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Abstract

Model alignment with human preferences is
an essential step in making Large Language
Models (LLMs) helpful and consistent with hu-
man values. It typically consists of supervised
fine-tuning (SFT) and reinforcement learning
from human feedback (RLHF) stages. How-
ever, RLHF faces inherent limitations stem-
ming from a complex training setup and its
tendency to align the model with implicit val-
ues that end users cannot control at run-time.
Moreover, reward models in RLHF stage com-
monly rely on single-dimensional feedback
as opposed to explicit, multifaceted signals
that indicate attributes such as helpfulness, hu-
mor, and toxicity. To address these limita-
tions, we propose STEERLM, a supervised fine-
tuning method that empowers end-users to con-
trol responses during inference. STEERLM
conditions responses to conform to an ex-
plicitly defined multi-dimensional set of at-
tributes, thereby empowering a steerable AI
capable of generating helpful and high-quality
responses while maintaining customizability.
Experiments show that STEERLM trained on
open source datasets generates responses that
are preferred by human and automatic evalua-
tors to many state-of-the-art baselines trained
with RLHF while being much easier to train.
Try STEERLM at https://huggingface.co/
nvidia/SteerLM-llama2-13B

1 Introduction

Training LLMs on extensive text corpora has
demonstrated remarkable capabilities, leading to
state-of-the-art performance on numerous tasks
(Brown et al., 2020; Kaplan et al., 2020). How-
ever, this does not automatically make language
models effective in responding to user instructions
(Wei et al., 2022; Sanh et al., 2022). To better align
LLMs to human preferences, the most effective ap-
proach has been to perform SFT followed by the
application of RLHF (Wang et al., 2023a; Chiang
et al., 2023; Peng et al., 2023). In SFT, human

Figure 1: STEERLM can be used to improve the quality
of language model responses, similar to RLHF. Addi-
tionally, STEERLM allows users to define additional
attributes such as humor and (low) toxicity at inference
time, to steer model responses.

annotators provide demonstrations of instructions
and responses for the model to imitate (Taori et al.,
2023; Zhang et al., 2023). RLHF goes a step fur-
ther to enable models to generate responses that
human annotators prefer to alternative responses
(Bai et al., 2022; Ouyang et al., 2022; Köpf et al.,
2023a).

However, despite its success, there are limita-
tions to this approach. First, using SFT alone does
not allow the model to distinguish between high-
quality and low-quality responses leading to lower
performance than RLHF (Wang et al., 2023a). Us-
ing RLHF for model alignment however, substan-
tially increase the complexity of the training setup
(Snell et al., 2023; Yuan et al., 2023), limiting its
public adoption (Zhang et al., 2023; Dettmers et al.,
2023; Zhou et al., 2023). Furthermore, RLHF treats
human preference of model responses as mono-
dimensional without regard for the diversity of
aspects (e.g. helpfulness, humor, toxicity) that
contribute to such preferences (Bai et al., 2022;
Ouyang et al., 2022) and thereby limiting users’
ability to adjust individual aspects at inference time
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based on their use cases.
To address these limitations, we introduce

STEERLM, a novel approach to model alignment
through SFT that overcomes the limitations asso-
ciated with conventional SFT and RLHF methods.
Similar to RLHF, STEERLM incorporates addi-
tional reward signals by leveraging annotated at-
tributes (e.g., quality, humor, toxicity) present in
the Open-Assistant (Köpf et al., 2023a) dataset for
each response. To emulate the process of rating
responses, an Attribute Prediction model (§3.1) is
trained and employed to annotate datasets (§3.2)
containing dialogues that can be decomposed into
prompt-response pairs. By utilizing this combined
diverse dataset comprising prompts, responses, and
predicted attributes, we train the generation of re-
sponses to be conditioned (§3.3) on both the prompt
instructions and the annotated attributes, enabling
STEERLM to effectively capture human prefer-
ences and generate responses that align with them.

STEERLM also exhibits enhanced versatility
compared to RLHF, allowing for the flexible uti-
lization of various attributes during inference. To
further enhance the adherence of STEERLM to the
specified attributes during inference, we introduce
an additional training recipe (§3.4) which includes
augmenting the training data with denoised, di-
verse, and high-quality examples. We open-source
code for STEERLM on NVIDIA NeMo toolkit
(Kuchaiev et al., 2019). In summary, our key con-
tributions are:

• We introduce STEERLM as a simple alterna-
tive for language model alignment that utilizes
only the language modeling objective,

• We demonstrate the efficacy of STEERLM
43B on the Vicuna benchmark where it out-
performs state-of-the-art baselines including
RLHF models such as ChatGPT-3.5,

• We highlight the flexible and customizable
nature of STEERLM 43B where users can cus-
tomize attributes at inference-time facilitating
a wide variety of applications.

