall,

2Stacking four layers of fully-connected span-level atten-
tion can result in the out-of-memory issue when doing ex-

11186



fully-connected span-level attention shows good
performance compared to pooling methods, vali-
dating the effectiveness of span-level attention. Fur-
thermore, applying different attention patterns or
pattern combinations not only reduces computa-
tional complexity, but also significantly improves
performance. This suggests that our proposed atten-
tion patterns effectively capture more meaningful
span interactions than fully-connected span-level
attention without restrictions. Our method also
outperforms token-level attention with additional
layers, suggesting that the improvement in perfor-
mance is not merely due to having more parame-
ters.

For specific tasks, the optimal attention patterns
vary. For tasks that place more emphasis on struc-
tures, such as CTL, CTD and detection task MED,
attention patterns inspired by structural span in-
teractions (Containment, Adjacency) show better
performance. The same applies to pattern combi-
nations involving them. This makes sense because
grammatical structures are closely related to the
structural span interactions within a sentence. For
tasks that prioritize textual content, such as REF,
the All-Token attention pattern performs better due
to its attention to the entire input text. In SRC,
we speculate that the Inside-Token pattern helps us
focus specifically on the prefixes or suffixes gener-
ated by tokenization, thus improving performance
related to semantic roles. In NEL, a combination
of the Containment and All-Token patterns strikes
a balance between structure and semantics, leading
to good performance.

In general, as shown in Table 8 in Appendix
B, our method consistently outperforms the base-
line models in all 6 tasks. Moreover, the best per-
forming attention pattern is the combination of the
Inside-Token and Containment patterns. This pat-
tern combination, due to its consideration of both
semantics and structure, is a reliable choice across
different tasks.

3.3 Nested NER results

We conduct nested named entity recognition
(nested NER) on the ACE20043 and ACE20054

datasets (Doddington et al., 2004).
As Table 2 shows, significant improvements are

periments on 24GB NVIDIA TITAN RTX due to its O(n4)
complexity, so we do experiments on 48GB NVIDIA A40
instead.

3https://catalog.ldc.upenn.edu/LDC2005T09
4https://catalog.ldc.upenn.edu/LDC2006T06

Encoders&Datasets
BERT-frozen BERT-finetune

ACE04 ACE05 Avg. ACE04 ACE05 Avg.
i 75.54 76.90 76.22 84.12 82.56 83.34

1. 79.18 79.38 79.28 83.92 82.94 83.43
2. 80.00 80.01 80.01 84.23 83.50 83.86
3. 80.61 79.97 80.29 84.38 83.52 83.95
4. 77.39 78.97 78.18 83.71 83.31 83.51
5. 80.37 80.57 80.47 84.33 83.35 83.84
6. 81.31 80.36 80.83 84.54 83.63 84.08
7. 77.69 78.58 78.14 84.54 82.72 83.63
8. 79.65 79.67 79.66 84.21 83.20 83.70
9. 79.54 79.90 79.72 84.25 83.60 83.93

10. 79.49 79.09 79.29 83.83 83.17 83.50
11. 80.23 80.07 80.15 84.57 83.54 84.05
12. 79.49 80.23 79.86 84.32 83.49 83.90
13. 79.14 79.11 79.12 84.58 83.70 84.14
14. 79.66 80.38 80.02 84.97 83.56 84.26
15. 78.86 79.80 79.33 84.36 83.50 83.93

Table 2: Averaged F1 scores for nested NER with base-
line and different pattern combinations. We use the
same index as Tab. 1 in the first column to represent the
same model.

observed with span-level attention compared to
max pooling when freezing BERT. Fine-tuning
BERT leads to further enhancements in overall per-
formance. We speculate that combining span-level
attention with stronger pretrained language models
and carefully-designed decoders will yield even bet-
ter results. Specifically, the combination of Inside-
Token and Containment/Adjacency performs well
when using a frozen BERT, which aligns with our
observations from probing tasks conducted under
similar settings. When BERT is fine-tuned, token
representations capture more comprehensive con-
textual information, allowing the All-Token pattern
to be included in the optimal combination. Table 9
in Appendix B also shows that the improvements
brought about by our method are consistent.

