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Abstract

Adversarial samples pose a significant chal-
lenge to neural inference models. In this paper,
we propose a novel enhancing approach A3

for the robustness of the neural NLP models,
which combines the adversarial training and
data augmentation. We propose an adversarial
sample generator that consists of a conditioned
paraphrasing model and a condition generator.
The latter aims to generate conditions which
guides the paraphrasing model to generate ad-
versarial samples. A pretrained discriminator
is introduced to help the adversarial sample
generator adapt to the data characteristics for
different tasks. We adopt a weighted loss to
incorporate the generated adversarial samples
with the original samples for augmented train-
ing. Compared to existing methods, our ap-
proach is much efficient since the generation
process is independent to the target model and
the generated samples are reusable for different
models. Experimental results on several tasks
show that our approach improves the overall
performance of the trained model. Specially,
the enhanced model is robust for various attack-
ing techniques.

1 Introduction

Adversarial samples refer to the inputs that in-
tentionally designed to fool deep learning mod-
els (Morris et al., 2020a), which are also called the
attack samples (Szegedy et al., 2013). The methods
for generating attack samples have deceived many
natural language processing (NLP) models, such as
text classification (Ebrahimi et al., 2017; Ren et al.,
2019), machine translation (Cheng et al., 2020) and
etc (Goyal et al., 2022). Along with the application
of neural models in various areas, the adversarial
samples have drawn much attention.

Generally, the adversarial samples are generated
by perturbations on the original sample. To en-
hance the robustness of NLP neural methods, the
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adversarial training approach uses the the adversar-
ial samples together with the original samples for
training model (Goodfellow et al., 2014b). Miy-
ato et al. (Miyato et al., 2016) proposed the first
NLP oriented adversarial training method by ap-
plying noise on the word representations. But the
perturbed result is in the latent space and does not
map to a meaningful sentence. Then many works
turned to generating adversarial samples as a means
of adversarial training. The often adopted method
is the lexical substitution that is formulated as a
combinatorial optimization problem and solved by
heuristic search algorithms (Yoo and Qi, 2021).
Since it requires much interaction with the target
model for identifying the important words and se-
lecting the appropriate replacement words, it is
time-consuming. Due to the lack of supervised
training data, so far there is not applicable end-to-
end mode for adversarial generation.

Another kind of approaches to improve model
robustness is data augmentation, which aims to gen-
erate the similar samples to the original data for
increasing the amount of training data. The tradi-
tional methods on data augmentation include back-
translation (Sennrich et al., 2015), rule-based mod-
ification (Wei and Zou, 2019), paraphrasing (Ku-
mar et al., 2019) and other techniques (Li et al.,
2022). These methods are based on the distribution
of training data, which are model agnostic. How-
ever, with these data, the models are still vulnerable
to adversarial samples as the attacking techniques
are designed for finding the weakness of the target
model (Yoo and Qi, 2021).

To solve the above challenges, in this paper, we
designed an adversarial sample generation method
for data augmentation A3. We propose an end-to-
end adversarial sample generation model. Given an
original sample, a condition generator is designed
to output a condition which guides a conditioned
paraphrasing model to generate a potential adver-
sarial sample. By pretraining an adversarial dis-
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criminator to be utilized as the training signal, it
can learn the task-specific data characteristics for
finding the potential vulnerabilities. Since the gen-
eration process doesn’t require interaction with the
target model, it is much efficient compared with the
current search based generation methods. Besides,
the generated samples can be reused for different
models rather than for a specific model as the tradi-
tional way. Then we propose a weighted loss for in-
corporating the generated adversarial samples with
the original data for the target task. We evaluate
our method on several NLP tasks and compare it to
both the data augmentation and adversarial training
methods. Experimental results demonstrate that
our approach not only improves the overall perfor-
mance of the trained model but also enhances its
robustness against multiple attacking techniques.
Moreover, the computational time is significantly
reduced compared to existing adversarial sample
generation methods.