2 Related Work

Model alignment using SFT Fine-tuning lan-
guage models on multiple tasks enable them to
follow many types of instructions and perform
tasks outside of those they were trained on (Sanh
et al., 2022; Wei et al., 2022). However, language

models typically generate short and robotic re-
sponses when supervised finetuned on academic
data sets. On the other hand, models can gener-
ate high quality human-like response when trained
with high-quality human demonstrations (Conover
et al., 2023; Ouyang et al., 2022). Taori et al.
(2023) shows using data generated by OpenAI’s
text-davinci-003 model, can train a model in a cost-
effective manner.

Using only SFT for model alignment became
popular recently because of the ease of its training
setup. Zhang et al. (2023) and Peng et al. (2023)
trained models using SFT based on responses gen-
erated by OpenAI models while Dettmers et al.
(2023) and Köpf et al. (2023b) used the crowd-
sourced Open Assistant Dataset and Zhou et al.
(2023) used a small proprietary data set. Wang
et al. (2023b) and Taori et al. (2023) trained mod-
els using bootstrapped datasets from the language
model itself. Luo et al. (2023) showed that lan-
guage model can learn to solve complex instruc-
tions by evolving on the complexity and breath of
instructions. Wang et al. (2023a) compared many
open-source data sets used to perform instruction
tuning using SFT but found them to under-perform
commercial models trained using RLHF.

Model alignment using RLHF Building on
foundational work on RL in games and robotic sim-
ulations (Christiano et al., 2017; Schulman et al.,
2017), many have had success applying RLHF to
improve the instruction following ability of LLM
by giving a reward proportional to the relative de-
sirability of the response (Ouyang et al., 2022; Bai
et al., 2022). Such an approach has been shown to
benefit downstream tasks like question-answering
(Nakano et al., 2022) and summarization (Stien-
non et al., 2022). However, the complexity of the
training setup (Rafailov et al., 2023; Snell et al.,
2023) remains a hurdle in the widespread adop-
tion of RLHF. Many have attempted to overcome
this by migrating RLHF training to an offline set-
ting (Snell et al., 2023), casting the problem as
conditional sequence modeling (Chen et al., 2021),
directly optimizing LMs with labeled preference
data (Rafailov et al., 2023), or ranking responses
to align the models (Dong et al., 2023; Yuan et al.,
2023), but limited progress has been made (Wang
et al., 2023a).

Another limitation unaddressed by related works
lies in the use of a single-dimensional reward func-
tion for evaluating human preferences of model
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responses since human preferences are based on a
multitude of real-world objectives (e.g. helpfulness,
humor, toxicity), which also vary across domains
(Nadal and Chatterjee, 2019; Lopez-Paz et al.,
2022). Given such multi-dimensional attributes,
current approaches (Bai et al., 2022; Ouyang et al.,
2022; Dong et al., 2023; Yuan et al., 2023) are only
capable of generating responses with high reward
scores, despite low reward scores on various at-
tributes being relevant in certain situations, such as
modelling realistic gaming NPCs who are capable
of generating high toxicity responses.

Attribute Grounded Generation Many re-
searchers have explored grounding text with var-
ious attributes in Dialogue tasks. Rashkin et al.
(2019) modelled chit-chat conversations grounded
in emotions such as ‘Angry’, ‘Embarrassed’ or ‘Joy-
ful’ while Smith et al. (2020) conditioned chit-chat
dialogue with conversational styles such as ‘Curi-
ous’, ‘Sympathetic’ or ‘Knowledgeable’ . Zhang
et al. (2018) and Wang et al. (2022) conditioned
dialogues based on personal attributes such as their
hobbies. Meta et al. (2022) conditioned dialogues
in the game of Diplomacy using the expected player
skill. However, such grounding has only been ex-
plored in narrow-defined tasks with a single at-
tribute. Our approach seeks to condition the gener-
ation of responses in general open-domain conver-
sations covering tasks like code assistance, writing
poems and planning tasks, using multiple attributes
(e.g., quality, humor and toxicity).

3 SteerLM

We propose STEERLM, a simple and novel ap-
proach to align language models to follow user
instructions. Trained solely using the language
modeling objective, it offers a computationally ef-
ficient alternative to other techniques like RLHF.
Specifically, STEERLM comprises 4 steps as illus-
trated in Fig. 2.

3.1 Step 1. Attribute Prediction Model
Similar to the reward model in RLHF, the Attribute
Prediction Model in STEERLM is designed to pre-
dict human preference of model responses to im-
prove model alignment. Compared to a monolithic
reward signal in RLHF, the attribute prediction
model can be used to predict various attributes that
are considered to be important in generating good
responses (high quality, low toxicity, and varying
humor levels depending on context).

We use the Open Assistant (OASST) dataset D,
where each sample contains a prompt x, a response
y as well as a set of attributes v. To model these
attributes, we first scale each attribute (originally a
float between 0 and 1) into an integer between 0
and 9 and then obtain a linearized representation of
the value attributes v. The attributes we select look
like quality:6,toxicity:0,humor:9,creativity:0,

violence:0,helpfulness:5,not_appropriate:0.

LAPM = −E(x,v,y)∼D

∑

t

logPθ(vt|x, y, v<t)

(1)
Conditioning on x and y, v is the target output for
the language model as expressed in Eq. 1.

