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Abstract

Aspect-based sentiment analysis (ABSA) has
been widely studied since the explosive growth
of social networking services. However, the
recognition of implicit sentiments that do not
contain obvious opinion words remains less
explored. In this paper, we propose aspect-
category enhanced learning with a neural co-
herence model (ELCoM). It captures document-
level coherence by using contrastive learning,
and sentence-level by a hypergraph to mine
opinions from explicit sentences to aid implicit
sentiment classification. To address the issue of
sentences with different sentiment polarities in
the same category, we perform cross-category
enhancement to offset the impact of anomalous
nodes in the hypergraph and obtain sentence
representations with enhanced aspect-category.
Extensive experiments on benchmark datasets
show that the ELCoM achieves state-of-the-art
performance. Our source codes and data are re-
leased at https://github.com/cuijin-23/
ELCoM.

1 Introduction

Aspect-based sentiment analysis (ABSA) has been
one of the major research topics in NLP since a
large volume of reviews has been accessible via
social networking services. Much of the previous
work on ABSA has focused on explicit sentiment
(Yang and Zhao, 2022; Yan et al., 2021; Chen et al.,
2022), while implicit sentiment, in which obvi-
ous sentiment polarity words do not appear in the
sentence but convey sentiments, often appears in
reviews. As illustrated in Figure 1, “The food here
is rather good, but only if you like to wait for it.” in
s1, cannot be clearly identified as “negative” with
respect to the aspect category “service,” because
it does not include any opinion words related to
it. Even less work on implicit sentiment mainly
leverages intrasentential information to exploit ef-
fective contexts, for example, syntactic information

Figure 1: A review from SemEval-2016: Words in an-
gle brackets refer to aspect-categories. The blue lines
indicate that the review is coherent. The orange and
green lines show that each “service” and “food” cate-
gory points out its sentiment.

from dependency trees which results in insufficient
representations capturing their contexts.

One feasible solution is to leverage one aspect
of document quality: a document forms coher-
ence if it is well-written and easy to understand.
Many coherence models such as entity-based ap-
proaches (Jeon and Strube, 2022), and neural co-
herence models (Nguyen and Joty, 2017; Moon
et al., 2019) have been proposed and applied to
various NLP tasks. However, it is often the case
that each sentence in a review includes several dif-
ferent aspect-categories, and even the same aspect-
category within a review expresses different senti-
ment polarities. As illustrated in bold lines in Fig-
ure 1, s1 has two different aspect-categories, “food”
and “service,” with different polarities. Likewise,
“food” in s1 is positive, while that of s5 shows
negative polarity. Much of the existing coherence
models obtained from the distribution of entities or
adjacent sentences are inadequate and make it hard
to predict an accurate polarity of implicit sentiment.

Motivated by the issue mentioned above, we pro-
pose an aspect-category enhanced learning with a
neural coherence model (ELCoM) that leverages
coherence information for ABSA, especially ben-
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eficial for implicit sentiment classification. On
the one hand, observing from the SemEval-15 and
SemEval-16 ABSA datasets, (i) more than 50% of
the reviews had the same sentiment polarity regard-
less of different aspect-categories, and (ii) more
than 70% of reviews had the same sentiment po-
larity if they had the same aspect-category. These
observations indicate that (i) the reviewer’s opin-
ions are likely to be preserved throughout the re-
view and (ii) the aspect-category is a strong clue for
capturing sentence-level coherence to aid implicit
sentiment classification. We thus utilize document-
level coherence to deal with (i) and exploit the re-
lationships among sentences and aspect-categories
by utilizing a hypergraph for (ii).

On the other hand, the rest of the 20∼30% re-
views include opposite polarities with each other
even in the same category, while these reviews pre-
serve coherence. To compensate for the dilemma
of the side effect, we perform cross-category en-
hancements in the hypergraph. More specifically,
we utilize a self-attention (SA) filtering to offset the
impact of anomalous nodes, apply retrieval-based
attention (Rba) technique (Zhang et al., 2019) to
learn the enhanced embedding of the aspect term,
and finally obtain sentence representations with
enhanced aspect-category.

The main contributions of our work can be sum-
marized as follows: (1) we propose an ELCoM
that learns document-level coherence by using con-
trastive learning and sentence-level by hypergraph
for mining opinions to aid implicit sentiment clas-
sification; (2) we propose cross-category enhance-
ments on node embedding to offset the impact of
anomalous nodes to correctly identify the sentiment
of the same categories but have different polarities;
and (3) extensive experiments on SemEval-2015
and 2016 show that our method achieves state-of-
the-art performance.

