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Abstract

Financial volatility prediction is vital for char-
acterizing a company’s risk profile. Transcripts
of companies’ earnings calls serve as valu-
able, yet unstructured, data sources to be uti-
lized to access companies’ performance and
risk profiles. Despite their importance, cur-
rent works ignore the role of financial metrics
knowledge (such as EBIT, EPS, and ROI) in
transcripts, which is crucial for understanding
companies’ performance, and little considera-
tion is given to integrating text and price in-
formation. In this work, we statistically an-
alyze common financial metrics and create a
special dataset centered on these metrics. Then,
we propose a knowledge-enhanced financial
volatility prediction method (KeFVP) to inject
knowledge of financial metrics into text com-
prehension by knowledge-enhanced adaptive
pre-training (KePt) and effectively integrating
text and price information by introducing a con-
ditional time series prediction module. Exten-
sive experiments are conducted on three real-
world public datasets, and the results indicate
that KeFVP is effective and outperforms all the
state-of-the-art methods. 1

1 Introduction

The volatility of financial asset prices is typically
considered a valid proxy for the risk of financial
assets and plays an essential role in evaluating the
risk of financial assets and their derivatives (Yang
et al., 2020). Predicting the volatility of financial
assets is therefore of great significance to market
participants. Meanwhile, in addition to asset price
information, a wealth of unstructured data (e.g.,
news, social media, etc.) (Ding et al., 2014, 2015;
Xu and Cohen, 2018; Duan et al., 2018; Yang et al.,
2019; Feng et al., 2019) can also reflect potential
changes in the future volatility of assets, which is
also vital information that the market participants

∗∗Corresponding author
1The code is at https://github.com/hankniu01/KeFVP

should be aware of. One such unstructured data
source is earnings calls, which are quarterly con-
ferences held by public company management to
explain the latest performance, offer guidance on
their expectation for the coming future, and answer
questions raised by investors and analysts (Qin and
Yang, 2019). The information conveyed by the
conference provides investors and analysts with
valuable insights into the company’s current state
and future prospects. Hence, the goal of this task is
to predict future stock price volatility after the earn-
ings call announcement by combining historical
prices and earnings call transcripts.

Recent works (Qin and Yang, 2019; Sawhney
et al., 2020c; Yang et al., 2020; Sawhney et al.,
2020b) have also embarked on exploring the ap-
proaches of utilizing these earnings calls to im-
prove financial volatility predictions. Prior works
based on earnings calls pay attention to multi-
task architecture for predicting volatility and price
movement (Sawhney et al., 2020c; Yang et al.,
2020), correlations between stocks (Sawhney et al.,
2020b), and the impact of numeric features (Yang
et al., 2022). However, these studies either com-
pletely overlooked the role of price (Yang et al.,
2020, 2022; Qin and Yang, 2019), or did not con-
sider the combination of price and text information
elaborately (Sawhney et al., 2020b,c). For instance,
VolTAGE (Sawhney et al., 2020b) encodes price
information by a vanilla LSTM, while Ensemble
(Sawhney et al., 2020c) uses Support Vector Re-
gression to predict volatility based on historical
price information. Thus, based on the preceding
review, we propose two existential challenges in
existing studies: (1) financial metric (FM) knowl-
edge is not concerned; (2) combining text and price
information is rarely considered elaborately.

Specifically, there are a large number of FMs
(e.g., EPS, EBITDA2, etc. as shown in Table 1)

2Please refer to Table 9 in Appendix B for full names and
descriptions
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Table 1: Statistics on datasets. #Ave. Sent. denotes
the average number of sentences in each transcript. The
column #Total TS gives the overall number of transcripts.
Total Sent. denotes the overall count of sentences, while
FM Sent. denotes the number of sentences containing
FM. And FM Ratio is the ratio of the previous two.

Dataset #Ave. Sent. #Total TS #Total Sent. #FM Sent. FM Ratio (%)

EC

Train 157 391 61434 38150 62.10
Test 157 112 17589 10576 60.13
Dev. 160 56 8940 5594 62.57

Overall 156 559 87963 54320 61.75

MAEC-15

Train 95 535 50632 25542 50.45
Test 92 154 14234 7387 51.90
Dev. 100 76 7571 3609 47.67

Overall 95 765 72437 36538 50.44

MAEC-16

Train 101 980 99246 51622 52.01
Test 84 280 23557 11436 48.55
Dev. 100 140 14058 7597 54.04

Overall 98 1400 136861 70655 51.63

in the financial text to describe companies’ perfor-
mance in terms of earnings, cash flow, and assets
and liabilities, which offer important assistance in
analyzing companies’ performance. However, to
the best of our knowledge, there is rarely work that
aims to use such FM knowledge to enhance finan-
cial predictions. Secondly, the Efficient Market
Hypothesis (EMH) (Malkiel, 1989; Sawhney et al.,
2020a) suggests that financial markets are informa-
tionally efficient, meaning that stock prices reflect
all available market information. Consequently, in
addition to historical prices, text information also
affects stock prices. Thus, the concurrent integra-
tion of price and text is of paramount importance.

In this work, we propose a novel approach,
knowledge-enhanced financial volatility prediction
(KeFVP), to tackle the challenges mentioned above.
The overview of KeFVP is shown in Figure 1. Ini-
tially, we introduce a knowledge-enhanced adap-
tive pre-training (KePt) method, designed to inject
FM knowledge into Pre-trained Language Models
(PLMs). To facilitate this, we construct a KePt
dataset that merges financial corpora (e.g., TRC2-
financial3 and FiQA4, etc.) and extracts specific
descriptions of FMs from Wikidata5 for use in the
KePt process. Subsequently, we employ the PLM
post-KePt to extract representations of each sen-
tence from the earnings call transcripts. These
representations are then incorporated into an end-
to-end financial volatility prediction (FVP) model
along with historical prices for volatility prediction.
The FVP model consists of two major components:
an information enhancement (IE) module and a
conditional time series prediction (CTSP) module.

3https://trec.nist.gov/data/reuters/reuters.html
4https://sites.google.com/view/fiqa/home
5https://www.wikidata.org/wiki/Wikidata:Main_Page

Firstly, the text information is directed into the IE
module, composed of multiple Transformer blocks.
Following the IE module’s processing, the refined
text information, along with historical prices, is
fed into the CTSP module to carry out volatility
predictions. Our main contributions are as follows:

• We first highlight the overlooked issue of dis-
regarding FMs in existing studies. To counter-
act this challenge, we develop a knowledge-
enhanced adaptive pre-training (KePt) method
to inject FMs knowledge into PLMs and con-
struct a specific KePt dataset centered on FMs
for adaptive pre-training.

• We proposed an FVP model, equipped with
IE and CTSP modules, designed to effectively
amalgamate price and text information.

• We perform evaluations using three real-world
earnings call datasets, and our results establish
new state-of-the-art (SOTA) benchmarks.