3.2 Step 2. Annotating Datasets using
Attribute Prediction Model

Compared to using human-annotated attributes di-
rectly, training an Attribute Prediction Model can
allow other datasets (e.g. HH-RLHF dataset) to
be annotated. This helps improve the diversity
of training data which is important for Step 3 At-
tribute Conditioned SFT. Moreover, it has been
observed that crowdsourced human-annotated data
often suffers from noise, arising from factors such
as misinterpretation of instructions, inadequate ex-
pertise/education in annotating responses, and lim-
ited proficiency in language comprehension (Köpf
et al., 2023a). Furthermore, there exists a lack of
calibration among annotators, with some individu-
als applying more stringent criteria when assigning
full scores (Bai et al., 2022; Ouyang et al., 2022).
By employing an Attribute Prediction Model, it be-
comes possible to mitigate these issues by denois-
ing the human-annotated attributes and calibrating
scores across annotators.

argmax
vt

Pθ(vt|x, y, v<t) (2)

We annotate samples by greedily decoding the
value attributes for pairs of prompts and responses
using the Attribute Prediction Model(as shown in
Eq. 2), in order to construct the attribute annotated
dataset D′.

3.3 Step 3. Attribute Conditioned SFT
Attribute-conditioned SFT is an extension of reg-
ular SFT that enables incorporating reward signal
information through attribute labels. This allows
learning from both high and low quality responses
in a manner similar to the established SFT+RLHF
pipeline (Bai et al., 2022; Ouyang et al., 2022).
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Figure 2: STEERLM: Step 1. The base language model is trained to assess the quality of responses by predicting
attribute values. Step 2. The attribute prediction model is used to annotate response quality across diverse datasets.
Step 3. Given a prompt and desired attribute values, a new base model is fine-tuned to generate responses that align
with the specified attributes. Step 4. Multiple responses are sampled from the fine-tuned model in Step 3, specifying
maximum quality. The sampled responses are evaluated by the trained attribute prediction model, leading to another
round of fine-tuning.

Attribute-conditioned SFT only requires an offline
annotated dataset, as created in Step 2, rather than
online sampling and evaluation of responses like
in RLHF. By utilizing a purely offline training ap-
proach, this greatly simplifies the training config-
uration compared to RLHF’s heterogenous setup.
In particular, it avoids the complexity of online
data generation/evaluation and eliminates the train-
ing slowness resulting from memory bandwidth-
constrained online inference in RLHF. Using the
attribute-annotated train datasets D′ from the Step
2, we train a model to generate a response y, con-
ditioning on the value attributes v and the prompt
x. The loss function is:

LACSFT 1 = −E(x,v,y)∼D′
∑

t

logPϕ(yt|v, x, y<t)

3.4 Step 4. Bootstrapping with High Quality
Samples

By sampling the policy network, RLHF effectively
navigates the response space of language models
and identifies responses that are of various qualities.
The response samples are subsequently utilized to
influence and shape the behavior of language mod-
els according to their reward values. In Step 4 of
STEERLM, the objective is to accomplish a similar
objective by leveraging the Attribute Conditioned
SFT and Attribute Prediction models from the pre-
vious steps.

Step 4a To ensure that we obtain a diverse set of
responses, we first enumerate a set of all possible

attribute value combinations from the annotated
datasets used for training. By filtering the combi-
nations to explicitly have the value for quality to
be 9 (i.e. highest possible value), we get a subset
of attribute strings representing a high quality set
V . We uniformly sample from this high quality set
V to get the attribute string v′. By combining v′

with prompts from the same training datasets, we
use the top-k (=50) sampling to generate multiple
responses using the Attribute Conditioned Super-
vised Fine-Tuning approach as shown in Eq. 3.

arg _topky′tPϕ(y
′
t|x, v′, y′<t) (3)

This allows us to obtain a wide variety of responses
for each prompt and increases the diversity of the
sampled dataset D′′ = {(x, y′)}.

The Attribute Prediction Model (§3.1) with
greedy sampling is used to evaluate the generated
responses y′ giving predicted attribute values v′′:

argmax
v′′t

Pθ(v
′′
t |x, y′, v′′<t) (4)

This gives us the dataset D′′′ = {(x, y′, v′′)} where
each tuple consists of a prompt from the original
training datasets, a sampled response and its corre-
sponding predicted attribute values.

Step 4b We use the sampled responses and the
corresponding predicted attributes from D′′′ to per-
form the second round of Attribute-conditioned
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SFT, effectively allowing us to bootstrap the train-
ing of the model on its own responses:

LACSFT 2 = −E(x,v′′,y′)∼D′′′
∑

t

logPϕ(y
′
t|v′′, x, y′<t)

4 Experiments

In this section, we elaborate on our choice of train-
ing datasets, base model, implementation details,
and evaluation setup.

4.1 Training Datasets
We use the following open-source, commercially-
available instruction-tuning datasets. In addition,
we explain how collecting new data for SteerLM
can be less costly than doing so for RLHF in Ap-
pendix A.3.