2 Related works

2.1 Adversarial Sample Generation

In the NLP area, the disturbance on the original
sample is often adopted in adversarial sample gen-
eration due to the discrete character of text, such as
word replacement. For example, TextBugger (Li
et al., 2019) generates the adversarial samples by
randomly replacing the words in a sample text for
gathering the candidate samples that may flip the
model prediction. Then it chooses the reasonable
adversarial samples with the similar semantics with
the original text. PWWS (Ren et al., 2019) uses
synonym for word substitution with the help of
WordNet. With the development of pretrained lan-
guage models (PLM), it help various NLP tasks to
gain improvement on the performance. Jin et al.
proposed the TextFooler (Jin et al., 2020) method
for evaluating the robustness of BERT. Meanwhile,
several works utilizes PLM to generate the can-
didate adversarial texts with similar semantics to
original ones (Li et al., 2020, 2021). Recently, a
survey on word substitution based adversarial sam-
ple generation (Chiang and Lee, 2022) shows that
despite the effectiveness of such attacks, the gener-
ated samples have flaws on fluency and syntactical
correctness and can be identified easily.

2.2 Adversarial Training

Based on the proximity assumption, researchers
have explored methods to enhance the robustness

and effectiveness of trained models by introduc-
ing disturbances to the original training samples,
commonly known as adversarial training (Good-
fellow et al., 2014b). Miyato et al. (Miyato et al.,
2016) first proposed a NLP-oriented method that
adds noise to the word embeddings of the input
sample for adversarial training in text classifica-
tion task. Similar approaches have been applied to
adversarial training for pretrained language mod-
els (Liu et al., 2020) and other NLP tasks (Li and
Qiu, 2021), showing improvements in model per-
formance. Despite their effectiveness, disturbance
in the continuous spaces lack clear meaning in ac-
tual language, making them less interpretable.

Recent works in adversarial training for NLP
tasks consider modifications at the lexical level to
make the perturbed samples more consistent with
real samples. Early works use synonym substitu-
tion to explore proximate samples in the sample
space. Huang et al. (Huang et al., 2019) and Dong
et al. (Dong et al., 2021) used different sample
space exploration methods to find samples that ef-
fectively enhance model robustness in adversarial
training. The SSMBA method proposed by Ng et
al. (Ng et al., 2020) generates perturbed samples
by using pretrained language models to complete
corrupted texts. Recently, researchers consider us-
ing adversarial sample generation methods for ad-
versarial training. Previous work (Carlini et al.,
2019) has shown that using samples generated by
a specific adversarial sample generation method
for augmented training generally only improves
the robustness against that method. Yoo et al. de-
signed the A2T method (Yoo and Qi, 2021), which
introduced a fast lexical substitution adversarial
sample generation method into the model train-
ing process, achieving improved robustness against
multiple model attacking methods. Current adver-
sarial training methods for NLP models are mostly
based on constrained searching in the sample space,
and lack the ability to self learn and adapt to mod-
els or datasets. Moreover, the lexical substitution
based generation methods have potential problems
regarding semantic soundness and syntactic cor-
rectness. (Chiang and Lee, 2022)

3 The End-to-end Adversarial Sample
Based Data Augmentation

3.1 Framework

In this paper, we design the end-to-end adversarial
sample generation method for data augmentation.
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Figure 1: The framework for the end-to-end adversarial
sample based data augmentation

For a given sample x, the condition generator gives
the condition c, based on which the paraphrasing
model generates x′ that is a potential adversarial
sample. The whole architecture consists of three
parts, as shown in Fig.1. The first condition gen-
erator is designed to generate the appropriate con-
ditions for guiding the generated paraphrase being
an adversarial sample. The second is the pretrained
conditioned paraphrasing model that generates the
paraphrases satisfying the given condition.