2 Related Work

2.1 Integrate Financial Knowledge into PLMs

In finance, financial metrics (FMs) serve as cru-
cial indicators of understanding companies’ perfor-
mance, financial, and operating status when execu-
tives or analysts read financial texts. Nevertheless,
vanilla PLMs ignore the processing of FMs, and
few researchers have recognized such a challenge.
Meanwhile, in the general field, injecting knowl-
edge into PLMs during pre-training has been in-
vestigated (Yu et al., 2022; Sun et al., 2020; Wang
et al., 2021a) to some extent. Hence, we extract
FM descriptions from Wikidata as knowledge and
propose the KePt method to infuse such financial
knowledge into PLMs during pre-training. To our
best knowledge, it is the first attempt to focus on
FM knowledge in the processing of financial texts.

2.2 Earnings Call Data

Earnings calls present explanations of companies’
performance, guidance for the upcoming quarter,
and opportunities for in-depth Q&A, which pro-
vides a good window of communication between
investors, brokerage analysts, and company man-
agement (Keith and Stent, 2019). The earnings
call datasets we used were released by (Qin and
Yang, 2019; Li et al., 2020). Existing studies pri-
marily focus on exploring three main aspects: (a)
multimodal fusion, some works (Qin and Yang,
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2019; Sawhney et al., 2020c; Yang et al., 2020)
are dedicated to exploring the combination of text
and audio modalities and its benefits for volatility
predictions; (b) inter-company relationship, such
as VolTAGE (Sawhney et al., 2020b), which uti-
lizes graph neural networks to incorporate stock
interdependence into prediction; and (c) the charac-
teristics of financial texts, for instance, NumHTML
(Yang et al., 2022) explores the importance of nu-
meric structure conveyed by numbers in texts for
financial prediction. However, these works do not
integrate price and text information elaborately, nor
do they recognize the significance of FMs in texts.

2.3 Financial Prediction with Text
Financial predictions have been greatly enhanced
by the incorporation of text information, such as
financial news and social media. Current research
can be grouped into four distinct categories. (1)
Event-based Prediction. These approaches leverage
event information extracted from financial news
to guide financial predictions. Significant works
in this domain include (Ding et al., 2014, 2015)
and more recent developments (Yang et al., 2019;
Deng et al., 2019). (2) Plain Text-based Prediction.
Such methods (Duan et al., 2018; Xu and Cohen,
2018) involve learning directly from unstructured
data such as tweets or news documents, without
pre-extracting structured events. (3) Inter-company
Relationships. This genre of studies (Ang and Lim,
2022; Sawhney et al., 2020a; Xu et al., 2021; Cheng
and Li, 2021) takes into account the inter-company
relationships while considering text information.
(4) Portfolio Management. This type of works
(Liang et al., 2021; Sawhney et al., 2021a; Du and
Tanaka-Ishii, 2020; Sawhney et al., 2021b) targets
portfolio management problems instead of financial
predictions by exploiting textual information.

2.4 Stock Market Volatility Prediction
In the stock market, volatility prediction plays a
central role in risk management, asset allocation,
and derivative pricing (Liang et al., 2022; Ma et al.,
2019; Bollerslev et al., 2009; Epstein and Ji, 2013).
In the field of finance, research on volatility pre-
dictions primarily focuses on two aspects. Firstly,
works in this aspect aim to construct forecasting
methods based on widely used financial models
such as GARCH and ARIMA (Dai et al., 2022;
Spyridon D. Vrontos and Vrontos, 2021; Wang
et al., 2016; Engle and Patton, 2007). The sec-
ond aspect is innovation on the data side (None-

jad, 2017; Zhang et al., 2022; Audrino et al., 2020;
Chen et al., 2020; Wang et al., 2021b). For instance,
(Nonejad, 2017; Zhang et al., 2022) incorporates
macroeconomic indicators into the volatility predic-
tions; and (Audrino et al., 2020) finds that analyz-
ing market emotions can enhance the effectiveness
of volatility prediction.

3 Approach

The overview of KeFVP is shown in Figure
1, which is made up of two components: (1)
knowledge-enhanced adaptive pre-training (KePt)
(top); and a (2) financial volatility prediction (FVP)
model (bottom). The FVP model consists of two
major modules: the (i.) information enhancement
(IE) module (bottom(a)); the (ii.) conditional time
series prediction (CTSP) module (bottom(b)).

3.1 Knowledge-enhanced Adaptive
Pre-training (KePt)

We introduce the KePt method and the KePt dataset
we constructed to answer the challenge of disre-
garding financial metric (FM) knowledge.

3.1.1 KePt Dataset
To construct the KePt dataset, we collect Finan-
cial PhraseBank 6, FiQA (both Task1 and Task 2),
and EC dataset as financial corpora. Then, we ex-
tract descriptions of frequent FMs from Wikidata.
The key FMs, along with their descriptions and
the frequency of their appearances across earnings
call datasets and the KePt dataset, are displayed in
Table 9 in Appendix B. Next, guided by our pre-
compiled list of frequent FMs, we sift through the
financial corpora to isolate sentences that include
these metrics. These sentences are subsequently
integrated into the KePt dataset. Accompanying
descriptions relevant to these FMs are also incor-
porated. A comprehensive statistic is provided in
Table 8 in Appendix B. Please note that each FM is
accompanied by a corresponding description, and
every sentence comprises at least one FM. To foster
future research endeavors, we will make the KePt
dataset publicly available with our source code.

3.1.2 KePt Method
The KePt method is illustrated in Figure 1(top).
We commence with the published BERTBASE (bert-
base-uncased7) as our foundation and proceed to

6https://www.researchgate.net/publication/251231364_
FinancialPhraseBank-v10

7https://huggingface.co/bert-base-uncased
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Figure 1: The overall architecture of KeFVP. KePt at the top, FVP at the bottom.

conduct training using the KePt method. We desig-
nate the embedding layer and the initial 6 encoders
of the BERTBASE as Language Model 1 (LM1) and
assign the remaining layers to Language Model 2
(LM2). LM1, which is used to encode both sen-
tences and FMs, shares its weight parameters.

Concretely, the input sentence is represented
as S = ⟨[CLS], w1, · · · , [MASK] · · · , wN , [SEP]⟩,
while FMs in this sentence, and their
descriptions, are represented as Kn =
⟨[CLS], SPfm, [SEP], SPdesc, [SEP]⟩. Here,
w denotes words in the sentence, SPfm and
SPdesc are FMs and their descriptions. We obtain
representations Hs ∈ RN×D and hd ∈ Rk×D by
feeding S and Kn into LM1,

Hs = LM1(S), hd = LM1(Kn) (1)

where N is the length of the input sentence, k is the
number of FMs contained in this sentence and D
is the hidden dimension. It should be pointed out
that we treat the representation of [CLS] token of
Kn as hd. Subsequently, we select FM word repre-
sentations from Hs as hs ∈ Rk×D, which are from
plain sentences S. To integrate knowledge during
pre-training, we coalesce the representations of FM
words from both plain sentences S and metric de-
scriptions Kn. Specifically, we employ a learnable
weight W ∈ R2D×D to adaptively adjust the con-
tributions of both hd and hs to obtain the fused
representation hc, which is as follows.

hc = W([hd,hs]), (2)

where [hd,hs] ∈ Rk×2D is the stacked matrix of
hd and hs. Next, we use hc instead of the relevant
part of the FM words hs in Hs to form H′

s, and
feed H′

s into LM2 to continue pre-training.