OASST Open Assistant dataset (Köpf et al.,
2023a) was used to train an Attribute Prediction
Model, as well as to perform Attribute Condition
SFT. This dataset contains 13 human-labeled at-
tributes for each response with a score ranging from
0 to 1. We choose 7 of them that are most relevant
for guiding the language model to align with human
preferences: quality, toxicity, violence, helpfulness,
creativity, humor and inappropriateness. Other at-
tributes such as hate_speech, lang_mismatch and
pii (personal identifiable information) are not use-
ful to steer at inference time since these are at-
tributes that we always want to keep as False. In
order to leverage STEERLM’s ability to learn from
both positive and negative responses, we use all the
released 48.8K conversations for training and do
not filter the dataset.

HH-RLHF The Helpful and Harmless - Rein-
forcement Learning from Human Feedback dataset
(Bai et al., 2022) does not provide human labeled
attribute values. In order to improve the diversity
of prompts and responses, we utilize the trained At-
tribute Prediction model to annotate the responses.
For our Attribute Conditioned SFT process, we
utilize all 348.6K conversations from the dataset.

M-SID Model Self-Identification Dataset (Chi-
ang et al., 2023) is a small set of 910 prompt-
response pairs1 used to answer questions relating
to identity such as "Who are you?" and "Who cre-
ated you?". This dataset is also included as part of
Attribute Conditioned SFT training.

1Adapted from https://github.com/lm-sys/
FastChat/blob/v0.2.1/playground/data/dummy.json

4.2 Base Models for STEERLM

STEERLM 43B The 43B base language model
employed in this study has been trained on a di-
verse corpus encompassing various multilingual
data sources, including web crawl, news articles,
books, scientific publications from arXiv, and code
repositories. Having been trained with 1.1 trillion
tokens, it is comparable to LLaMA’s 30B and 65B
models, which were trained on 1.4 trillion tokens.
This base model is designed for general-purpose
language understanding tasks and does not have
any domain-specific fine-tuning. We utilize this
base model as the backbone for both Attribute Pre-
diction and Attribute Conditioned SFT.

STEERLM 13B We also apply the SteerLM
methodology on a popular, widely-available model:
Llama 2 13B base model (Touvron et al., 2023).

4.3 Training details

The training of both the Attribute Prediction Model
and Attribute Conditioned Supervised Fine-Tuning
model was conducted utilizing a cluster compris-
ing 16 A100-DGX nodes, each equipped with 8
A100-80GB GPUs. The training process involved
a global batch size of 128, spanning 5 epochs, with
a maximum sequence length of 4096 tokens. The
Adam optimizer was utilized with a learning rate of
5e-6 and a weight decay of 1e-2. The selection of
the optimal Attribute Prediction model checkpoint
was determined based on the lowest loss observed
on the validation set, while the optimal checkpoint
for the Attribute Conditioned SFT model was se-
lected based on the highest validation quality ob-
served on holdout validation sets. Detailed tem-
plates for Attribute Prediction Model and Attribute
Conditioned SFT are found in Appendix §A.1 and
§A.2.

4.4 Evaluation

Baseline Models We compare our approach
against several state-of-the-art instruction-
following models. These baselines include
OpenAI ChatGPT 3.5, OpenAI text-davinci-003,
Guanaco 65B (Dettmers et al., 2023), Vicuna
13B (Chiang et al., 2023), and OASST LLaMA
30B RLHF (Köpf et al., 2023a). Furthermore, to
showcase the differentiation between RLHF and
SFT, we also include OASST LLaMA 30B SFT
(Köpf et al., 2023b), which solely employs SFT
instead of RLHF for alignment purposes.
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Response Generation In accordance with the
methodologies described in Peng et al. (2023)
and Dettmers et al. (2023), we employ the GPT-4
model to conduct an evaluation of our proposed ap-
proach using the Vicuna benchmark (Chiang et al.,
2023). This benchmark comprises a diverse set
of 80 single-turn prompts encompassing various
domains, including knowledge-intensive question
answering, historical counter-factuals, long-form
document writing, commonsense questions, role-
plays, fermi problems, general knowledge ques-
tions, coding, and math problems. Each model
is tasked with generating a response with a max-
imum sequence length of 1024, utilizing default
hyperparameters. For all the STEERLM models
and OASST LLaMA 30B models, the decoding
strategy employed is greedy decoding. Addition-
ally, for STEERLM model responses, the attributes
"quality" and "helpfulness" are fixed at a value of 9,
while all other attributes are set to 0. In the case of
Guanaco 65B, generations are obtained using top
p = 0.9 sampling with a temperature of 0.7, and
Vicuna 13B uses a temperature of 0.72.

Automatic Evaluation In evaluating each
prompt, the prompt alongside the responses
made by the two competing models are given
to GPT-4 (Chiang et al., 2023; Dettmers et al.,
2023). GPT-4 is then required to give a score
between 1 and 10 for each response. While we
only report scores for comparing each model
against ChatGPT 3.5, we compare every pair of
models against each other for subsequent use in
ELO rating calculations. The cumulative score
obtained over the 80 questions for each model is
then compared to the cumulative score achieved
by ChatGPT 3.5. This facilitates the assessment
of each model’s performance as a percentage
of ChatGPT 3.5’s performance. It is important
to note that the ordering of the responses from
the two models during evaluations can influence
the evaluation results, as previously observed by
Dettmers et al. (2023). To mitigate this potential
bias, we calculate the mean performance of each
model in both possible response orderings.