3.4 SpanBERT backbone

We also conduct experiments on the REF and SRC
tasks with SpanBERT being used as the backbone
to analyse the generalizability of our proposed
method. As Table 3 shows, span-level attention
still brings performance gain after changing the
backbone to SpanBERT, no matter fine-tuned or
not. It further demonstrates the generalizability of
our method. Note that fine-tuned SpanBERT with
max pooling is a widely favored choice for span-
related tasks, and our results show that applying
span-level attention to this backbone can still bring
performance improvement. More detailed results
can be found in Table 10 in Appendix B.
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Encoders&Datasets
SpanBERT-frozen SpanBERT-finetune

REF SRC Avg. REF SRC Avg.
i 95.62 92.88 94.25 96.52 93.66 95.09

1. 95.90 93.40 94.65 96.65 93.77 95.21
2. 95.83 93.39 94.61 96.67 93.86 95.27
3. 95.73 93.43 94.58 96.52 93.81 95.17
4. 95.93 93.22 94.58 96.73 93.77 95.25
5. 95.86 93.45 94.66 96.73 93.78 95.26
6. 95.87 93.51 94.69 96.71 93.87 95.29
7. 96.01 93.12 94.57 96.62 93.80 95.21
8. 95.62 93.47 94.55 96.59 93.84 95.22
9. 95.94 93.25 94.60 96.83 93.79 95.31

10. 95.92 93.19 94.56 96.69 93.81 95.25
11. 95.97 93.41 94.69 96.60 93.85 95.23
12. 96.00 93.28 94.64 96.74 93.78 95.26
13. 95.93 93.21 94.57 96.80 93.87 95.34
14. 95.78 93.16 94.47 96.80 93.84 95.32
15. 95.87 93.25 94.56 96.59 93.75 95.17

Table 3: Averaged F1 scores for REF and SRC with
baseline and different pattern combinations when Span-
BERT is used as the backbone. We use the same index
as Tab. 1 in the first column to represent the same model.

Attention Layer Avg. F1 improvement
# layer = 2 6.24
# layer = 4 6.30
# layer = 6 5.98

Table 4: Analysis on span-level attention layer.

3.5 Analysis
We conduct an analysis on the effect of the number
of span-level attention layers. We select three tasks,
REF, SRC and CTL, to cover both semantic and
structural tasks. To compare the results, we calcu-
late the overall improvements of different attention
patterns compared to the max pooling baseline and
average them across the three tasks. As Table 4
shows, stacking 4 layers slightly outperforms the
other two options.

4 Conclusion

We propose to use span-level attention to improve
span representations. In order to reduce the O(n4)
complexity and encourage more meaningful span
interactions, we incorporate different attention pat-
terns to limit the scope of spans that a particu-
lar span can attend to. Experiments on various
tasks validate the efficiency and effectiveness of
our method.

Limitations

We conduct an empirical study with extensive ex-
periments to validate the effectiveness of our pro-

posed method and attempt to derive further obser-
vations from the experiments. However, there is a
lack of solid theoretical explanations and insights
for these observations.

Moreover, It can be time-consuming to try dif-
ferent pattern combinations and pick the optimal
one when encountering new tasks. To enhance ef-
ficiency, one possible approach is to propose an
automated attention pattern combiner based on re-
inforcement learning, which can serve as an impor-
tant component of the entire model.
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summary in Table 5 and 6. We filter out sentences
with length exceeding 40 in probing task datasets
and 100 in nested NER datasets. Moreover, we
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Task |L| #Instances(Train/Val./Test)
NEL 18 103K / 16K / 10K
REF 2 161K / 19K / 21K
SRC 62 510K / 71K / 52K
CTL 30 1.6M / 215K / 158K
MED 2 718K / 86K / 90K
CTD 2 2.6M / 354K / 259K
NER(ACE04) 7 22K / 3K / 3K
NER(ACE05) 7 24K / 3K / 3K

Table 5: Dataset statistics.

Architecture hyper-parameters
Span representation dimension 256
Span-level attention head 4
Span-level attention layer 4
Span-level attention FFN dimension 1024
Span-level attention dropout 0.1
Span-level attention layernorm eps 1e-5
Classifier hidden dimension 256
Classifier dropout 0.2
Classifier layernorm eps 1e-5
Training-related hyper-parameters
Training epoch 20
Batch size 16
BERT learning rate 5e-5
Span-level attention learning rate 2e-4
Other learning rate 5e-4
Optimizer Adam

Table 6: Summary of hyper-parameters.

B Detailed results

We provide detailed experiment results in this sec-
tion. Table 7, 8, 9 shows averaged F1 scores along
with standard deviations in pilot experiments, prob-
ing tasks and nested NER. Table 10 shows REF and
SRC results when SpanBERT is used as backbone.
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NEL REF SRC CTL MED CTD Avg.
max pooling 95.61±0.09 95.58±0.09 92.85±0.09 98.00±0.01 97.98±0.05 98.19±0.02 96.37±0.02
average pooling 95.47±0.06 95.21±0.08 92.00±0.04 95.84±0.12 97.76±0.01 96.75±0.14 95.50±0.04
attention pooling 95.78±0.09 95.78±0.05 92.86±0.10 97.34±0.07 97.87±0.01 97.37±0.11 96.17±0.01
endpoint 95.56±0.05 95.30±0.09 92.86±0.02 97.77±0.02 98.09±0.01 98.24±0.01 96.30±0.02
diff-sum 95.47±0.09 95.39±0.05 92.81±0.06 97.76±0.02 98.10±0.01 98.24±0.03 96.29±0.02

Table 7: Detailed results for pilot experiments.