Similarly, we employ the masked language
model (MLM) objective to provide supervision sig-
nals for training both LM1 and LM2 simultane-
ously. Specifically, we randomly mask 15% of the
tokens. When a token is masked, we substitute it
with (1) the [MASK] token 80% of the time, (2) a
randomly drawn token from the default glossary
10% of the time, (3) the unchanged token 10% of
the time. We use the KePt dataset to further pre-
train the BERTBASE model and save the parameters
of this model for future utilization. For more im-
plementation details, refer to Appendix C.

3.2 Financial Volatility Prediction (FVP)

We demonstrate the formulation of the financial
volatility prediction task based on earnings calls.
For each stock, there exist multiple earnings calls,
which are held quarterly in cycles. In this study,
we focus solely on the impact of one of earnings
calls on subsequent stock price volatility. Each
earnings call transcript XT = ⟨x1, . . . , xn⟩ con-
sists of numerous sentences, where n is the total
number of sentences, detailed statistics are in Table
1. Given the input transcript XT , we first employ
a text encoder to map them into proper representa-
tion space. We combine LM1 and LM2 to act as
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the text encoder TEXTENC. Specifically,

HT = TEXTENC(XT ), (3)

where HT ∈ Rn×d denotes the representation of a
transcript, and d is the dimension of hidden layers.

Meanwhile, there also exists an adjusted clos-
ing price8 for each stock on each trading day. As-
suming that an earnings call is announced on the
day d, we collect adjusted closing price series
PI = ⟨pd−I , . . . , pd⟩ for the time window I prior
to the announcement of earnings calls as historical
price data. Subsequently, we calculate historical av-
erage log volatility series VI = ⟨v1, . . . , vI⟩ based
on PI (refer to the Appendix A for details).

Given the transcript representation HT and his-
torical volatility series VI for a specific stock, the
objective of this task is to predict the average log
volatility v[d,d+τ ] at the future time period τ .

3.2.1 Information Enhancement (IE)
We adopt Transformer blocks to compose the in-
formation enhancement module TRANSIE. Con-
cretely, we feed H0

ie = HT attached with sentence
mask Msent into L Transformer blocks,

HL−1
ie = TRANSIE(H0

ie,Msent), (4)

where Msent is to indicate whether the position is a
real feature or a padding. For the l-th Transformer
block, the computation is conducted as follows:

˜Hl−1
ie = SELFATTl(Hl−1

ie ,Msent), (5)
ˆHl−1
ie = LN1

l (H
l−1
ie + ˜Hl−1

ie ), (6)

Hl
ie = LN2

l (
ˆHl−1
ie + FEEDFOWARD( ˆHl−1

ie )), (7)

where SELFATT denotes self-attention mechanism
and LN denotes layer normalization (Vaswani et al.,
2017). Then, we obtain the transcript representa-
tion HL−1

ie ∈ Rn×d, serving as the input to CTSP.

3.2.2 Conditional Time Series Prediction
(CTSP)

To predict future volatility, we input historical
volatility information VI into the model, where
I is the total number of timestamps. To jointly pro-
cess time series and text information HL−1

ie after
the IE module, we utilize a CTSP module based
on Autoformer (Wu et al., 2021) to treat HL−1

ie as
a condition when making predictions. Here we de-
fine H0

cd = HL−1
ie to carry out the later operation.

8https://www.investopedia.com/terms/a/adjusted_closing
_price.asp

As shown in Figure 1 (bottom(b)), we employ N
Autoformer encoders to model historical volatility
series. Specifically, for the i-th Autoformer en-
coder AUTOENCi(·), the calculation is as follows:

V0
En = VI ,Vi

En = AUTOENCi(Vi−1
En ). (8)

The output feature Vi
En ∈ RI×d will be provided to

Autoformer decoder AUTODEC(·) and conditional
attention module CONDATT(·) for prediction. We
encapsulate AUTODEC(·) and CONDATT(·) as a
conditional decoder, and we employ M conditional
decoders. Following (Wu et al., 2021), we also
employ a series decomposition module to decom-
pose the time series into trend and seasonal items
(Vt,Vs ∈ RI×d) (refer to Appendix D for details).

For j-th Autoformer decoder AUTODECj(·), we
use Hj−1

cd to fill in the part to be predicted in the
seasonal item Vj−1

s,De to form the conditional sea-

sonal item Vj−1
s,C . Then, we feed Vj−1

s,C along with
Vi
En into AUTODECj(·).

Vj−1
s,C = [Vj−1

s,De;Hj−1
cd ], (9)

Vj
t,De,Vj

s,De = AUTODECj(Vj−1
s,C ,Vi

En), (10)

Vj
t = Vj−1

t + Vj
t,De (11)

where V0
s,De = Vs, V0

t = Vt, and [; ] is the concate-
nation operation. To further capture the interaction
between text and historical volatility information,
we apply the CONDATTj(·) module to fuse Hj−1

cd

and Vi
En beside AUTODECj(·).

Hj
cd = CONDATTj(Hj−1

cd ,Vi
En,Vi

En). (12)

Specifically,

Q = Linearq(Hj−1
cd ),

K,HV = Lineark(Vi
En), Linearv(V

i
En),

Hj
cd = Hj−1

cd + ||Uu=1softmax(
QK⊤
√
d

)HV ,

(13)

where Hj
cd is the output of CONDATTj(·). Then,

we also use Hj
cd to fill in the part to be predicted in

the seasonal item Vj
s,De of AUTODECj(·).

Vj
s,C = [Vj

s,De;Hj
cd], (14)

where Vj
s,C is the conditional seasonal item for the

next Autoformer decoder.
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Table 2: The overall performance. The results with ♮, ♯ and ♭ are retrieved from (Yang et al., 2022), (Li et al., 2020)
and (Sawhney et al., 2020c) respectively, and the remainder except for KeFVP are from (Sawhney et al., 2020b).
KeFVP is the average result across 10 runs. KeFVP(Best) reports the best result in these 10 runs. MSE3∼30 are
MSE scores of different time periods, and MSE is the average over above. The form of A(B) denotes mean (for A)
and standard deviation (for B). The best results are in bold, and the second-best restuls are underlined.