Since there are no supervised data for training
the condition generator, we propose an adversarial
discriminator to provide the proper training signals,
similar to the structure of a generative adversarial
network (GAN) (Goodfellow et al., 2014a). The
third part is the adversarial discriminator that can
be a classifier or regression model for the target
task, which checks the flip of predication.

Then for the target task, the generated adversar-
ial samples are incorporated with the original data
for data augmentation, which are used to train a
model for this task.

3.2 Condition Generator

The condition generator takes an original sample as
input and aims to generate a condition c for guiding
the paraphrasing model to generate an adversarial
sample. Let G denote the condition generator.

c = G(x) (1)

There are many candidate forms of condition c,
such as the ratio of changed words, the sentence
structure or the sentiment. Following the normal
way of generating adversarial samples, we adopt
the lexical substitution indicator as the condition,
which is in the form of binary sequence correspond-
ing to the words in x, denoted by c ∈ {0, 1}|x|.
ci = 1 indicates xi should be changed in the para-
phrase x′, ci = 0 for otherwise.

In this paper we adopt a multi-layer bidirectional
recurrent neural network as the basic network. The
output hidden vector at each step is projected to
a scalar. The output of the condition generator is
fed into the conditioned paraphrasing model. Since
the condition c is defined as a sequence of binary
value, while conventional activation function such
as sigmoid outputs a contiguous value between 0
and 1. To maintain a reasonable form of c and
achieve a stable training, we adopt the straight-
through estimator (Bengio et al., 2013) method as
the activation function, such that the output of the
condition generator will be binary.

c = STE(G(x)) (2)

3.3 Pretraining the Conditioned Paraphrasing
Model

The general purpose of paraphrasing is to gener-
ate a sample with the same meaning but different
expression with the given text. Here we introduce
the conditioned paraphrasing model for guiding
the paraphrase. For a given text x and a condi-
tion c, it generates a paraphrase x′ with the similar
semantics to x and satisfying c, formally:

x′ = F (x, c) (3)

We adopt a multi-layer bidirectional recurrent
neural network for the conditioned paraphrasing
model. The pretraining data are automatically gen-
erated, where the input is a pair of a text x and
the randomly selected positions as the condition
c. As the paraphrase x’, there are many candidate
methods for choosing the replacement words, such
as the synonym vocabulary or the masked language
model. To ensure the semantic similarity and the
syntactical correctness, we adopt the word com-
posable knowledge (Liu et al., 2023) for choosing
the words to form a new text x′ as the supervised
target.

Since only a small proportion of the text are
changed, the simple negative log-likelihood loss
would lead the model to just copy the input. Thus,
we apply a larger weight ωp > 0 for the replace-
ment positions ci = 1:

ℓP = −
|x|∑

i=1

(1 + ciωp) log p(x̂
′
i = x′i|x, c) (4)

where x̂′i is the output of the model and x′i is the
supervised paraphrase.
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3.4 Adversarial Discriminator
To train the end-to-end adversarial sample gener-
ation model, we pretrain an adversarial discrimi-
nator to provide training signals, denote by D. It
is a trained classifier or a regression model for the
target task.

y = D(x) (5)

Theoretically the paraphrasing model should gen-
erate the semantically similar text with the original
one. If the prediction ŷ′ by D for the generated
sample x′ is flipped compared to the ground truth
y, x′ is a potentially adversarial sample.

3.5 End-to-End Adversarial Sample
Generation Training

The core of the adversarial sample generation
model is to generate the appropriate condition for
paraphrasing. Since the discriminator can be seen
as a white-box victim model, we can pass the gra-
dient through the neural network structure by uti-
lizing the tricks like Gumbel softmax (Jang et al.,
2017). This allows an end-to-end training mode for
the whole adversarial sample generation method.