2 Related Work

2.1 Implicit Sentiment Analysis

To date, there has been very little work on im-
plicit sentiment analysis. To address this issue, Li
et al. (2021a) proposed a supervised contrastive
pre-training model that learns sentiment clues
from large-scale noisy sentiment-annotated cor-
pora. Wang et al. (2022) established the causal
representation of the implicit sentiment by identi-
fying the causal effect between the sentence and
sentiment. These attempts achieved better perfor-

mance, while their models treat a sentence inde-
pendently and ignore how sentences are connected
as well as how the entire document is organized to
convey information to the reader.

In the context of leveraging a whole document
for sentiment analysis, Chen et al. (2020) assumed
intra- and inter-aspect sentiment preferences to clas-
sify aspect sentiment. Their approach is similar to
ours since they focused on aspect-categories to cap-
ture sentiment polarity tendencies. However, their
model only explored explicit sentiment classifica-
tion. Cai et al. (2020) attempted implicit aspect-
category detection and category-oriented sentiment
classification by applying a hierarchical graph con-
volutional network. Their approach is also sim-
ilar to ours in that they consider document-level
information. The difference is that we leverage
contextual features by utilizing both document-
and sentence-level coherence based on aspect-
categories to learn more fine-grained contextual
representation.

2.2 Coherence Analysis

With the success of deep learning (DL) techniques,
many authors have attempted to apply DL to learn
features for coherence. One attempt is to model
coherence as the relationship between adjacent sen-
tences. This type includes the CNN (Nguyen and
Joty, 2017), a hierarchical RNN (Nadeem and Os-
tendorf, 2018), and an attention mechanism (Liao
et al., 2021). Another attempt is coherence as
a whole document. This includes inter-sentence
discourse relations (Moon et al., 2019) as well as
word- and document-level coherence (Farag and
Yannakoudakis, 2019). Our approach lies across
both attempts and provides a comprehension frame-
work for sentiment coherence.

Most of the attempts to apply neural coher-
ence models to NLP tasks, such as text generation
(Parveen et al., 2016; Guan et al., 2021), summa-
rization (Eva et al., 2019; Goyal et al., 2022), and
text quality assessment (Farag et al., 2018; Mesgar
and Strube, 2018), emphasize how to capture the
global level of coherence in the text. Yang and
Li (2021) proposed to exploit coherency sentiment
representations to help implicit sentiment analy-
sis. They focused on the local (word-level) aspect
of sentiment coherency within the target sentence.
Our ELCoM captures document-level coherence
by using contrastive learning and sentence-level
by hypergraph, and in this way, our model is sen-
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sitive to capturing both global and local patterns,
even in a small size of the training data such as the
SemEval sentiment dataset.

3 Task Definition

Let D = {si}Ii=1 be an input review consisting of
the number of I sentences, where the i-th sentence
si = {wj}nj=1 consists of the number of n words.
Let asi = {atsi}Tt=1 also be a set consisting of T
aspects within si. Each atsi consists of a pair of the
aspect-category and term. Let c = {positive, nega-
tive, neutral} be a label set of sentiment polarities.
The goal of the ABSA task is, for the given t-th
aspect in si, to predict the sentiment label l(atsi).

4 Approach

The overall architecture of the ELCoM is illus-
trated in Figure 2. It comprises three key steps: (1)
representation learning with XLNet, (2) coherence
modeling (CoM) to capture document-level and
sentence-level coherence, and (3) cross-category
enhancement to mitigate the influence of anoma-
lous nodes.

4.1 Representation Learning with XLNet
We utilized XLNet (Yang et al., 2019) as the back-
bone model to obtain the sentence representation
related to the target aspect and to review docu-
ment representation. The XLNet is known to im-
prove performance, especially for tasks involving
a longer text sequence, e.g. text summarization,
text classification, and text quality assessment. It
is also utilized to model the coherence represen-
tation (Jwalapuram et al., 2022), because it takes
advantage of both the autoregressive model and the
BERT (Devlin et al., 2019).

Formally, for a sequence x of the length I , there
are I! possible orders for autoregressive factoriza-
tion. Let ZI be the set of total permutations of the
length I index sequence [1,2,· · · , I]. zτ and z<τ

denote the τ -th element and the first τ -1 elements
of a permutation z ∈ ZI . The objective of XLNet
is given by:

max
θ

Ez∼ZI

[
I∑

τ=1

log pθ(xzτ |xz<τ )

]
. (1)

As such, the permutation language modeling
optimization objective enables XLNet to effectively
model the coherence across the document-level
review.

Specifically, we create an input sentence, si
[SEP] atsi [SEP] [CLS], for each aspect atsi that
appeared in the target sentence si = {wj}nj=1. Here,
the input is padded with two special symbols, [SEP]
and [CLS], which are the same as those of BERT.
We apply XLNet to the input and obtain each word
embedding ewj ∈ Rdm and the aspect-based sen-
tence embedding es ∈ Rdm marked with [CLS],
where dm is the dimension size. Likewise, given
the input document D = {si}Ii=1, we concatenate it
and create an input document sequence, s1 [SEP]
· · · sI [SEP] [CLS]. For the input sequence, we
apply XLNet and obtain the document embedding
ed ∈ RI×dm marked with [CLS] that contains both
document- and sentence-level representations.