Model
EC MAEC-15 MAEC-16

MSE MSE3 MSE7 MSE15 MSE30 MSE MSE3 MSE7 MSE15 MSE30 MSE MSE3 MSE7 MSE15 MSE30

Vpast 1.12 2.99 0.83 0.42 0.23 - - - - - - - - - -
Price LSTM 0.75 1.97 0.46 0.32 0.24 - - - - - - - - - -

BiLSTM + ATT 0.74 1.98 0.44 0.30 0.23 0.696 1.599♯ 0.560♯ 0.339♯ 0.284♯ 0.691 1.544♯ 0.571♯ 0.362♯ 0.288♯

HAN(Glove) 0.60 1.43 0.46 0.31 0.20 - - - - - - - - - -
MDRM(Audio) 0.60 1.41 0.44 0.32 0.22 - - - - - - - - -

MDRM(Text+Audio) 0.58 1.37 0.42 0.30 0.22 0.630 1.425♯ 0.488♯ 0.320♯ 0.285♯ 0.618 1.426♯ 0.476♯ 0.311♯ 0.259♯

HTML(Text) 0.46 1.18 0.37 0.15 0.13 0.514 1.199♯ 0.440♯ 0.231♯ 0.187♯ 0.579 1.287♯ 0.479♯ 0.300♯ 0.249♯

HTML(Text+Audio) 0.40 0.85 0.35 0.25 0.16 0.487 1.065♯ 0.416♯ 0.272♯ 0.196♯ 0.556 1.160♯ 0.515♯ 0.314♯ 0.236♯

VolTAGE 0.31 0.63 0.29 0.17 0.14 - - - - - - - - - -

KeFVP 0.300 0.610 0.291 0.183 0.114 0.204 0.418 0.187 0.122 0.087 0.318 0.445 0.279 0.303 0.177
(3.31e-2) (1.33e-2) (0.89e-2) (0.63e-2) (1.23e-2) (0.27e-2) (0.32e-2) (0.17e-2) (6.36e-2) (4.42e-2) (3.65e-2) (3.33e-2)

SVM(TF-IDF)♭ 0.70 1.70 0.50 0.34 0.25 - - - - - - - - - -
bc-LSTM♭ 0.59 1.42 0.44 0.30 0.22 - - - - - - - - - -

Multi-Fusion CNN♭ 0.41 0.73 0.35 0.29 0.28 - - - - - - - - - -
NumHTML(Text+Audio)♮ 0.31 - - - - - - - - - - - - - -
Ensemble(Text+Audio)♭ 0.302 0.601 0.308 0.181 0.119 - - - - - - - - - -

KeFVP(Best) 0.276 0.565 0.265 0.171 0.101 0.198 0.407 0.182 0.117 0.084 0.245 0.347 0.194 0.223 0.126

3.3 Model Training and Inference
In the end, we add up the final obtained VM−1

s,C and
VM−1
t , and employ a fully connected layer as the

prediction layer. Specifically,

ŷm = Wp(VM−1
s,C + VM−1

t ) + bp, (15)

where Wp ∈ Rd×1 and bp ∈ R1×1 are the weight
matrix and bias, respectively. The objective is:

L =
∑

D

(
(ŷm − ym)2

)
, (16)

where ŷm is the predicted volatility, and ym is the
ground truth.

4 Experiments

4.1 Datasets
Following previous works, our experiments are
conducted on EC (Qin and Yang, 2019), MAEC-
15, and MAEC-16 (Li et al., 2020) datasets (refer
to Appendix B for details). The statistics are dis-
played in Table 1. We partition each dataset into
training, validation, and testing sets in a 7:1:2 ra-
tio, consistent with prior works. We experiment
on settings of n ∈ {3, 7, 15, 30} days to explore
short- to medium- and long-term performance. For
implementation details, refer to Appendix C.

4.2 Baselines
We group baselines according to the information
(price, text, and audio) they used for prediction.

Price: Vpast (Qin and Yang, 2019), Price LSTM
(Kim and Won, 2018) and BiLSTM + ATT (Siami-
Namini et al., 2019);

Price and text: HAN (Hu et al., 2021),
HTML(Text) (Yang et al., 2020), SVM(TF-IDF)
(Tsai and Wang, 2014; Ding et al., 2014);

Price, text, and audio: bc-LSTM (Poria et al.,
2017), Multi-Fusion CNN (Sebastian and Pierucci,
2019), MDRM(Text+Audio) (Qin and Yang, 2019),
Ensemble(Text+Audio) (Sawhney et al., 2020c),
NumHTML(Text+Audio) (Yang et al., 2022),
HTML(Text+Audio) (Yang et al., 2020), VolTAGE
(Sawhney et al., 2020b).

4.3 Main Results

As shown in Table 2, we report the main results
compared with baselines. Following (Sawhney
et al., 2020b; Yang et al., 2020; Qin and Yang,
2019), we chose MSE as the comparative metric
(refer to the Appendix C for details). For a fair
comparison, we report the average results of 10
runs and the best results of those 10 runs, as some
baselines (Sawhney et al., 2020b) report average
results, while others (Yang et al., 2022; Li et al.,
2020; Sawhney et al., 2020c) do not. We make pre-
dictions for 3, 7, 15, and 30-day periods following
previous works. Although on the EC dataset, for
the MSE15 results, our method did not perform
as well as expected, KeFVP outperformed all base-
lines in terms of both average and best results for
other time periods. For day 7 of the EC dataset
and day 15 of the MAEC-16 dataset, KeFVP is
basically on par with VolTAGE in terms of average
results but exceeded its performance in terms of
best results. In addition, it is worth noting that Ke-
FVP outperforms all models that incorporate both
text and audio information when only text is uti-
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Table 3: Results of ablation study on the EC dataset. KeFVP denotes our overall method; KeFVP(w/o CTSP & IE)
denotes removing CTSP and IE, and only text remains; KeFVP(w/o Text) denotes removing text only historical
price remains; KeFVP(w/o IE) denotes removing information enhancement (IE); KeFVP(w/o X) denotes using
text embedding from raw BERTBASE (X = KePt) and adaptively pre-trained PLMs without knowledge injection
(X = Knowledge).

Pattern Model MSE MSE3 MSE7 MSE15 MSE30

FVP

KeFVP(w/o CTSP & IE) 0.392 0.743(2.94e-2) 0.380(1.72e-2) 0.258(1.43e-2) 0.185(1.17e-2)
KeFVP(w/o Text) 0.331 0.647(2.55e-2) 0.328(1.52e-2) 0.210(1.32e-2) 0.138(1.35e-2)
KeFVP(w/o IE) 0.319 0.642(4.80e-2) 0.308(2.08e-2) 0.198(1.60e-2) 0.129(1.38e-2)

KePt
KeFVP(w/o KePt) 0.318 0.644(2.52e-2) 0.311(0.66e-2) 0.196(1.23e-2) 0.120(0.60e-2)

KeFVP(w/o Knowledge) 0.319 0.650(3.11e-2) 0.310(1.19e-2) 0.195(1.33e-2) 0.120(0.69e-2)
Overall KeFVP 0.300 0.610(3.31e-2) 0.291(1.33e-2) 0.183(0.89e-2) 0.114(0.63e-2)

lized, which proves the superiority of our method.