2Guanaco 65B generations at https://github.
com/artidoro/qlora/blob/main/eval/generations/
vicuna/65b-guanaco-vicuna-generations-topp0.
9-temp0.7.jsonl and Vicuna 13B generations at https:
//github.com/lm-sys/FastChat/blob/main/fastchat/
eval/table/answer/answer_vicuna-13b.jsonl

Model ChatGPT 3.5 Model % of
Name Score Score ChatGPT 3.5

STEERLM 43B 629.25 655.75 104.2
STEERLM 13B 617.75 634 102.6
Guanaco 65B 631.25 646.25 102.4
ChatGPT 3.5 - - 100.0
Vicuna 13B 641.75 636.75 99.2
LLaMA 30B RLHF 650.25 612.75 94.2
LLaMA 30B SFT 631.5 610 93.2
text-davinci-003 665.25 599.5 90.1

Table 1: Automatic evaluation. Evaluations are highly
consistent with +/- 0.2% difference across evaluation
runs on identical model generations.

Human Evaluation To minimize the risk of an-
notator fatigue and the potential for hasty evalu-
ations, we partitioned the 80 prompts within the
Vicuna Benchmark into four distinct groups, with
each group consisting of 20 prompts. This partition-
ing strategy helps ensure that the human annotators
(12 in total) are able to provide thorough evalua-
tions without skimming through the responses, as
it can be demanding to compare multiple responses
simultaneously. Volunteer human annotators were
specifically chosen for this task instead of utiliz-
ing crowd workers, such as Amazon Mechanical
Turkers, as it enables us to carefully control for
annotators with a university education and cod-
ing background, which are crucial for effectively
evaluating these model responses. Consequently,
this approach resulted in a higher degree of consis-
tency among our annotators (Fleiss’ κ = 0.46) in
comparison to similar studies that employed crowd
workers (Dettmers et al., 2023).

However, this choice limited the number of
models that we could compare, and we selected
the three best-performing models from automatic
evaluations for the human evaluation (excluding
STEERLM 13B given its similarities to STEERLM
43B). The prompt along with the responses from
the different models were shown to the annotators,
and they were asked to rank them in order of pref-
erence (using the UI in Appendix §A.5). During
the annotation process, the human annotators re-
mained unaware of the specific model used for each
response, and to prevent any potential bias, the or-
der of the responses was randomly shuffled. An-
notations were carried out utilizing an A/B forced
choice approach, requiring the annotators to subjec-
tively determine their preferred response between
the given options.
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Elo rating Using both automatic and human pair-
wise model comparisons, we calculate an Elo rating
for each model to show the performance relative
to all other models. For each prompt, scores are
first converted into a tie, win or loss between two
models based on their scores. Following Chiang
et al. (2023) and Dettmers et al. (2023), we start
with a score of 1000 and K = 32 and repeat the
procedure 10000 times to account for the order in
which model pair comparisons are used to calculate
their ELO rating. Additionally, we also present the
expected win rate against ChatGPT 3.5, for better
interpretability.

4.5 Results

Model Elo 95% Win Rate (%)
Name Rating CI vs ChatGPT 3.5

Automatic Evaluation

STEERLM 43B 1139 1048-1224 66
STEERLM 13B 1110 1022-1198 62
Guanaco 65B 1065 974-1153 56
ChatGPT 3.5 1023 936-1108 50
Vicuna 13B 1001 911-1091 47
LLaMA 30B RLHF 925 835-1017 36
LLaMA 30B SFT 935 843-1028 37
text-davinci-003 800 712-893 22

Human Evaluation

STEERLM 43B 1040 951-1126 59
ChatGPT 3.5 981 897-1070 50
Guanaco 65B 977 890-1064 50

Table 2: Elo Ratings for Models based on Automatic
and Human Evaluation.

Based on Tables 1 and 2, our STEERLM 43B
model out-performs all baseline models on both
automatic and human evaluations. STEERLM
43B performs slightly better than STEERLM 13B,
which is expected given the larger base model size
(Ouyang et al., 2022; Touvron et al., 2023). Analy-
sis of the responses generated by STEERLM 43B
shows that it provides longer, more complete an-
swers (mean = 1906 characters) with more unique
words (mean = 144) compared to the other base-
lines (e.g. ChatGPT 3.5 has 1193 characters and 77
unique words). Please refer to Appendix §A.6 for
examples and §A.7 for average response lengths
for each model.