During the training, the condition generator, the
conditioned paraphrasing model and the adversar-
ial discriminator are connected in a pipeline way.
For a given sample x, the pipeline outputs a pre-
diction ŷ for a perturbed sample. The conditioned
paraphrasing model F (x, c) outputs a sequence of
word probabilities. We adopt Gumbel softmax to
convert the probabilities to word embeddings that
can be directly used by D.

c = G(x)

x′ = F (x, c)

ŷ = D(x′)

(6)

During training, the parameters of the condition
generator and the conditioned paraphrasing model
are tuned while the adversarial discriminator re-
mains frozen. Training the condition paraphrasing
model allow the model be trained adaptively to gen-
erate words more suitable for the target task. To
train the adversarial sample generation model, we
used the following losses.

Adversarial loss is the main goal of the model,
namely to generate a sample that can make the
target model flip its prediction. Since previous
works on model distilling show the effectiveness
and simplicity of the MSE loss function (Hinton
et al., 2015), thus it is adopted in our work. More

advanced distances between probabilities such as
KL-distance can be an alternative.

ℓadv = 1− |D(x′)−D(x)|2 (7)

Perturbation ratio loss To maintain the similar
semantics between the perturbed sample and the
original sample, the ratio of perturbed words in
text are constrained, namely the number of ci = 1
cases in the generated condition c. Let ρ denote
the expected ratio, L is the length of sample, the
perturbation ratio loss is calculated as follows.

ℓcon = |ρ− ∥c∥1/L|2 (8)

Conditioned paraphrasing losses The condi-
tioned paraphrasing model is fine-tuned for dif-
ferent expectation by a few loss functions. The
first is the reconstruction loss for the words not per-
turbed in c, i.e. on the positions ci = 0, denoted by
c(0). It is a negative likelihood loss for the original
words such that the paraphrasing model is trained
to reconstruct the original input.

ℓrec = −
∑

i∈c(0)
log p(x′

i = xi|x, c) (9)

For the perturbed positions, the probability of the
original word should be lower than any other words.
Inspired by the loss function for the negative sam-
ples in the noise contrastive estimation (Gutmann
and Hyvärinen, 2010), we design the loss of pun-
ishing repeating the original word. Let c(1) denote
the positions of the 1s in the condition c.

ℓpun = −
∑

i∈c(1)
σ(− log p(x′

i = xi|x, c)) (10)

Semantics similarity and syntactic correctness
losses To maintain the semantics of the generated
paraphrase similar with the original sample, we
adopt a word-level similarity loss based on cosine
similarities for the word embeddings between the
generated word and the original word.

ℓsem = 1− sim(x,x′)

sim(x,x′) =
1

|x|

|x|∑

i=1

(1− cos(xi,x
′
i))

(11)

The word embeddings similarity cannot guar-
antee a proper syntactical role of the replacement
word. Thus, we also adopt the word composable
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Algorithm 1 The Training Process for End-to-End
Adversarial Sample Generator

Input: Training set Dt

Output: Condition generator G, conditioned para-
phrasing model F

1: //Pretrain conditioned paraphrasing model
2: Generate paraphrasing training data Dp base

on Dt

3: Pretrain F with Dp according to Eq.4
4: //Pretrain adversarial discriminator
5: Pretrain D with Dt

6: //Train the end-to-end adversarial sample gen-
eration model

7: Freeze the parameters of D
8: for sample x, y in Dt do
9: Let c = G(x)

10: Calculate ℓcon according to Eq.8
11: Let x′ = F (x, c)
12: Calculate ℓrec, ℓpun, ℓsem, ℓsyn according

to Eq.9-12
13: Let ŷ = D(x′)
14: Calculate ℓadv according to Eq.7
15: Calculate Ladv according to Eq.13
16: Update G,F according to Ladv

17: end for
18: return Condition generator G, conditioned

paraphrasing model F

knowledge based loss (Liu et al., 2023) to pro-
vide syntactical correctness guidance for the gen-
erated sample. Given a dependency relationship
between two words < u, r, v >, the word compos-
able knowledge estimates the syntactical soundness
of this combination, denoted by ps(u, r, v). It relies
on the pretrained word embeddings and thus is easy
to integrate with other neural network structures.
Let sx = (i, r, j) denote the dependency parsing
tree of x, where (i, r, j) represents the dependency
relation between xj and its head word xi is r. The
syntactic correctness loss is calculated as follows:

ℓsyn = −
∑

(i,r,j)∈sx
log ps(x

′
i, r,x

′
j) (12)

The complete loss function for training the adap-
tive adversarial sample generation model is the
weighted sum of the above losses.