4.4 Ablation Study

For KePt. As shown in Table 3, we conduct abla-
tion studies to substitute KePt with text embedding
counterparts: KeFVP(w/o KePt) and KeFVP(w/o
Knowledge). Relative to KeFVP, the effects of both
KeFVP(w/o Knowledge) and KeFVP(w/o KePt)
decrease, which indicates that neither the adaptive
pre-training without knowledge nor the direct use
of the raw published BERTBASE is as effective as
that using KePt.

For FVP. To illustrate the effects of various com-
ponents, ablation experiments are carried out on
the EC dataset as shown in Table 3. KeFVP(w/o
IE) drops significantly when we remove IE. It can
be concluded that IE plays a significant role in en-
hancing performance. For KeFVP(w/o Text), we
exclude the effect of text information, meaning that
only time series information is used. As can be
observed, KeFVP(w/o Text) becomes significantly
worse compared to KeFVP. Therefore, only histor-
ical information is insufficient, and combining it
with text information will help prediction. This
also illuminates the capability of CTSP to effec-
tively amalgamate text and time series information,
yielding robust predictions. Furthermore, we in-
vestigate the prediction performance relying solely
on text information. Concretely, we substitute the
CTSP and IE modules with a fully connected layer
and exclusively use text information as input for
prediction (i.e. KeFVP(w/o CTSP & IE)). It can be
observed that KeFVP(w/o CTSP & IE) decreases a
lot compared to KeFVP. Also, KeFVP(w/o CTSP
& IE) drops substantially in contrast to KeFVP(w/o
IE). This demonstrates the significance of CTSP.

Table 4: Comparison with financial PLMs on the EC
dataset. FVP(PLMs) denotes using text embedding from
the corresponding PLMs. Corpus Size of FVP(KePt-
BERT) and FVP(FinBERT) are counted by the number
of sentences in each corpus, while FVP(FLANG-BERT)
is counted by the number of documents in each corpus.

Model Corpus Size MSE MSE3 MSE7 MSE15 MSE30

FVP(BERTBASE) - 0.318 0.644(2.52e-2) 0.311(0.66e-2) 0.196(1.23e-2) 0.120(0.60e-2)
FVP(FinBERT) 406,019 0.318 0.631(2.22e-2) 0.322(0.72e-2) 0.195(1.19e-2) 0.122(0.74e-2)

FVP(FLANG-BERT) 696,001 0.313 0.644(5.75e-2) 0.293(1.86e-2) 0.190(0.78e-2) 0.124(0.59e-2)
FVP(KePt-BERT) 8,732 0.300 0.610(3.31e-2) 0.291(1.33e-2) 0.183(0.89e-2) 0.114(0.63e-2)

4.5 Financial PLMs

In this section, we compare the performance of our
KePt-BERT with two popular BERT-based finan-
cial PLMs (FinBERT (Araci, 2019) and FLANG-
BERT (Shah et al., 2022)) on the volatility predic-
tion task. The results are presented in Table 4.

FVP(FinBERT) is worse than FVP(KePt-BERT)
in this task. We denote KeFVP as FVP(KePt-
BERT) to clearly indicate the PLMs it utilizes.
Note that FVP(FinBERT) is built on FinBERT
(Araci, 2019), further training BERTBASE (Devlin
et al., 2019) on large financial corpora (consists of
TRC2-financial, Financial PhraseBank, and FiQA
dataset) (containing approximately 406,019 sen-
tences in total) but neglecting FM knowledge,
whereas FVP(KePt-BERT) using KePt is based on
a much smaller corpus (KePt dataset, containing
8,732 sentences) with FM knowledge. This obser-
vation underscores the potential of enhancing the
efficacy of volatility prediction through the utiliza-
tion of KePt to inject knowledge.

Moreover, we conducted experiments involv-
ing FLANG-BERT, designated as FVP (FLANG-
BERT). Notably, it’s important to acknowledge that
the dataset used for training KePt-BERT is also
notably smaller than that of FLANG-BERT. The
specific corpus sizes are provided in detail within
the Table 4. It is apparent that in this task, both Fin-
BERT and FLANG-BERT exhibit less favorable
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Table 5: Comparison with non-text baselines.

Model MSE MSE3 MSE7 MSE15 MSE30

Linear Regression 0.622 0.995(3.20e-2) 0.595(5.83e-2) 0.495(3.90e-2) 0.402(3.80e-2)
GARCH 1.756 2.084(1.88) 1.729(1.78) 1.657(1.85) 1.555(1.83)
ARIMA 0.611 0.944(6.94e-1) 0.596(6.66e-1) 0.497(7.10e-1) 0.407(5.78e-2)

KeFVP(w/o Text) 0.331 0.647(2.55e-2) 0.328(1.52e-2) 0.210(1.32e-2) 0.138(1.35e-2)
KeFVP 0.300 0.610(3.31e-2) 0.291(1.33e-2) 0.183(0.89e-2) 0.114(0.63e-2)

performance compared to KePt-BERT.

4.6 Non-text Baselines

Furthermore, we extend our experiments on the EC
dataset to include non-text baselines, namely the
classical Linear Regression, GARCH, and ARIMA
models. These additional baselines are presented in
the Table 5. Due to data availability constraints and
the need to ensure comparability, we have main-
tained the use of historical price information as
non-textual data, consistent with previous works.
Notably, we have refrained from incorporating tex-
tual data from earnings calls in this context.

Regarding the interpretability of transformer-
based models, regression models offer intuitive
explanations due to their fewer parameters. How-
ever, their limited fitting capacity restricts their
effectiveness. Transformer-based models exhibit
robust fitting capabilities, albeit with a larger pa-
rameter count. These models can be explained vi-
sually through methods like attention visualization
to some extent, which aids in the intuitive under-
standing of a substantial number of parameters and
thereby contributes to result comprehension.

Simultaneously, we introduced KeFVP (w/o
Text) as a point of comparison. This outcome rep-
resents the results derived solely from the Auto-
former model’s treatment of time series data. In
comparison to KeFVP, it is evident that the incor-
poration of textual information yields a significant
enhancement in predictive performance compared
with dealing with time series data in isolation.

4.7 Case Study

As shown in Figure 2, we visually exhibit the in-
fluence of different text embeddings for volatility
predictions. We select the case related to Fidelity
National Information Services (FIS Inc), an Ameri-
can multinational corporation that offers financial
products and services, from the EC dataset. All
analyses are based on the 3-day prediction. Fig-
ure 2(a) is the golden label of this case. Day 28
(the light gray vertical dashed line in the chart)
marks the release date of the earnings call, with
the subsequent period constituting the target of our
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Figure 2: Impact of text embeddings. The form of P(Q)
denotes predicted results (for P) and margins (for Q).

prediction, and the preceding period representing
the historical volatility series. Figure 2(b-e) demon-
strate the predicted results of KeFVP, KeFVP(w/o
Knowledge), KeFVP(w/o KePt), and Price Only
(relying solely on the historical price), respectively.
The prediction of KeFVP (in Figure 2(b)) is the
closest to the golden label. This proves that KePt is
the most efficacious of all counterparts. The margin
between the predicted result (−3.6089) and golden
label (−4.2025) in Figure 2(e) is 0.5936, which
is substantially greater than KeFVP (the margin
is 0.2016), and also larger than the other counter-
parts (KeFVP(w/o Knowledge) (0.5035) and Ke-
FVP(w/o KePt) (0.5133)). This indicates that com-
bining information from time series and text data
can help predictions. Still, more importantly, the
different levels of understanding of text data (differ-
ent text embeddings) play a great role in prediction.