4.2 Coherence Modeling
Document-Level Coherence with Contrastive
Learning. Following Jwalapuram et al. (2022), to
learn robust coherence representations, we adopt
the sentence ordering task by using contrastive
learning. It enforces that the coherence score of
the positive sample (original document) should be
higher than that of the negative sample (disorder
document). Therefore, we disorder the original
review to generate the number of B negative sam-
ples by randomly shuffling the sentences within the
document. For the results, we applied contrastive
learning to align the coherent and incoherent rep-
resentations. Let fθ(ed) be a linear projection to
convert coherent document embedding ed into co-
herence scores. The margin-based contrastive loss
is given by:

Lcl = − log(
efθ(ed

+)

efθ(ed+) +
∑B

j=1e
(fθ(ed

−
j )−τ)

),

(2)
where fθ(ed+) indicates the coherence score of the
positive sample, fθ(ed−1 ), ..., fθ(ed−B) denote the
scores of B negative samples, and τ is the margin.
Sentence-Level Coherence by Hypergraph. Re-
call that more than 70% reviews have the same
sentiment polarity if they have the same aspect-
category. This indicates that the aspect-category is
beneficial for sentiment identification. We thus uti-
lize hypergraphs to exploit the relationships among
sentences and aspect-categories. The hypergraph
is a variant of the graph, where a hyperedge (edge
in hypergraph) connects any number of vertices,
while in graph-based methods, e.g., graph convolu-
tional networks (GCN), an edge connects only two
vertices (Yu and Qin, 2019; Wang et al., 2023).
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Figure 2: The architecture of the ELCoM. It comprises representation learning with XLNet, coherence modeling,
and cross-category enhancement, with the input data consisting of original reviews and the target ABSA sentences.
The final output is obtained through sentiment polarity classification.

We define aspect-categories (C in total) as hy-
peredges, and sentences as nodes in the hypergraph
H ∈ RI×C . Each row in H is for a sentence and
each column is for the hyperedge of an aspect-
category. Hij = 1 if vertex i is connected by
hyperedge j, and Hij = 0 otherwise. Note that the
multiplication of the document embedding ed and
the set of multi-hot vectors (HH⊤ ∈ RI×I ) can
be regarded as the slicing operation that selects the
corresponding embeddings of the sentences in the
same category. The representation of the sentences
toward the same aspect, eh ∈ RI×dm is obtained
by:

eh = HH⊤ed. (3)

4.3 Cross-Category Enhancement

We observed that 20∼30% reviews contain differ-
ent polarities even in the same category, while these
reviews preserve coherence. The document- and

sentence-level coherence modeling often leads to
error propagation as it learns the information on
both polarities from other sentences during training.
To alleviate this issue, we perform cross-category
enhancement on node embeddings in the hyper-
graph which is illustrated in Figure 2. More pre-
cisely, (1) we utilize a self-attention (SA) and re-
duce the influences between anomalous nodes, and
(2) we apply a retrieval-based attention technique,
Rba, to obtain enhanced embedding of the aspect
term.

Self-Attention (SA) Filtering. Assume that if the
aspect-category of the target query sentence con-
tains different sentiments from the same aspect as
other sentences, the SA weight should be small to
dilute its features. We use the SA mechanism of
the transformer, which is given by:
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S = softmax(
QK⊤
√
dk

)V, (4)

where Q, K, and V refer to the query, key, and
value matrices obtained by linear transformations
of eh, respectively. The result is fed into a feed-
forward network, combined with layer normaliza-
tion and residual connection. Each encoder layer
takes the output of the previous layer as the input.
This allows attention to be paid to all positions of
the previous layer. The results are passed to an av-
erage pooling, and we obtain the filtered sentence
representation êh ∈ Rdm .
Syntactic Representation Learning. We use the
Stanford parser1 to obtain a dependency tree of
the input sentence and apply graph convolution
operations to learn the high-order correlations of
the words. Given the syntactic adjacency matrix
A ∈ Rn×n of the sentence and the embedding set
of nodes (words) e(0) = [ew,1, ew,1, ..., ew,n], the
node representations are updated as follows:

ẽ
(l)
i =

n∑

j=1

AijW
(l)e

(l−1)
j ,

e
(l)
i = ReLU(ẽ

(l)
i /(di + 1) + b(l)),

(5)

where e
(l−1)
j ∈ Rdm denotes the j-th word repre-

sentation obtained from the GCN layer, e(l)i refers
to the i-th word representation of the current GCN
layer, and di =