Ladv =waℓadv + wcℓcon + wrℓrec + wpℓpun

+ wsemℓsem + wsynℓsyn
(13)

Dataset #Class #Train #Test Ave.Len.
IMDB 2 25000 25000 270.7
Quora 2 363660 40404 25.33
SNLI 3 550152 10000 22.4

Table 1: Dataset statistics

The overall training process of the end-to-end
adversarial sample generation is listed in Alg.1.

3.6 Data Augmentation
Having the above end-to-end adversarial sample
generator, we can apply data augmentation on the
training data for the target task. For the given origi-
nal training set Dt, the corresponding generated ad-
versarial samples is denoted by D′

t. Then the model
for the target task can be trained on Dt

⋃
D′

t for
improving the model robustness. Since the adver-
sarial samples are more likely to introduce noises,
their training loss is assigned a lower weight. Let
Lt denotes the loss of the target task, λi denotes the
loss weight for sample si. λi = 1 for an original
sample while λi < 1 for a generated sample.

Ltask =
∑

si∈Dt
⋃

D′
t

λiLt(si) (14)

The previous work has shown the adversarial sam-
ples generated based on one model are potentially
adversarial to other models (Szegedy et al., 2013).

4 Experiments

To evaluate the effectiveness of the proposed
method, four aspects should be considered and eval-
uated in the subsections 4.2-4.5.

A1: To check the attacking effectiveness of gen-
erated adversarial sample.

A2: To check whether the model performance is
improved after augmented training.

A3: To check whether the robustness of the target
model is improved.

A4: To check the efficiency of our method.

4.1 Experiment Setups
4.1.1 Tasks
Three tasks are considered as evaluation tasks to
cover a wider range of NLP tasks such that the ef-
fectiveness of data augmentation can be thoroughly
evaluated in different scenarios. The first is a senti-
ment analysis task on the dataset IMDB. The IMDB
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Base
Model BERT DistilBERT Perturbed

%
Bert
ScoreDataset Ori.Acc. Att.Acc. ∆ Ori.Acc. Att.Acc. ∆

IMDB 93.9% 66.58% -27.32% 92.96% 61.76% -31.2% 9.95% 95.98
Quora 84.84% 75.95% -8.89% 84.32% 76.44% -7.88% 16.6% 95.96
SNLI 88.95% 55.64% -33.31% 88.04% 55.20% -32.84% 14.73% 95.62

Table 2: Accuracy comparison between accuracies on the original testing set and adversarial testing set.

dataset consists of long movie reviews which are
classified as positive of negative sentiment polar-
ity. The second is a text classification task on the
dataset Quora Question Pairs(QQP), which consists
of question pairs from the Quora site classified as
duplicate or not. The last is a natural language in-
ference task on the dataset SNLI. Each sample in
SNLI consists a hypothesis sentence and a premise
sentence, the logical relationship between them is
determined as entailment, neutral or contradiction.
The statistics of the datasets are listed in Table.1.

4.1.2 Base Models
Recently, pretrained language models are widely
used as a fundamental part for NLP methods. In
the following experiments, BERT (Kenton and
Toutanova, 2019) and DistilBERT (Sanh et al.,
2019) are chosen as the base model for the tasks.
BERT is a widely used pretrained language model,
and achieves improvements on various NLP tasks.
DistilBERT is a compressed version of BERT
model based on model distilling technique, making
it easier to be used on devices with lower compu-
tation power. Both models will be finetuned on
the original train set or the augmented train set
for the target task and evaluated afterwards. Their
results will be listed as Baseline in the following
experiments.