Automatic evaluation with GPT-4 has a tendency
to prefer longer responses that have more unique
tokens (Dubois et al., 2023; Wang et al., 2023a).
STEERLM 43B responses satisfy both criteria and
this might lead to GPT-4 rating its responses higher

Model ChatGPT Model % of
Name Score Score ChatGPT

Baseline 663.50 528.50 79.7

+ Human Annotated Attributes 644.00 619.50 96.2
+ HQ OASST (human annotated) 646.75 634.75 98.1
+ Attribute Pred. Model 632.50 649.75 102.7
+ HH-RLHF/M-SID 623.25 646.00 103.7
+ Bootstrapping on HQ samples 629.25 655.75 104.2

Table 3: Ablation study of model variants under auto-
matic evaluation.

than other counterparts, explaining the 74 Elo point
difference between STEERLM 43B and the closest
baseline model on Automatic Evaluations. The ad-
vantage of STEERLM 43B on Human Evaluation is
slightly lower (59 Elo point difference), suggesting
that only a slight bias of GPT4 Automatic Eval-
uations towards longer and more informative re-
sponses. Nonetheless, both Automatic and Human
Evaluation show a clear strength of STEERLM 43B
in answering open-ended questions that require cre-
ative and verbose responses, which composes ma-
jority of the prompts in the Vicuna benchmark.

Relative to Guanaco 65B, our model performs
better despite being trained on a smaller base model
(43B vs. 65B) that has been trained on fewer to-
kens (1.1T vs. 1.4T). This is likely due to a more
efficient use of OASST data, which both models
are trained on. Briefly, Guanaco 65B only uses
high quality data, defined as the top response (in
terms of annotated quality) at every level of the
conversation tree. In contrast, STEERLM 43B uses
all of Open-Assistant data, including low-quality
conversations. We will show the advantage of the
STEERLM approach in the ablation studies in §5.
This enables STEERLM to achieve an effect sim-
ilar to RLHF by being able to learn from both re-
sponses of high and low quality, as opposed to only
selected high-quality conversations in regular SFT
(Dettmers et al., 2023; Wang et al., 2023a; Zhou
et al., 2023; Peng et al., 2023; Köpf et al., 2023b;
Chiang et al., 2023). The small difference in perfor-
mance between the OASST LLaMA 30B SFT and
RLHF models supports the noted difficulty of get-
ting RLHF to work well in aligning LLMs (Ouyang
et al., 2022; Bai et al., 2022; Köpf et al., 2023b),
which prevents widespread adoption of RLHF.

5 Ablation Study

In order to identify the contribution of each indi-
vidual component to the overall performance, we
perform a systematic ablation process (Table 3),

11281



starting from a baseline that is finetuned on the en-
tire OASST dataset without using any information
about attributes.

Addition of attribute labels The addition of at-
tribute labels in the fine-tuning process leads to
a significant increase in performance, underscor-
ing the pivotal role of attribute labels, particularly
the quality attribute, as the primary contributor to
improved performance (16.5%).

Finetuning on only High Quality Data We ob-
serve that Attribute Conditioned Supervised Fine-
tuning on a small subset of 3400 samples from the
OASST dataset that have the highest value for qual-
ity (human annotated) leads to an increase in perfor-
mance by up to 1.9%. This observation aligns with
prior research indicating that training models on
a larger volume of low-quality data yields inferior
results compared to training on a smaller quantity
of high-quality data (Dettmers et al., 2023; Zhou
et al., 2023).

Utilizing predictions from the Attribute Predic-
tion model for the Attribute Conditioned SFT
process provides a substantial benefit to STEERLM
43B amounting to 4.6% in performance, relative to
using human annotations. This empirical evidence
substantiates our hypothesis that employing an at-
tribute prediction model aids in effectively calibrat-
ing the quality annotation process across multiple
training samples, thereby mitigating noisy labels
that are unavoidable when using crowdsourced an-
notations.

Augmentation of training data with Anthropic
HH-RLHF contributes to an additional 1.0% in-
crease in performance compared to using Open-
Assistant data alone. This shows the capability of
our Attribute Prediction model to identify and an-
notate high-quality data from other datasets apart
from the one it was trained on. This suggests that
the methodology of STEERLM can be applied to
label different kinds of datasets, enhancing the di-
versity of training data without incurring the sub-
stantial expense associated with human annotation
for every individual data sample.

Bootstrapping with High-Quality Samples re-
sults in a performance gain of 0.5%. Our hypothe-
sis is that the improvement in performance is due to
the data augmentation through sampling, which ex-
plores the response space and augments the dataset
with higher-quality data.

Model Name Toxicity Value Avg. Score

STEERLM 43B 0 0.06346
3 0.08635
6 0.09633
9 0.10408

ChatGPT 3.5 - 0.06622

Table 4: Average Perspective API Toxicity score on the
Anthropic Red Team Dataset.

6 Steerability demonstration

To demonstrate the efficacy of STEERLM 43B to
control its generations in a multi-faceted way, we
conduct an empirical study incorporating the at-
tributes of toxicity and humor.

6.1 Toxicity

To assess the ability of STEERLM 43B to vary its
responses based on the value of toxicity specified,
we use the Anthropic Red-team dataset3 (Ganguli
et al., 2022). This dataset contains prompts ranked
from 0 to 4, with a higher rank indicating more
inappropriate responses. We randomly select 100
conversations with a ranking of 4 and focused on
the initial turns of these interactions.