∑n
j=1Aij is the degree of the i-th

token in the dependency tree. The weights W(l)

and bias b(l) are trainable parameters.
We apply Rba to the output of the GCN. Specif-

ically, we mask out the non-aspect words in the
output of the GCN to obtain the masked representa-
tion em. The attention weights αj of word wj are
given by:

αj =
exp(βj)∑n
i=1 exp(βi)

,

βj =
n∑

i=1

(esj )
⊤emi =

µ+m∑

i=µ+1

(esj )
⊤emi ,

(6)

where the position of the target word ranges at
[µ + 1, µ + m], and j ∈ [1, µ + 1) ∪ (µ + m,n]
denotes the position of non-target words. βj calcu-
lates the semantic relatedness between the aspect
and words other than the aspect in the sentence.
The enhanced embedding of the aspect term is for-
mulated by er =

∑n
j=1 αjesj .

1https://stanfordnlp.github.io/CoreNLP/

Dataset
Imp. Exp.

COR (%) COC (%)
Train Test Train Test

REST15 108 103 1560 736 57.43 78.29
LAP15 132 4 1837 936 53.11 82.89

REST16 211 41 2296 818 56.14 77.95
LAP16 136 33 2773 768 53.01 81.39

Table 1: Statistics of the ABSA dataset. COR and COC
indicate the ratio of reviews in which sentiment polari-
ties are consistent, and in which sentiment polarities in
the same aspect-category are consistent, respectively.

4.4 Multi-Task Learning
We use the multi-task learning (MTL) framework
to optimize both the ABSA task and the sentence
ordering task. As for the ABSA task, sentence
representations with an enhanced aspect-category
are obtained by e = [es, êh, er]. The result is
passed on to the linear transformation layer. Using
the softmax function, we obtain a probability score
p ∈ R|c|:

p = softmax(Wpe+ bp), (7)

where Wp ∈ R|c|×dm and bp are the weight, and
bias term, respectively. The task is trained with the
cross-entropy loss, denoted as follows:

Lsa =
∑

I∈D
−(γ)⊤log(p), (8)

where γ ∈ R|c| denotes the true label vector.
Recall that we utilize margin-based contrastive

loss Lcl to train the sentence ordering task. The
final loss is given by:

L(multi)(ϕ(sh), ϕ1, ϕ2) =

δ1Lsa(ϕ(sh), ϕ1) + δ2Lcl(ϕ(sh), ϕ2),
(9)

where ϕ(sh) indicates the shared parameters, ϕ1

and ϕ2 stand for parameters estimated in the ABSA
task and the sentence ordering task, respectively.
δ1, δ2 ∈ [0, 1] are hyperparameters used to balance
the weights of the two tasks.

5 Experiments

5.1 Data and Evaluation Metrics
We conducted the experiments on four benchmark
datasets: REST15 and LAP15 from the SemEval-
2015 task12 (Pontiki et al., 2015), and REST16
and LAP16 from the SemEval-2016 task5 (Pontiki
et al., 2016). The dataset consists of restaurant, and
laptop domains, and positive, neutral, and negative
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Method
REST15 LAP15 REST16 LAP16

ACC F1 IAC EAC ACC F1 IAC EAC ACC F1 IAC EAC ACC F1 IAC EAC

ASGCN 85.44 62.39 83.50 85.89 84.93 73.92 100.0 84.82 89.98 76.76 85.36 90.31 83.63 69.32 63.64 84.42
Dual-GCN 86.47 71.03 81.58 86.87 85.53 71.62 100.0 85.53 91.48 79.52 87.80 91.63 86.12 71.81 78.79 86.31
AAGCN 86.79 68.22 84.84 86.96 85.65 72.43 100.0 85.64 92.02 77.51 87.80 92.13 85.90 71.58 69.70 86.15

Sentic-GCN 85.89 70.67 84.54 86.09 85.82 72.89 100.0 85.87 91.23 79.31 85.36 91.37 85.27 71.61 69.70 85.78
BiGAT # 84.70 65.20 - - 85.30 70.40 - - 89.10 75.00 - - 85.70 65.10 - -
MFGN 86.92 68.54 80.62 87.41 85.94 72.18 100.0 85.88 91.89 80.91 92.69 91.91 86.14 68.33 75.76 86.03

SSEGCN 87.08 69.07 81.51 86.93 85.58 72.11 100.0 85.54 92.13 79.08 87.23 92.32 85.64 70.78 78.79 85.91

BERT-SPC 85.92 66.02 78.58 86.89 85.68 74.32 100.0 85.64 90.89 78.11 90.24 91.37 84.07 68.09 75.76 84.27
T-SCAPT 85.32 66.31 86.44 85.28 80.50 65.82 100.0 80.41 88.88 72.46 75.61 89.89 78.99 56.12 78.79 69.72
B-SCAPT 87.61 71.88 85.38 87.87 88.96 78.86 100.0 89.02 92.01 79.62 85.41 92.34 86.81 72.27 81.82 86.88
CLEAN 84.43 70.89 81.61 85.44 84.61 71.29 100.0 84.73 89.85 72.21 90.24 89.50 85.50 72.22 75.76 85.87