4.1.3 Implementation
All the experiments are conducted on a single
NVIDIA Geforce RTX 2080Ti. Our method is
implemented with PyTorch 1.12.0. The code for
our proposed method is shared at https://splab.
sdu.edu.cn/xscg/sjjydm.htm. The compared
methods and adversarial sample generation are im-
plemented by TextAttack (Morris et al., 2020b).
The size of hidden vectors in our model is 300.
We adopt GloVe (Pennington et al., 2014) as the
word embeddings and reused the pretrained param-
eters of word composable knowledge released in
SynPara (Liu et al., 2023). For pretraining the para-
phrasing model, the ratio of replaced words is set

Base
Model Method Dataset

IMDB Quora SNLI

BERT

Baseline 93.9 84.84 88.95
SSMBA -0.41 +3.03 -2.88

A2T -0.03 +1.4 -0.5
A3 +1 +4 +0.1

Distil-
BERT

Baseline 91.87 84.33 88.04
SSMBA +1.09 +3.79 -0.12

A2T +1.27 +4.39 +1.38
A3 +1.93 +4.89 +0.22

Table 3: Accuracy comparison on the original testing
set. The values for the augmentation methods are the
differences with the accuracy of the base model.

15% when generating training data. For training
the complete model, the weights in the final loss
function are set as wa = 5.0, wc = 3.0, wr = 2.0,
wp = 5.0, wsem = 2.0, wsyn = 0.1 in most cases.
The ratio of perturbed words ρ for the condition
generator is set as 0.15 for SNLI and 0.1 for IMDB
and Quora unless stated otherwise.

4.1.4 Compared methods
For the comparison methods, we consider the fol-
lowing methods. SSMBA (Ng et al., 2020) is a
data augmentation method that uses the corrup-
tion function similar to the masked language model
training and reconstructs the samples with BERT.
A2T (Yoo and Qi, 2021) is an adversarial training
method, where a fast adversarial sample generation
method uses the gradients for identifying important
words in a sample and replaces them based on word
embeddings or MLM models. It iteratively trains
the task model and augment the training data set
with the generated adversarial samples.

4.2 Attack Effectiveness
To evaluate the effectiveness of the generated ad-
versarial samples, we compared the performances
of the baseline models on the original testing data
and on the adversarial data. The results are shown
in Table.2, where the ratio of perturbed words in
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Base Model BERT DistilBERT
Datasets IMDB Quora SNLI IMDB Quora SNLI

Attack
Method

Augment
Method % ∆ % ∆ % ∆ % ∆ % ∆ % ∆

A3

Baseline 69.3 77.3 58.3 64.1 80.1 59.8
SSMBA 71.6 +2.3 77.7 +0.4 58.7 +0.4 61.6 -2.5 78.8 -1.3 62.9 +3.1

A2T 73.7 +4.4 76.9 -0.4 59.7 +1.4 66.1 +2 78.6 -1.5 60.3 +0.5
A3 92.2 +22.9 89.3 +12 86.2 +27.9 93.8 +29.7 90.9 +10.8 86.5 +26.7

A2T

Baseline 38.8 40.1 44.1 30.6 50.3 41.1
SSMBA 38.9 +1 48.1 +8 49.3 +5.2 27.9 -2.7 50.7 +0.4 45.1 +4

A2T 44 +5.2 76.2 +36.1 79.4 +35.3 54.5 +23.9 76.1 +25.8 75.6 +34.5
A3 45.3 +6.5 60.7 +20.6 48 +3.9 36.1 +5.5 60.2 +9.9 43.3 +2.2

Text-
Fooler

Baseline 1.7 23.6 0.9 0.1 10.3 0.47
SSMBA 5.3 +3.6 12.5 -11.1 0.4 -0.5 0 -0.1 12.1 +1.8 0.73 +0.26