4.8 Evaluation on KePt

Financial sentiment analysis serves as a corner-
stone in the realm of financial text mining. This
task is dedicated to scrutinizing the emotional dy-
namics within the financial market, and its efficacy
is anchored in a deep understanding of financial
texts. In this section, we apply our KePt method
to financial sentiment analysis as a further testa-
ment to its effectiveness. We employ three standard
datasets for this purpose: FiQA-headline, FiQA-
post, and PhraseBank. Comprehensive statistics
along with experimental settings are elaborated
in Appendix E. For the FiQA-headline and FiQA-
post datasets, our performance metrics are Mean
Squared Error (MSE) and R Square (R2). For the
PhraseBank dataset, we gauge performance using
Accuracy (Acc) and Macro-f1 (F1) scores. The
ensuing results are encapsulated in Table 6.

We compare KePt with two baselines: KePt(w/o
Knowledge) and BERTBASE. In all datasets, KePt
outperforms, further attesting to its potency. When
comparing KePt and KePt(w/o Knowledge) on the
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Table 6: The results of KePt on financial sentiment
analysis. KePt(w/o Knowledge) denotes adaptively pre-
training on the KePt dataset without knowledge injec-
tion.

Model FiQA-headline FiQA-post PhraseBank
MSE ↓ R2 ↑ MSE ↓ R2 ↑ Acc(%) ↑ F1(%) ↑

BERTBASE 0.115 0.297 0.101 0.342 80.54 82.97
KePt(w/o Knowledge) 0.100 0.297 0.084 0.438 78.40 82.56

KePt 0.080 0.435 0.077 0.488 82.73 83.80
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Figure 3: Visualization of sentence embeddings. Con-
taining FM denotes sentences with FMs while Missing
FM refers to those without them.

FiQA-headline and FiQA-post, the improvement
for MSE and R2 are 0.020 and 0.138 on FiQA-
headline, and the improvement for these metrics
are 0.007 and 0.05 on FiQA-post. These improve-
ments align with the FM Ratio (17.89% for FiQA-
headline and 9.19% for FiQA-post) presented in
Table 10 in Appendix E.1. KePt exerts a more pro-
nounced effect on datasets with a higher FM Ratio,
indicating the positive influence of incorporating
FM knowledge on text understanding.

4.9 Sentence Embedding Visualization

To further elucidate the effect of KePt, this sec-
tion provides visual demonstrations of sentence em-
beddings from three ablation models: (a) KeFVP,
(b) KeFVP(w/o Knowledge), and (c) KeFVP(w/o
KePt). As shown in Figure 3, this case is from the
EC dataset, the earnings call transcript issued by
Fidelity National Information Services (FIS Inc) on
February 7, 2017. The total sentence number of this
transcript is 147, and there are 58 sentences con-
taining FM and 89 sentences not containing. We
apply PCA (Principal Component Analysis) to re-
duce the dimensionality of sentence embeddings to
represent them in a two-dimensional space. Com-
paring Figure 3(a) with (b) and (c), we can observe
that Figure 3(a) has a more dispersed distribution
whether for sentences containing FM or sentences
missing FM. So it can be inferred that injecting FM
knowledge can not only improve the representation
of sentences containing FM but also improve the
representation ability of sentences missing FM.

Table 7: Comparison of time series models on the EC
dataset. KeFVP(Y) denotes the KeFVP equipped with
different time series models (CondTF = Conditional
Transformer, CondLSTM = Conditional LSTM).

Model MSE MSE3 MSE7 MSE15 MSE30

KeFVP(CondTF) 0.388 0.731(4.34e-2) 0.368(1.06e-2) 0.254(1.04e-2) 0.198(0.87e-2)
KeFVP(CondLSTM) 0.327 0.681(4.53e-2) 0.320(2.86e-2) 0.195(1.44e-2) 0.113(0.90e-2)

KeFVP(CTSP) 0.300 0.610(3.31e-2) 0.291 (1.33e-2) 0.183 (0.89e-2) 0.114 (0.63e-2)

4.10 Impact of Different Time Series Models

To highlight the effect of CTSP, we conduct exper-
iments employing different time series models in-
stead of Autoformer. We replace Autoformer with
Transformer by removing the series decomposition
and replacing auto-correlation (Wu et al., 2021)
with self-attention, and the remaining operations
are in line with the rest of CTSP. We refer to this
model as the conditional Transformer (CondTF).
As demonstrated in Table 7, there is a noticeable
performance gap between KeFVP(CondTF) and
KeFVP(CTSP), which illustrates merging price and
text information under Autoformer is more effec-
tive. In addition, we borrow the Conditional LSTM
(Sawhney et al., 2020b) as another counterpart,
which we called KeFVP(CondLSTM). Overall, Ke-
FVP(CTSP) is better than KeFVP(CondLSTM).
For MSE30, KeFVP(CondLSTM) is comparable
to KeFVP(CTSP), while the standard deviation
of KeFVP(CondLSTM) is much larger than Ke-
FVP(CTSP), which indicates that the stability of
KeFVP(CTSP) is superior to KeFVP(CondLSTM).
We also add further case studies in Appendix F to
explore the impact of textual information on time
series predictions.

5 Conclusion and Future Work

In this work, we present KeFVP and systematically
illustrate the FM knowledge introduction into pre-
dictions. The KePt method is proposed and the
KePt dataset is concurrently constructed to serve it.
The FVP equipped with IE and CTSP modules to
integrate text and price information drives results to
SOTA. Further, this method is also informative for
research based on other financial text (e.g. news,
tweets, etc.). In the future, we will explore ways to
incorporate other financial knowledge (e.g., finan-
cial analysis formulas) into financial applications.

Limitations

While our method underscores the significance of
incorporating FM knowledge to enhance volatility
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predictions and financial sentiment analysis, it is
not without limitations that should be addressed.

Primarily, the scope of our training data has con-
strained the extent of performance improvement.
Despite the advancements, the limited size of our
dataset has inevitably affected our model’s capac-
ity to perform optimally. Some future work will
focus on augmenting the volume of training data to
further enhance model performance.