To compare the toxicity levels of generated out-
puts, we vary the toxicity parameter in STEERLM
43B at four different settings: 0 (default), 3, 6, and
9 (highest toxicity). We employ the Perspective
API, a widely-used toxicity classification model, to
score the toxicity of the generated responses and
compare the average toxicity of STEERLM 43B to
the responses from ChatGPT-3.5.

Our findings (Table 4) indicate that when the
toxicity value is set to 0 (default), STEERLM 43B
exhibits slightly lower toxicity compared to Chat-
GPT. However, STEERLM 43B offers the flexibil-
ity to generate more toxic outputs by increasing the
toxicity value above 0. This ability to control gen-
eration attributes at inference can prove valuable in
applications such as generating Non-Player Char-
acter (NPC) dialogue in games and red-teaming
purposes.

6.2 Humor

Recent studies (Jentzsch and Kersting, 2023) inves-
tigating the humor capabilities of language mod-
els have primarily focused on the aspect of telling
jokes. However, humor can manifest in various

3Accessed at https://huggingface.co/datasets/
Anthropic/hh-rlhf/tree/main/red-team-attempts
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contexts. In this experiment, we employ two dif-
ferent prompts - "Tell me a joke" and “What’s a
good way to spend a day?”, to compare the humor
exhibited by STEERLM and ChatGPT-3.5.

"Tell me a joke" - ChatGPT-3.5 and STEERLM
43B, with humor set to 9, successfully generate a
joke. When the humor attribute in STEERLM 43B
is set to 6 or lower, it responds with "I don’t know
any jokes". This characteristic can be advantageous
for chatbots that need to maintain a formal persona
and when humor is not appropriate.

“What’s a good way to spend a day?” - Both
ChatGPT-3.5 and STEERLM 43B, with humor at-
tribute at low values (0-3) provided an extensive
list of activities. Tuning up humor to 6 leads to
STEERLM 43B appending to the list a cheeky re-
mark, “But don’t forget to brush your teeth and
go to bed at a reasonable hour!”. With humor set
to the maximum value of 9, it leads to a cheesy
statement “By spending it with you, of course!”.

Thus, depending on the intended use-case the
same STEERLM model can be turned into versatile
engaging conversational agents.

7 Conclusion

We introduce STEERLM, a novel model alignment
approach with a value system (e.g. humor level and
toxicity tolerance) that can be adjusted by users
at inference time without re-training. STEERLM
trains both the attribute prediction model and the
language model using only supervised fine-tuning,
resulting in an easy-to-implement and straightfor-
ward training process compared to using RLHF.
We train STEERLM models following this proce-
dure, achieving state-of-the-art results on the Vi-
cuna benchmark. We validate these results with a
human evaluation and find that STEERLM is pre-
ferred over the other models we compare it to. We
hope our work will inspire further research into
developing simple and effective model alignment
methods that empower better AI assistants for ev-
eryone.

Limitations

The Attribute Prediction Model and Attribute-
Conditioned SFT Models in STEERLM are fully
supervised fine-tuned, making it relatively costly
in terms of GPU hours and energy compared with
Parameter Efficient Fine-Tuning algorithms such
as Low-Rank Adaptation and Prompt Tuning tech-
niques.

Automatic and manual evaluation have been per-
formed on a English-only benchmark and we would
need to evaluate our models on multilingual bench-
marks to test the extent to which the positive results
we find with STEERLM on an English-based bench-
mark extends to evaluations with other languages.

Ethics Statement

STEERLM enables user capabilities to ask for toxic
and/or violent responses during run-time. This is
a valid use case in certain scenarios like games
where a character should respond differently based
on situation or in red teaming use cases. However,
malicious users might exploit this feature outside
of its intended use-cases. To address this, it is pos-
sible to give users controls over only a subset of
attributes at model run-time, unless they demon-
strate an acceptable use-case. In general, we be-
lieve that giving developers explicit control over
model’s value system is preferred to dictating one
that they can not adjust.
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A Appendix

A.1 Attribute Prediction Model prompt
templates

We use the following prompt template to train the
value model. The encoded value string is marked
in red and used to calculate LM loss. The <ex-
tra_id_0>,<extra_id_1> and <extra_id_2> are spe-
cial tokens included in the base LM tokenizer. An
example of linearized value attributes is shown in
the Sec. 3.1.

<extra_id_0>System
[system prompts]
<extra_id_0>[user name]
[user prompts]
<extra_id_1>[assistant name]
[assistant response]
<extra_id_2>[encoded value attributes]
<extra_id_0>[user name]
[user prompts]
<extra_id_1>[assistant name]
[assistant response]
<extra_id_2>[encoded value attributes]

A.2 Attribute Conditioned SFT prompt
templates

The SteerLM ACSFT prompt templates is similar
to the Attribute Prediction Model prompt template
shown in the Sec. A.1 but we swap the position of
assistance response and encoded value string. The
LM loss is calculated on the assistant responses as
highlighted in red.