A2T 0.8 -0.9 14.3 -9.3 5.1 +4.2 1.3 +1.2 8 -2.3 3.93 +3.46
A3 12 +10.3 27.1 +3.5 1.9 +1 1.6 +1.5 15.2 +4.9 0.67 +0.2

BAE

Baseline 31 39.3 22.1 24.9 39.3 23.87
SSMBA 30.6 -0.4 39 -0.3 25 +2.9 21 -3.9 39.7 +0.4 23.93 +0.06

A2T 29.1 -1.9 43.4 +4.1 23.5 +1.4 26.3 +1.4 44.2 +4.9 25.5 +1.63
A3 37.9 +6.9 40.8 +1.5 27.6 +5.5 27.7 +2.8 45.7 +6.4 24.27 +0.4

PWWS

Baseline 1 25.1 1.2 0.8 22.1 1.07
SSMBA 2.2 +1.2 23.1 -2 2.3 +1.1 0.1 -0.7 22.9 +0.8 1.2 +0.13

A2T 0.3 -0.7 26.3 +1.2 0.7 -0.5 0.6 -0.2 23 +0.9 0.87 -0.2
A3 7.3 +6.3 27.7 +2.6 2.4 +1.2 0.9 +0.1 24.1 +2 2.4 +1.33

Table 4: Comparison of attacking methods against augmentation methods. Column % denotes the model accuracy
under attacking. Column ∆ denotes the difference between augmented model with the original model.

the adversarial samples is listed in column Per-
turbed%. A lower ratio indicates more structure in-
formation of the text preserved. BertScore (Zhang
et al., 2020) is used for quantifying the semantics
similarity between the original sample and the ad-
versarial sample. The higher the BertScore, the
closer their semantics. We can see that the model
performances of both baseline models drop signifi-
cantly on the adversarial samples, which show that
the generated adversarial samples are effective on
attacking the baseline models.

4.3 Performance Improvement

We then evaluated the model performance on the
target tasks before and after training with aug-
mented data. By using our method and SSMBA,
the data is augmented to doubled size of the original
training set, respectively. The augmented dataset is
used for training the base models. For A2T, it itera-
tively trains the model and then augments the train-
ing set by generating adversarial samples. The re-
sults in Table.3 show that our method improves the
performance on all settings and are better than the
compared methods in most cases. The compared
methods are unstable on performances, namely in
some cases performances are the improved while
some are not. For example, SSMBA has negative
impact on SNLI dataset for both base models. This
is probably because SSMBA doesn’t take into con-

sideration the task-specific characteristics, such as
the logical connections between the hypothesis and
premise in SNLI. It should be also noted that while
the original performance of DistilBERT is slightly
lower than BERT, it improves a lot after data aug-
mentation, which confirmed previous studies re-
garding the effectiveness of data augmentation for
distilled models (Das et al., 2020).

4.4 Robustness Improvement

To evaluate the robustness of base model against
different attacking methods, we choose three repre-
sentative attacking methods: TextFooler (Jin et al.,
2020), BAE (Garg and Ramakrishnan, 2020) and
PWWS (Ren et al., 2019). We adopt the notion
m1−m2 denoting the attacking method m1 against
augmentation method m2. For example, BAE-A2T
means using BAE to attack a model trained using
A2T. Similar to the settings of previous works (Yoo
and Qi, 2021), 1000 samples are selected from the
original testing set of each dataset (1500 samples
from SNLI for three labels), where the label distri-
butions are balanced. To better show the impact of
an attacking method, the selected samples can be
predicted correctly by the base models before data
augmentation. The attack methods generate the
adversarial samples based on the selected samples
and the accuracy on these adversarial samples of
the trained model would be compared. A2T and
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Methods Dataset
IMDB Quora SNLI

SSMBA 10m 38m 1h2m
A2T 36h(3) 111h(2) 70h(2)
A3 4m 27m 21m

Table 5: Time for augmenting the dataset. It should be
noted that the time for A2T is the cumulated time for
multiple training epochs (number of epochs is listed in
the brackets).