Pattern Task
(a) (b) (c) (d) NEL REF SRC CTL MED CTD Avg.

i Max pooling 95.61±0.09 95.58±0.09 92.85±0.09 98.00±0.01 97.98±0.05 98.19±0.02 96.37±0.02
ii Best pooling 95.78±0.09 95.78±0.05 92.86±0.10 98.00±0.01 98.10±0.01 98.24±0.01 96.46±0.01

iii Token-level 95.73±0.06 95.76±0.05 93.32±0.02 98.34±0.02 98.04±0.02 98.61±0.02 96.63±0.02
iv Fully-connected 95.77±0.15 95.63±0.03 93.11±0.02 98.36±0.01 98.12±0.04 98.69±0.01 96.61±0.03
1. ✓ ✗ ✗ ✗ 95.57±0.11 95.80±0.09 93.62±0.02 98.39±0.01 98.10±0.02 98.53±0.01 96.67±0.02
2. ✗ ✓ ✗ ✗ 95.85±0.02 95.93±0.01 93.46±0.03 98.45±0.03 98.19±0.01 98.79±0.02 96.78±0.01
3. ✗ ✗ ✓ ✗ 95.79±0.06 95.63±0.06 93.46±0.03 98.47±0.02 98.24±0.02 98.79±0.03 96.73±0.02
4. ✗ ✗ ✗ ✓ 95.85±0.03 96.06±0.02 93.31±0.04 98.35±0.01 98.05±0.04 98.62±0.01 96.71±0.01
5. ✓ ✓ ✗ ✗ 95.94±0.12 96.02±0.12 93.52±0.01 98.45±0.05 98.23±0.02 98.83±0.01 96.83±0.02
6. ✓ ✗ ✓ ✗ 95.78±0.07 95.78±0.13 93.50±0.04 98.50±0.01 98.28±0.04 98.83±0.01 96.78±0.04
7. ✓ ✗ ✗ ✓ 95.73±0.13 95.98±0.05 93.33±0.04 98.36±0.03 98.02±0.03 98.56±0.02 96.66±0.02
8. ✗ ✓ ✓ ✗ 95.76±0.09 95.92±0.10 93.50±0.03 98.47±0.01 98.19±0.03 98.79±0.03 96.77±0.03
9. ✗ ✓ ✗ ✓ 96.08±0.09 95.77±0.02 93.35±0.01 98.43±0.01 98.14±0.04 98.77±0.03 96.76±0.02

10. ✗ ✗ ✓ ✓ 95.95±0.12 95.80±0.13 93.31±0.07 98.44±0.02 98.23±0.04 98.80±0.01 96.75±0.04
11. ✓ ✓ ✓ ✗ 95.85±0.07 95.68±0.02 93.52±0.04 98.48±0.01 98.22±0.02 98.81±0.04 96.76±0.03
12. ✓ ✓ ✗ ✓ 95.87±0.06 95.89±0.05 93.36±0.05 98.44±0.01 98.18±0.01 98.80±0.01 96.76±0.01
13. ✓ ✗ ✓ ✓ 95.79±0.08 95.73±0.12 93.29±0.07 98.45±0.01 98.25±0.01 98.80±0.03 96.72±0.03
14. ✗ ✓ ✓ ✓ 95.80±0.03 95.81±0.07 93.33±0.09 98.41±0.01 98.24±0.01 98.77±0.01 96.73±0.03
15. ✓ ✓ ✓ ✓ 95.82±0.10 95.80±0.12 93.38±0.08 98.43±0.02 98.20±0.04 98.76±0.01 96.73±0.04

Table 8: Detailed results for probing tasks.

Encoders&DatasetsPattern BERT-frozen BERT-finetune
(a) (b) (c) (d) ACE04 ACE05 Avg. ACE04 ACE05 Avg.