<extra_id_0>System
[system prompts]
<extra_id_0>[user name]
[user prompts]
<extra_id_1>[assistant name]
<extra_id_2>[encoded value attributes]
[assistant response]
<extra_id_0>[user name]
[user prompts]
<extra_id_1>[assistant name]
<extra_id_2>[encoded value attributes]
[assistant response]

Figure 3: Effect of Model Size

A.3 Further Data Collection

While we did not collect new data in the current
study, users who would like to collect new data
will find the annotation cost of SteerLM to sub-
stantially lower compared to RLHF. SteerLM only
requires each prompt-response sample to be anno-
tated with attributes of their interest whereas RLHF
requires pairwise comparison between k responses
per prompt (where k=4-9) or effectively

(
4
2

)
= 6

to
(
9
2

)
= 36 annotation per prompt (Ouyang et al.,

2022). RLHF also relies on an iterative data col-
lection methodology, where the critic must be con-
tinually retrained as the actor (language model)
improves (Ouyang et al., 2022; Bai et al., 2022;
Touvron et al., 2023). In contrast, SteerLM only re-
quires a one-time data collection, as each response
is rated independently on an absolute scale rather
than compared to other responses. Therefore, the
annotation cost of collecting a dataset for SteerLM
is approximately an order of magnitude lower than
RLHF.

A.4 Effect of model size on performance

To better understand the effect that model size plays
in model performance, we also trained SteerLM on
smaller base models (8B and 22B), which have pre-
trained similarly as the 43B base model. We then
compare it to smaller versions (7B , 13B and 30B)
of the best performing baseline model (Guanaco
65B). As shown in Figure 3, SteerLM outperforms
Guanaco at every comparable model size.
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Figure 4: Human Annotation UI

A.5 Human Annotation UI
A.6 Example of Generations by SteerLM 43B

and ChatGPT 3.5
Question: How can I increase my productivity
while working from home?

SteerLM 43B response: Here are some tips to in-
crease your productivity while working from home:

1. Create a dedicated workspace: Having a dedi-
cated workspace can help you focus and avoid
distractions. Choose a quiet and comfortable
spot in your home and set up your workspace
with all the necessary tools and equipment.

2. Stick to a schedule: Establish a daily routine
and stick to it. Set specific hours for work
and stick to them. Take breaks at regular in-
tervals and schedule time for lunch and other
activities.

3. Eliminate distractions: Minimize distractions
by turning off your phone, closing unneces-
sary tabs on your computer, and letting your
family and friends know that you are working
and cannot be disturbed.

4. Take care of your physical health: Take reg-
ular breaks to stretch and move around. Ex-

ercise regularly and eat healthy foods to keep
your energy levels up.

5. Stay connected: Communicate with your col-
leagues and clients regularly. Use video calls
and instant messaging to stay in touch and
avoid misunderstandings.

6. Set clear goals: Set specific and achievable
goals for each day or week. Break down large
tasks into smaller ones and prioritize your
tasks based on importance and urgency.

7. Use productivity tools: There are many pro-
ductivity tools available that can help you stay
organized and focused. Use tools like cal-
endars, to-do lists, and project management
software to keep track of your work.

8. Take breaks: Taking regular breaks can help
you stay focused and productive. Take a short
break every hour or so to stretch your legs, get
some fresh air, or grab a snack.

9. Stay motivated: Find ways to stay motivated
and inspired. Set short-term and long-term
goals, celebrate your successes, and find ways
to reward yourself for a job well done.
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10. Be flexible: Working from home can be chal-
lenging, so be flexible and adapt to changes
as they arise. Be open to new ideas and ap-
proaches, and don’t be afraid to ask for help
when you need it.

ChatGPT 3.5 response: There are several ways
to increase productivity while working from home:

1. Establish a routine: Start and end your work
at a specific time each day, just like you would
if you were working at an office.

2. Create a designated workspace: Set up a
workspace that is free from distractions and
has everything you need to complete your
work.

3. Prioritize your tasks: Make a to-do list at
the beginning of each day and prioritize your
tasks based on their importance.

4. Take breaks: Take regular breaks to rest your
mind and stretch your body, as this can help
improve your focus and productivity.

5. Minimize distractions: Avoid distractions
such as social media, TV, or household chores
during your work hours.

6. Use productivity tools: There are several pro-
ductivity tools available online, such as time
trackers, task-management apps, and project-
management software, which can help in-
crease your productivity.

7. Communicate with colleagues: Keep in touch
with your colleagues regularly to stay con-
nected and avoid feeling isolated.

Remember, everyone’s productivity habits are
different, so find what works best for you and stick
to it.

A.7 Response lengths of various models

Model Characters Unique Words

STEERLM 43B 1906 144
STEERLM 13B 1719 146
Guanaco 65B 1648 145
ChatGPT 3.5 1193 77
Vicuna 13B 1417 125
LLaMA 30B RLHF 1219 108
LLaMA 30B SFT 1280 106
text-davinci-003 842 87

Table 5: Mean response length for each model in charac-
ters and number of unique whitespace-separated words.

11288