Figure 2: The influence of ρ on the perturbed ratio and
the attack effectiveness (denoted by ∆Acc)

our proposed method are tested as they are also
adversarial sample generation methods.

The results are listed in Table.4, where the col-
umn % denotes the model accuracy under attacking
and column ∆ shows the difference between the
performance of the augmented model with the base-
line. As explored in a previous research (Carlini
et al., 2019), the robustness against a certain attack
method will be improved if trained with the corre-
sponding adversarial samples. From the row A3-A3

and A2T-A2T, we can see that both methods sig-
nificantly improve the model robustness. For other
representative attacking methods, the augmented
models with our generated data show better robust-
ness than the compared methods in most settings.

4.5 Efficiency Comparison

Another vital aspect of adversarial training is the ef-
ficiency. Most adversarial sample generation meth-
ods involves constantly interaction with the target
model. Such process is both computational heavy
and time-consuming. We recorded the time used
for augmenting the training set of different methods.
Both SSMBA and our proposed method are one-
time augmentation thus the time taken is similar.
Our method is slightly faster than SSMBA since
SSMBA uses BERT as the reconstruction model.
The A2T method, on the other hand, is significantly
slower than our method due to two possible rea-

son. First reason is that the attacking process is
conducted multiple times. Secondly, the method is
based on attacking the target model which is not
only time-consuming, but the time taken will also
increase over time since the model is trained bet-
ter after each epoch. Comparably, our proposed
method generates model-agnostic adversarial sam-
ples, such that the time for augmented training is
significantly shortened.

4.6 Parameter Analysis

We analyze the effect of parameter ρ, the targeted
perturbed ratio. In our method for a ρ setting, the
actual perturbed ratio in the generated adversar-
ial samples may be different with the initial value.
Thus, we analyze the actual perturbed ratio and
its impact on the attacking effectiveness, shown
in Fig.2. The blue and orange lines represent the
set ρ and the actual perturbed ratio respectively,
corresponding to the left Y-axis. The ∆Acc is the
accuracy difference after the attack, corresponding
to the right Y-axis. Higher value of ∆Acc means
more effective attack. We can see that the actual
perturbed ratio approaches the ρ setting. A higher
ρ may cause the predicated label flipped but may
lead to a larger semantics difference. Thus, the
parameter ρ should be set properly to achieve a
balanced performance.

5 Conclusion

In this paper, we present a method named A3 that
combines the advantages of adversarial training
and data augmentation to enhance the robustness
of NLP models. We introduce an end-to-end adver-
sarial sample generation model which consists of a
condition generator and a conditioned paraphrasing
model. A pretrained adversarial discriminator is
proposed to train the adversarial sample generation
model for capturing the task-specific data charac-
teristics. This method is much efficient without the
need for extensive model interactions. The gen-
erated adversarial samples are incorporated with
the original training samples by a weighted loss
for augmented training downstream models. Ex-
periments are conducted on multiple NLP tasks
and demonstrate the effectiveness and efficiency of
our proposed method. Compared to existing meth-
ods, the performances of the base models have im-
proved more after our data augmentation, as well
as their robustness enhanced against multiple at-
tacking techniques.
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Limitations

Firstly, the current form of condition limits the di-
versity and fine-grained control over the generation
process. For example, a condition can be a sub-
tree from the dependency syntax structure, which
allows paraphrases with potential structure reform
and correct syntax (Liu et al., 2023). Secondly, a
condition may also contain the direction of replace-
ment word for the paraphrasing model. This would
allow reusing the same conditioned paraphrasing
model across different tasks, thereby reducing the
training overhead for adversarial sample genera-
tion. Lastly, in future research, we aim to explore
the feasibility of directly using the gradient from
the target model for training the adversarial sample
generation model.
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