Secondly, our method is fundamentally built on
encoder-based pre-trained models (BERT). How-
ever, the applicability of our approach to other
model architectures like decoder-based (e.g., GPT
series) and encoder-decoder-based (e.g., T5 series)
models remains unexplored. We postulate that the
introduction of FM knowledge may still be benefi-
cial for these models, and hence, exploring this is a
promising direction for future research.
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Table 8: Statistics on dataset KePt. The overall number
of sentences in KePt is under #Total Sent., and the Ave.
Length denotes the average length of sentences. The
overall number of FMs in KePt and the average number
of FMs in each sentence are under #Total FM. and #
Ave. FM., respectively.

Dataset #Total Sent. Ave. Length #Total FM. #Ave. FM.
KePt 8732 156.19 11442 1.31

Financial Metrics KePt EC MAEC-15 MAEC-16 Total
EPS 1194 978 337 628 #REF!

EBIT 173 121 25 56 #REF!

EBITDA 145 614 377 665 #REF! s

Leverage 1898 552 414 674 #REF!

Profit Margin 182 50 39 62 #REF!

Income Statement 204 40 26 59 #REF!

Balance Sheet 1154 440 283 606 #REF!

Net Income 630 234 210 463 #REF!

Cash Flow 1837 727 431 774 #REF!

Tax Rate 2085 597 195 354 #REF!

Operating Margin 545 527 157 207 #REF!

Gross Margin 505 473 323 624 #REF!

ROI 402 34 24 26 #REF!

COGS 95 31 6 7 #REF!

Total 5418 2847 5205 #REF!

Frequency
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Figure 4: Occurrence frequency of main FMs on the
KePt dataset.

A Volatility Calculation

Following (Sawhney et al., 2020b), for a specific
stock, its adjusted closing price on the trading day j
is pj , and the average log volatility over trading day
dst to trading day dst + δ is calculated as follows:

v[dst,dst+δ] = ln(

√∑dst+δ
j=dst

(rj − r)2

δ
), (17)

where the return of trading day j is defined as rj =
pj

pj−1
− 1, and r is the mean of return over trading

day dst to trading day dst + δ.
For the historical price data PI =

⟨pd−I , . . . , pd⟩, we follow previous works
(Qin and Yang, 2019; Sawhney et al., 2020c;
Yang et al., 2020; Sawhney et al., 2020b) to
calculate the historical average log volatility
VI = ⟨v[d−I,d−I+1], . . . , v[d−I,d]]⟩ for the time
window I according to Equation (17), where
dst = d− I and δ ∈ {1, 2, . . . , I}. For simplicity,
we abbreviate VI as VI = ⟨v1, . . . , vI⟩ taking the
values of δ as subscripts.

B Dataset Analysis

EC Following previous works, our experiments
are conducted on the EC dataset, a publicly avail-
able earnings call dataset released by (Qin and
Yang, 2019). The dataset contains 559 earnings
call transcripts for 277 S&P 500 companies. Each

transcript is divided into a series of sentences, and
the detailed statistics are displayed in Table 1. In
addition, intuitively, we also illustrate the statistics
of major financial metrics (FMs) for this dataset
in Table 9. The stock prices (time series data) are
extracted from Yahoo Finance 9 in the time frame
from 1 January’17 to 31 December’17.

MAEC-15, MAEC-16 Following the previous
work (Li et al., 2020), we also conduct experiments
on the datasets published in their work, which we
refer to as MAEC-15 and MAEC-16. As they
do not publish processed historical price data, we
grabbed the corresponding historical prices for the
period when the earnings call was issued via Yahoo
Finance (we took a time window of 30 days be-
fore and after). We then use the volatility formula
(17) to calculate the volatility of these prices. We
will also release the processed price dataset in our
source code.

We also provide detailed statistics of the KePt
dataset and main FMs for both the three earnings
call datasets and KePt dataset. The detailed statistic
of KePt dataset is displayed in Table 8. The occur-
rence frequency and detailed description of each
main FM for both earnings call datasets and the
KePt dataset are listed in Table 9. Also, for visual
illustration, we provide distribution maps of the
main FMs over these datasets (Figure 6 and Figure
4). It can be found that the frequency distribution
of FMs is basically the same in all datasets.

C Implementation Details

The KePt is based on the pre-trained BERTBASE
(Devlin et al., 2019), the BERT containing 12 hid-
den layers, and 768 hidden dimensions for each
layer. The number of the epoch is 60 for KePt.
We use the AdamW optimizer while training with
the learning rate initialized by 2e-5. For FVP, we
still employ the Adam optimizer (Kingma and Ba,
2015) and initialize the learning rate to 2e-4, weight
decay to 0.05, and the number of training epochs
is 200. We conduct experiments on two NVIDIA
GeForce GTX 1080Ti, and our codes are imple-
mented based on Pytorch. The average computa-
tion time on the GPU (1080Ti) is 5 hours for KePt
and 15 minutes for FVP. Our source code for both
KePt and FVP will be released later.

Following (Sawhney et al., 2020b; Yang et al.,
2020; Qin and Yang, 2019), we treat the volatility

9https://finance.yahoo.com
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Table 9: Statistics of the main FMs for three public datasets and our KePt dataset. The Description is the explanation
extracted from Wikidata for a specific FM, and the Frequency denotes the number of times the FMs appear in the
dataset. Here we only list the FMs that appear more frequently.

FMs Descriptions Frequency
EC MAEC-15 MAEC-16 KePt

EPS Earnings per share, value of earnings per outstanding share of common stock for a company 978 337 628 1194
EBIT Earnings before interest and taxes, measure of a firm’s profit 121 25 56 173

EBITDA Accounting measure: net earnings, before interest expenses, taxes, depreciation, and amortization are subtracted 614 377 665 145
PE Price–earnings ratio, the ratio of a company’s share price to the company’s earnings per share 16 - 8 238

ROI Return on investment, ratio between the net profit and cost of investment resulting from an investment of some resources 34 24 26 402
COGS Cost of goods sold, carrying value of goods sold during a particular period 31 6 7 95
ROA Return on assets, ratio to express the profitability of a company’s assets in generating income 11 1 9 13

Leverage The use of borrowed funds rather than fresh equity in the purchase of an asset 552 414 674 1898
Gearing Leverage, the use of borrowed funds rather than fresh equity in the purchase of an asset 4 4 13 50

Profit Margin
Profit margin is the ratio between turnover and profit, in other words,

50 39 62 182
what percentage of turnover remains as profit for the company

Income Statement Financial statement of a company: shows the company’s revenues and expenses during a particular period 40 26 59 204
Balance Sheet Accounting financial summary 440 283 606 1154
Net Income Measure of the profitability of a business venture 234 210 463 630
Cash Flow Movement of money into or out of a business, PROJect, or financial product 727 431 774 1837
Tax Rate Ratio (usually expressed as a percentage) at which a business or person is taxed 597 195 354 2085

Operating Margin Relating operating profits to net sales 527 157 207 545
Gross Margin Relating gross profits to net sales 473 323 624 505
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(a) Raw daily volatility series
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Figure 5: Time series decomposition of Ama-
zon.com Inc daily volatility series from 2017/04/01 to
2017/12/31. Subfigure (a) is the volatility series with-
out decomposition, and (b) and (c) are the decomposed
seasonal and trend series, respectively.

prediction as a regression task, and we also chose
the Mean Square Error (MSE) as the comparative
metric as in previous works. The MSE is computed
as follows:

MSE =

∑n
i=1(ŷi − yi)

2

n
(18)

where ŷi is the predicted volatility, yi is the ground
truth.