CoGAN # 84.20 70.70 - - 85.10 74.50 - - 92.00 81.60 - - 87.20 73.20 - -

w/o CoM 85.43 68.08 85.42 85.28 85.89 71.64 100.0 85.76 90.89 75.84 87.80 91.11 86.33 73.42 63.64 87.16
w/o CL 88.33 61.74 91.34 87.86 87.79 77.27 100.0 87.83 92.21 77.53 87.80 92.43 87.63 66.81 90.91 87.53

w/o CCE 87.08 67.23 89.29 86.83 87.42 76.54 100.0 87.27 91.91 76.22 92.69 91.83 87.94 62.54 87.88 87.93
ELCoM 89.63 72.53 92.23 89.34 89.52 79.71 100.0 89.23 93.36 81.32 95.12 93.28 89.14 73.62 93.94 88.93

Table 2: Main results for four datasets. IAC and EAC refer to the accuracy of implicit and explicit sentences,
respectively. "w/o CoM" refers to the result without any coherence information. # indicates the results from the
original papers. Note that all the IACs of LAP15 are 100.0. The reason for this is that there are only four implicit
sentiment sentences, and all baselines are identified correctly.

sentiment polarities. SemEval-2016 is labeled only
with explicit sentiments. We thus manually anno-
tated implicit sentiment labels in the dataset. The
data statistics are shown in Table 1.

We used accuracy ACC (%), and macro-
averaged F1 (%) scores as metrics. We evaluated
our model by using implicit, and explicit sentiment
accuracy, IAC (%), and EAC (%), respectively. For
a fair evaluation, we conducted each experiment
five times and reported the average results.

5.2 Implementation Details

Following Chen et al. (2020) and Cai et al. (2020),
we randomly chose 10% of the training data and
used it as the development data. The optimal hyper-
parameters are as follows: The initial learning rate
for coherence modeling was 6e-6 and others were
2e-5. The weight decay was set at 1e-3, and the
dropout rate was 0.1. The number of negative sam-
ples B was 5, and the margin τ was 0.1. The bal-
ance coefficients δ1 and δ2 were set at 0.9 and 0.1,
respectively. The number of graph convolutional
layers was 2. All hyperparameters were tuned us-
ing Optuna2. The search ranges are reported in
Appendix A.3. We used AdamW (Loshchilov and
Hutter, 2017) as the optimizer.

5.3 Baselines

We compared our approach with the following base-
lines:

2https://github.com/pfnet/optuna

1). Graph neural networks (GNN)-based meth-
ods: ASGCN (Zhang et al., 2019), Dual-GCN
(Li et al., 2021a), AASGCN (Liang et al., 2021),
Sentic-GCN (Liang et al., 2022), BiGAT (Shan
et al., 2022), MGFN (Tang et al., 2022), and
SSEGCN (Zhang et al., 2022);
2). Knowledge-enhanced (KE)-based meth-
ods: BERT-SPC (Song et al., 2019), TransEn-
cAsp+SCAPT (T-SCAPT) (Li et al., 2021b),
BERTAsp+SCAPT (B-SCAPT) (Li et al., 2021b),
and CLEAN (Wang et al., 2022);
3). Global context (GC)-based methods: Co-

GAN (Chen et al., 2020).

6 Results and Discussion

6.1 Performance Comparison

Table 2 shows the results. Overall, the ELCoM at-
tained an improvement over the second-best meth-
ods by a 0.63∼2.31% ACC and 0.57∼1.08% F1-
score, except for the F1-score on the REST16
dataset. In particular, it achieved remarkable results
in implicit sentiment polarity classification, as the
ELCoM achieved an improvement of IAC over the
second-best method by 2.62∼14.81%, while that
of EAC was 0.24∼2.36%. This reveals that lever-
aging document- and sentence-level coherence and
reducing the influence of anomalous sentences sig-
nificantly benefit sentiment analysis. Table 2 also
provides the following observations and insights:
• Most baselines suffer from implicit sentiment

analysis, while the ELCoM breaks the bottleneck
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Figure 3: Visualization of the sentence representations. Each color corresponds to each aspect-category, and bold
font underlined words refer to the aspect term. The dotted line separates positive and negative polarities.

and maintains good performance.
• SCAPT, which exploits pre-training on a large

sentiment corpus and regards implicit and ex-
plicit sentiments as contrastive pairs, is compet-
itive among baselines, and especially effective
for the laptop domain. This indicates that prior
knowledge is beneficial for sentiment analysis.

• GNN-based methods such as MGFN and
SSEGCN achieved inspired results, suggesting
that word-level syntactic representation can en-
rich sentiment features while ignoring that the
reviewer’s opinions are likely to be preserved
throughout the review.