i Max pooling 75.54±0.43 76.90±0.31 76.22±0.12 84.12±0.09 82.56±0.12 83.34±0.06
1. ✓ ✗ ✗ ✗ 79.17±0.19 79.38±0.32 79.28±0.14 83.92±0.13 82.94±0.02 83.43±0.07
2. ✗ ✓ ✗ ✗ 80.00±0.28 80.01±0.30 80.01±0.11 84.23±0.11 83.50±0.12 83.86±0.10
3. ✗ ✗ ✓ ✗ 80.61±0.27 79.97±0.12 80.29±0.10 84.38±0.20 83.52±0.26 83.95±0.10
4. ✗ ✗ ✗ ✓ 77.39±0.24 78.97±0.30 78.18±0.16 83.71±0.15 83.31±0.30 83.51±0.21
5. ✓ ✓ ✗ ✗ 80.37±0.05 80.57±0.29 80.47±0.14 84.33±0.16 83.35±0.26 83.84±0.21
6. ✓ ✗ ✓ ✗ 81.31±0.17 80.36±0.32 80.83±0.23 84.54±0.28 83.63±0.38 84.08±0.33
7. ✓ ✗ ✗ ✓ 77.69±0.29 78.58±0.08 78.14±0.18 84.54±0.20 82.72±0.24 83.63±0.18
8. ✗ ✓ ✓ ✗ 79.65±0.20 79.67±0.07 79.66±0.13 84.21±0.15 83.20±0.30 83.70±0.19
9. ✗ ✓ ✗ ✓ 79.54±0.25 79.90±0.25 79.72±0.21 84.25±0.13 83.60±0.33 83.93±0.21

10. ✗ ✗ ✓ ✓ 79.49±0.33 79.09±0.20 79.29±0.16 83.83±0.28 83.17±0.32 83.50±0.28
11. ✓ ✓ ✓ ✗ 80.23±0.33 80.07±0.29 80.15±0.22 84.57±0.35 83.54±0.09 84.05±0.13
12. ✓ ✓ ✗ ✓ 79.49±0.16 80.23±0.23 79.86±0.09 84.32±0.14 83.49±0.34 83.90±0.19
13. ✓ ✗ ✓ ✓ 79.14±0.31 79.11±0.26 79.12±0.09 84.58±0.06 83.70±0.24 84.14±0.12
14. ✗ ✓ ✓ ✓ 79.66±0.16 80.38±0.24 80.02±0.10 84.97±0.19 83.56±0.25 84.26±0.04
15. ✓ ✓ ✓ ✓ 78.86±0.24 79.80±0.30 79.33±0.05 84.36±0.04 83.50±0.31 83.93±0.16

Table 9: Detailed results for nested NER.
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Encoders&DatasetsPattern SpanBERT-frozen SpanBERT-finetune
(a) (b) (c) (d) REF SRC Avg. REF SRC Avg.

i Max pooling 95.62±0.06 92.88±0.06 94.25±0.06 96.52±0.21 93.66±0.01 95.09±0.11
1. ✓ ✗ ✗ ✗ 95.90±0.02 93.40±0.09 94.65±0.05 96.65±0.05 93.77±0.03 95.21±0.04
2. ✗ ✓ ✗ ✗ 95.83±0.05 93.39±0.10 94.61±0.07 96.67±0.09 93.86±0.01 95.27±0.05
3. ✗ ✗ ✓ ✗ 95.73±0.01 93.43±0.04 94.58±0.02 96.52±0.18 93.81±0.01 95.17±0.09
4. ✗ ✗ ✗ ✓ 95.93±0.07 93.22±0.03 94.58±0.05 96.73±0.16 93.77±0.02 95.25±0.09
5. ✓ ✓ ✗ ✗ 95.86±0.05 93.45±0.01 94.66±0.02 96.73±0.07 93.78±0.01 95.26±0.04
6. ✓ ✗ ✓ ✗ 95.87±0.03 93.51±0.01 94.69±0.02 96.71±0.24 93.87±0.01 95.29±0.12
7. ✓ ✗ ✗ ✓ 96.01±0.15 93.12±0.05 94.57±0.10 96.62±0.12 93.80±0.09 95.21±0.10
8. ✗ ✓ ✓ ✗ 95.62±0.05 93.47±0.01 94.55±0.03 96.59±0.30 93.84±0.01 95.22±0.15
9. ✗ ✓ ✗ ✓ 95.94±0.06 93.25±0.07 94.60±0.07 96.83±0.17 93.79±0.08 95.31±0.12

10. ✗ ✗ ✓ ✓ 95.92±0.08 93.19±0.03 94.56±0.06 96.69±0.23 93.81±0.05 95.25±0.14
11. ✓ ✓ ✓ ✗ 95.97±0.15 93.41±0.13 94.69±0.14 96.60±0.17 93.85±0.01 95.23±0.09
12. ✓ ✓ ✗ ✓ 96.00±0.09 93.28±0.02 94.64±0.06 96.74±0.20 93.78±0.04 95.26±0.12
13. ✓ ✗ ✓ ✓ 95.93±0.09 93.21±0.06 94.57±0.08 96.80±0.08 93.87±0.02 95.34±0.05
14. ✗ ✓ ✓ ✓ 95.78±0.09 93.16±0.08 94.47±0.09 96.80±0.10 93.84±0.01 95.32±0.05
15. ✓ ✓ ✓ ✓ 95.87±0.10 93.25±0.04 94.56±0.07 96.59±0.01 93.75±0.04 95.17±0.02

Table 10: Detailed results for REF and SRC when SpanBERT is used as backbone.
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