D Time Series Decomposition

The decomposition process is:

Vt = AVGPOOL(PADDING(VI)),

Vs = VI − Vt,
(19)

where Vt,Vs ∈ RI×d denote trend and seasonal
items, respectively. AVGPOOL(·) denotes the mov-
ing average pooling, and PADDING(·) is to keep
the time series length constant.

As shown in Figure 5, such time series decompo-
sition makes seasonality more apparent and facili-
tates the merging with text information. Intuitively,

Table 10: Statistics on the three datasets for financial
sentiment analysis. #Sent. denotes the total number of
sentences in each dataset. The overall number of FMs
in each dataset is under # FM, and FM Ratio is the ratio
of the previous two. In addition, FM Sent. denotes the
number of sentences containing FMs, and FM / FM Sent.
indicates the average number of FMs in each FM Sent..

Dataset # Sent. # FM FM Ratio (%) #FM Sent. FM / FM Sent.

FiQA-headline

Train 305 61 20.00 59 1.03
Test 87 7 8.05 7 1
Dev. 44 10 22.73 9 1.11

Overall 436 78 17.89 75 1.04

FiQA-post

Train 473 50 10.57 45 1.11
Test 135 15 11.11 13 1.15
Dev. 67 4 5.97 4 1

Overall 675 69 9.19 62 1.11

PhraseBank

Train 3392 784 23.11 674 1.16
Test 969 205 21.16 176 1.16
Dev. 484 112 23.14 92 1.22

Overall 4845 1101 22.72 942 1.17

seasonal series excluding trend factors are more
reflective of volatility, and their integration with
text information will likely amplify this advantage.
For the sake of such reasons, we use Hj−1

cd to fill in
the part to be predicted in the seasonal item Vj−1

s,De

to form the conditional seasonal item Vj−1
s,C for the

j-th Autoformer decoder AUTODEC(·).

E Financial Sentiment Analysis

E.1 Dataset Statistics

As shown in Table 10, we performed statistics
on the three financial sentiment analysis datasets
(FiQA-headline, FiQA-post 10, and PhraseBank 11)
we used. We analyzed the FM Ratio in each dataset,
there are higher FM Ratios in FiQA-headline and
PhraseBank, but a lower Ratio in FiQA-post. This

10https://sites.google.com/view/fiqa/home
11https://www.researchgate.net/publication/251231364_

FinancialPhraseBank-v10
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Financial Metrics EC MAEC-15 MAEC-16 Total
EPS 978 337 628 1943

EBIT 121 25 56 202

EBITDA 614 377 665 1656 s

Leverage 552 414 674 1640

Profit Margin 50 39 62 151

Income Statement 40 26 59 125

Balance Sheet 440 283 606 1329

Net Income 234 210 463 907

Cash Flow 727 431 774 1932

Tax Rate 597 195 354 1146

Operating Margin 527 157 207 891

Gross Margin 473 323 624 1420

ROI 34 24 26 84

Total 5387 2841 5198 13426
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Figure 6: Occurrence frequency of main FMs on the three earnings call datasets.

Table 11: The impact of different text information on time series modeling. These cases are from the EC dataset,
and the results are based on 3-day predictions.

Case Model Top-8 Similar Points Predictions Absolute Difference Ground Truth

American Tower Corp A (20171031)
BERTBASE [0, 3, 7, 8, 11, 14, 22, 26] -4.4576 0.1055 -4.3521

KePt(w/o Knowledge) [0, 3, 7, 8, 11, 14, 22, 26] -4.4624 0.1103 -4.3521
KePt [0, 3, 7, 8, 11, 14, 18, 22] -4.4121 0.0600 -4.3521

Martin Marietta Materials (20171102)
BERTBASE [1, 11, 15, 18, 21, 24, 25, 28] -4.3885 0.1673 -4.5558

KePt(w/o Knowledge) [1, 11, 14, 18, 21, 24, 25, 28] -4.3939 0.1619 -4.5558
KePt [4, 14, 15, 18, 21, 24, 25, 28] -4.4080 0.1478 -4.5558

Apache Corporation (20171102)
BERTBASE [4, 9, 12, 15, 19, 24, 25, 28] -4.1397 0.7434 -3.3963

KePt(w/o Knowledge) [4, 9, 12, 15, 19, 24, 25, 28] -4.1442 0.7479 -3.3963
KePt [2, 7, 12, 15, 16, 19, 25, 28] -4.0860 0.6897 -3.3963

statistical result on FiQA-headline and FiQA-post
is consistent with the effect of KePt on the two
datasets, which is shown in Table 6.

We partitioned the dataset into training, vali-
dation, and test sets following a 7:1:2 ratio for
each dataset. In the FiQA-headline and FiQA-post
datasets, due to the unavailability of golden labels
in the official test set, we partitioned 20% of the
training set as a dedicated test set. In addition, We
adopted the version of the dataset for which more
than 50% agreement was reached as the compre-
hensive dataset for PhraseBank. This dataset was
then partitioned according to the aforementioned
ratios for training, validation, and testing.

E.2 Experiment Settings

We fine-tuned each type of pre-trained model
(BERTBASE, KePt(w/o Knowledge) and KePt),
along with an additional classification head, sepa-
rately on the three datasets. The number of epochs
for fine-tuning is set to 10, 10, and 5, respectively
for FiQA-head, FiQA-post, and PhraseBank. The
learning rate is 2e-5 by using the Adam optimizer
with the default settings. The batch size is 32. We
conduct experiments on the NVIDIA Tesla V100.

F Text Information and Time Series

Within the CTSP module, we introduced the Con-
ditional Attention (CondAtt) module atop the Aut-
oformer framework, aimed at incorporating text
information. Within the CondAtt module, diverse
text inputs yield varied impacts on time series mod-
eling. Our analysis is presented in the Table 11. We
delved into different text models (BERTBASE, KePt
(w/o Knowledge), and KePt) within CondAtt, and
examined their conditional attention with historical
time series information. We show the Top-8 data
points of the time series according to text-to-time
series attention weights (the overall length of the
historical time series data point is 29) for analysis.
We also provide the Ground Truth, predicted results
(Predictions), and the absolute difference between
the Ground Truth and Predictions (Absolute Dif-
ference) for each case. It is evident that distinct
textual inputs capture diverse time series informa-
tion, thereby influencing time-series predictions. It
is worth noting that KePt’s text input improves the
modeling of time series information, resulting in
Predictions that are closer to the Ground Truth and
have a smaller Absolute Difference.
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