• The ELCoM and CoGAN exploit document-
level sentiment knowledge, suggesting that cap-
turing the reviewer’s consistent sentiment expres-
sions contributes to improving performance.

6.2 Ablation Study

We conducted an ablation study to examine the ef-
fects of each component of the ELCoM. The results
in Table 2 prompts the following observations:
• The worst result, especially the ICA by the EL-

CoM without applying CoM (w/o CoM) sup-
ports our hypothesis that the aspect-category is
a strong clue for capturing sentence-level coher-
ence to aid implicit sentiment classification.

• The ELCoM without contrastive learning (EL-
CoM w/o CL), particularly the worst result on

Category REST15 LAP15 REST16 LAP16

Sac Rba ACC F1 ACC F1 ACC F1 ACC F1

✘ ✘ 87.1 67.2 87.4 76.5 91.9 76.2 87.9 62.5
✔ ✘ 88.3 70.1 88.7 78.9 92.6 77.8 88.4 66.3
✘ ✔ 87.3 69.0 88.3 77.3 92.9 79.8 89.0 67.8
✔ ✔ 89.6 72.5 89.5 79.7 93.4 81.3 89.1 73.6

Imp.(%) 2.9 7.9 2.4 4.1 1.6 6.7 1.4 17.7

Table 3: Performance on cross-category enhance-
ment. “Saf” indicates SA filtering, and “Rba” indicates
retrieval-based attention. ✔ and ✘ denote with/without
each module, respectively.

Method REST15 LAP15 REST16 LAP16
ACC F1 ACC F1 ACC F1 ACC F1

SSEGCN 81.9 62.5 80.1 67.3 83.9 74.9 78.6 64.4
B-SCAPT 82.1 61.7 83.7 72.7 83.3 70.5 79.1 62.5

w/o CCE 81.7 63.4 78.6 67.6 81.9 69.6 81.3 61.5
ELCoM 83.3 66.4 83.2 73.7 84.9 75.4 82.3 65.5

Table 4: Results on reviews that contain different polar-
ities in the same category.

REST15 by F1, indicates that document-level
coherence learned from the sentence ordering
task contributes to improving performance.

• The ELCoM without cross-category enhance-
ment (w/o CCE) suffers from a severe perfor-
mance drop, particularly on LAP16 by F1, indi-
cating that the SA mechanism that we used to
reduce the influences between anomalous nodes
is effective for accurate sentiment analysis.
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Figure 4: Case study on REST16 data with their polarities predicted by BERT-SPC, B-SCAPT, CLEAN, and our
approach: ✔ (or ✘) denotes that the predicted sentiment polarity is correct (or incorrect).

Type of REST15 LAP15 REST16 LAP16
Contexts ACC F1 ACC F1 ACC F1 ACC F1

LSTM 80.3 64.9 80.6 66.3 83.4 70.1 80.4 62.8
SA 87.8 66.9 87.6 74.6 91.4 75.2 87.9 67.2

Coherence 89.6 72.5 89.5 79.7 93.4 81.3 89.1 73.6

Table 5: Comparison against several network models.

Recall that our cross-category enhancement utilizes
two attention mechanisms, SA filtering, and Rba, to
offset the impact of anomalous nodes. To examine
the effectiveness of each mechanism, we performed
experiments, which are shown in Table 3. Overall,
the enhancement improved the performance, for
instance, 1.36∼2.93% by ACC and 4.14∼17.72%
by F1 in all datasets. Specifically, SA filtering
yields more benefits for REST15 and LAP15, while
Rba works well for other datasets.

It is interesting to note how cross-category en-
hancement dealing with anomalous nodes affects
performance. Table 4 shows the results against
SSEGCN and B-SCAPT by focusing on reviews
containing opposite polarities in the same cate-
gory. We can see that with CCE, the model im-
proves 1.27∼5.76% by ACC and 4.86∼8.94% by
F1. This clearly supports the effectiveness of our
cross-category enhancement. To better understand
the ablation study, we visualized the distribution
of sentence representations of each module by t-
SNE (Van der Maaten and Hinton, 2008), which
is illustrated in Figure 3. We can see that (1) XL-
Net without CoM and cross-category enhancement
roughly identifies the sentiment. a2 is close to a9,
a10, and a11, although they have opposite polari-
ties. (2) XLNet with CoM shows that the sentences

Figure 5: Illustration of over-capturing contexts. Words
such as “great,” and “good” overly affect the negative
opinion word “thin.”

that mention the same aspect are grouped together
and share sentiments. (3) XLNet with CoM and
cross-category enhancement shows that the dots in
the same aspect-category are better clustered, while
different aspect-categories are dispersed.

6.3 Efficacy of Coherence-Based Contexts

We compared the coherence-based contexts with
the SA- and LSTM network-based ones to ver-
ify the effectiveness of the ELCoM, as these tech-
niques are well known for effectively learning con-
text dependencies. The results are shown in Table 5.
It is reasonable that SA works better than LSTM, as
the latter learns long-term dependencies. However,
it reveals that SA may overcapture the context of
irrelevant words even when the sentiment of the
target aspect is explicit. As shown in Figure 5,
s2 contains two aspects: “food quality” and “food
style.” The SA-based context incorrectly predicts
the sentiment polarity toward the latter aspect, as it
overly captures positive sentiment from the words,
“great,” “good,” and “fresh” as the descriptors of
this aspect regardless of their dramatically effec-
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tive transition, which is in fact not the case. In
contrast, our approach captures not only the origi-
nal sentiment in the sentence but also the context
of sentiments. From the experimental results, we
can conclude that coherence-based contexts are cur-
rently the optimal alternative compared to SA and
LSTM in sentiment analysis tasks.

6.4 Case Study
We highlighted the typical and difficult examples
and compared the ELCoM with the baselines. We
chose BERT-SPC, B-SCAPT, and CLEAN as base-
lines, since BERT-SPC is often used as a bench-
mark model, and others are focused on implicit
sentiment analysis. Figure 4 illustrates the results.
Case 1. BERT-SPC and B-SCAPT failed implicit
sentiment in s4, as they could not correctly iden-
tify the sentiment of “service”, which appears in
s1. Likewise, s5 contains two aspects in the same
category of “food”, and because of its complex syn-
tactic structure, it results in BERT-SPC incorrectly
classifying the “salsa (food)” aspect as positive.
To correctly identify these aspects, CLEAN infers
causal representations of implicit sentiments in s1
and s5, and the ELCoM learns coherent contexts.
Case 2. The sentiment of s5 shows an implicit
negative polarity in terms of the “restaurant”. The
ELCoM captures the polarity of the sentiment in s4
via sentence-level coherence by hypergraph toward
the same aspect-category to assist in sentiment clas-
sification.
Case 3. It is extremely difficult to analyze the
sentiment within short sentences, such as the “No
comparison” in case 3. In contrast to the baselines,
the ELCoM can capture the context of sentiment
from s2 and s3 as auxiliary information.

6.5 Error Analysis on Explicit and Implicit
Sentiments

We conducted error analyses on four datasets and
found that the implicit sentence accuracy by EL-
CoM is better than that of explicit sentences in
some cases. There are three possible reasons:
• One reason is the effectiveness of the coherence

modeling (CoM). Table 2 in Section 6.2 indicates
that without CoM, the ELCoM obtains better
accuracy on explicit sentiments than that of the
implicit sentiments in the REST16 and LAP16
datasets.

• There are two major error cases on explicit sen-
tences: (1) Many sentences containing neutral
sentiments are incorrectly classified, because

Figure 6: Examples of explicit and implicit sentiments.
Underlined words indicate aspect terms.

neutral sentiments are always too ambiguous
to identify, and neutral samples are not enough
in training sets. (2) Many sentences with mixed
(positive/negative) sentiment polarities were in-
correctly identified, caused by negation words
and unspecified referents within the sentences.

• The majority of implicit sentences do not have
both positive and negative sentiment polarities,
as a user often exerts an objective fact to express
an implicit opinion, which means less probabil-
ity of containing more than one different senti-
ment. In contrast, much more explicit sentences
have mixed sentiment polarities. In the example
from the REST16 test dataset which is shown
in Figure 6, we can see that only one sentiment
polarity, negative appears in the implicit sen-
tence, while the sentence with explicit sentiment
includes both positive and negative sentiment.

7 Conclusion

We proposed aspect-category enhanced learning
with a neural coherence model (ELCoM) for im-
plicit sentiment analysis. To mine opinions from
explicit sentences to aid implicit sentiment classifi-
cation, ELCoM captures document-level coherence
by using contrastive learning, and sentence-level
by a hypergraph. To further offset the impact of
anomalous nodes in hyperedges, we proposed a
cross-category enhancement on node embeddings.
Extensive experiments have shown that the EL-
CoM achieves competitive performance against
state-of-the-art sentiment analysis methods. Fu-
ture work includes, (i) improving the ELCoM by
introducing a pre-training large sentiment corpus,
and (ii) extending the ELCoM to simultaneously
detect aspect-categories and their polarities (Cai
et al., 2020).
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Limitations

The ELCoM model adopts time-consuming mod-
ules, i.e., transformer (O(n2)) and GCN (O(n2))
where n refers to the number of words, therefore
its computational cost heavily relies on the length
of textual reviews. Although the ELCoM outper-
forms SOTA baselines in ACC, it still struggles
with the performance in F1. One reason is because
of neutral sentiments which are very ambiguous
and difficult to predict correctly.
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A Appendix

A.1 Consistency of sentiment polarity.

Figure 7 shows the ratio of training and test re-
views having consistent sentiment. We can see
that 50.3%∼57.4% of the reviews had the same
sentiment polarity regardless of different aspect
categories over the review, and 70.8%∼84.8% of
the reviews have the same sentiment polarity if they
have the same aspect category.

Figure 7: The ratio of reviews having consistent senti-
ment in different datasets. Consistency Over Review
(COR): the ratio of reviews in which sentiment polari-
ties are consistent. Consistency Over Category (COC):
sentiment polarities in the same aspect category are con-
sistent.

A.2 Overview of coherence modeling and
cross-category enhancement

Figure 8 illustrates a document- and sentence-level
coherence and cross-category enhancement, where
each circle alongside si indicates a sentence in the
document, and ai indicates the aspect-category. (a)
of Figure 8 indicates document-level coherence,
i.e., four sentences that contain negative sentiment
with the same category indicate preserving coher-
ence. (b) in Figure 8 shows sentence-level coher-
ence. The sentiment of s1 and s5 toward the a1
is enhanced by each other and avoids ineffective
propagation from the sentiment in irrelevant aspect-
categories, such as s4 or the sentiment of s1 re-
lated to the aspect-category a3. In contrast, (c) of
Figure 8 illustrates cross-category enhancement to
compensate for the dilemma of side effects from
the sentences that contain different polarities even
in the same category. For example, in Figure 8
(c), the sentiment of s5 related to aspect-category
a2 is prone to be incorrectly classified as positive,
while the impact of s2 and s3 can be offset by cross-
category enhancement.

Figure 8: Illustration of a document- and sentence-level
coherence, and cross-category enhancement.

A.3 Implementation and hyperparameter
setting

We implemented ELCoM and experimented with
Pytorch on a single GPU: NVIDIA GeForce RTX
3090 (24GB memory). The search ranges of the hy-
perparameters used in our experiments are shown
in Table 6.

Parameter Range
LR of CoM 1e-6 ∼ 1e-5
LR of others 1e-5 ∼ 1e-4
Weight decay {1e-4, 1e-3, 1e-2}
Dropout rate {0.1, 0.2, 0.3}

#Negative Samples B {5, 6, 7, 8, 9, 10}
Margin τ {0.05, 0.1, 0.15, 0.2}

δ1 {0.7, 0.8, 0.9, 1.0}
δ2 {0.05, 0.1, 0.15, 0.2}

#Block of GCN {1, 2, 3}

Table 6: Search range of each hyperparameter: LR
refers to the learning rate. LR of CoM indicates
the learning rate of coherence modeling. LR of oth-
ers shows aspect-based sentiment analysis and cross-
category enhancement.

A.4 Example of input data for multi-task
learning

As shown in Table 7, the input data of the multi-
task learning is as follows: the input of the sentence
ordering task consists of the original review and its
disordered review, and the input of the ABSA task
comprises “Text” and “Opinions”.

Following Li et al. (2021b), we labeled “Text”
as implicit if it does not contain any obvious opin-
ion words for a certain aspect. The number of B
disordered “Text” are generated from the original
reviews by randomly shuffling the sentences, which
is illustrated in Table 7.
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Original Review [Review rid=“1726473”]

Text s1: Average to good Thai food, but terrible delivery.
Opinions target= “Thai food” category=“food#quality” polarity=“positive” implicit_sentiment=“False”

target=“delivery” category=“service#general” polarity=“negative” implicit_sentiment=“False”

Text s2: I’ve waited over one hour for food.
Opinions target=“null” category=“service#general” polarity=“negative” implicit_sentiment=“False”

Text s3: They were very abrupt with me when I called and actually claimed the
food was late because they were out of rice.

Opinions target=“null” category=“service#general” polarity=“negative” implicit_sentiment=“False”

Text s4: A Thai restaurant out of rice during dinner?
Opinions target=“Thai restaurant” category=“restaurant#miscellaneous” polarity=“negative” im-

plicit_sentiment=“True”

Text s5: The food arrived 20 minutes after I called, cold and soggy.
Opinions target=“food” category=“food#quality” polarity=“negative” implicit_sentiment=“False”

target=“null” category=“service#general” polarity=“negative” implicit_sentiment=“True”

Disordered Review
Text s4: A Thai restaurant out of rice during dinner?
Text s1: Average to good Thai food, but terrible delivery.
Text s5: The food arrived 20 minutes after I called, cold and soggy.
Text s3: They were very abrupt with me when I called and actually claimed the

food was late because they were out of rice.
Text s2: I’ve waited over one hour for food.

Table 7: The example of original and disor-
dered review: “target” and “category” refer to as-
pect terms, and aspect category, respectively. Po-
larity takes a positive, neutral, or negative value.
Implicit_sentiment takes “False” for explicit and
“True” for the implicit sentiment.
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