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Abstract

Document-level neural machine translation
(DNMT) has shown promising results by incor-
porating more context information. However,
this approach also introduces a length bias prob-
lem, whereby DNMT suffers from significant
translation quality degradation when decoding
documents that are much shorter or longer than
the maximum sequence length during train-
ing. To solve the length bias problem, we pro-
pose to improve the DNMT model in training
method, attention mechanism, and decoding
strategy. Firstly, we propose to sample the train-
ing data dynamically to ensure a more uniform
distribution across different sequence lengths.
Then, we introduce a length-normalized atten-
tion mechanism to aid the model in focusing
on target information, mitigating the issue of
attention divergence when processing longer
sequences. Lastly, we propose a sliding win-
dow strategy during decoding that integrates as
much context information as possible without
exceeding the maximum sequence length. The
experimental results indicate that our method
can bring significant improvements on sev-
eral open datasets, and further analysis shows
that our method can significantly alleviate the
length bias problem1.

1 Introduction

Document-level neural machine translation
(DNMT) (Gong et al., 2011; Hardmeier et al.,
2013; Garcia et al., 2015; Miculicich et al., 2018;
Tan et al., 2019; Maruf et al., 2019; Zheng et al.,
2020; Xu et al., 2020) is proposed to enhance
translation quality by leveraging more contextual
information. Recently, the document-to-document
(doc2doc) DNMT model (Junczys-Dowmunt,

*Corresponding author.
†Equal contribution.
1Code is at https://github.com/ictnlp/LengthBiasDNMT.
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Figure 1: The length bias problem for doc2doc DNMT
model. The translation quality degrades significantly as
the decoding length deviates from the training length.

2019; Liu et al., 2020; Bao et al., 2021; Sun et al.,
2022b), which expands the translation scope from
individual sentences to entire documents, has
demonstrated exceptional performance, thereby
drawing increased attention. For the training of
doc2doc DNMT model, multiple sentences are
assembled into sequences that are close to the
predetermined maximum length, enabling the
model to learn information from the context as
much as possible. However, this training strategy
can lead to overfitting to the maximum length.
Sequences that are significantly shorter than the
maximum length may be overlooked by the model
due to their smaller proportion in the training set.
Besides, the model also lacks the ability to handle
the sequences that exceed the maximum length,
which are not encountered by the model during
training. Consequently, the length bias problem
results in a significant degradation in translation
quality when the length of the decoded sequence
deviates from the maximum sequence length,
which is shown in Figure 1.
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Some researchers have made their attempts
to enhance the length generalization capabili-
ties of DNMT model from various perspectives.
Some approaches employ data augmentation tech-
niques (Junczys-Dowmunt, 2019; Sun et al., 2022b)
to mix documents with shorter segments such as
sentences or paragraphs, thereby augmenting the
diversity of sequence lengths in the training set.
However, the proposed augmentation method does
not necessarily guarantee a balanced length distri-
bution, as the length distribution is still influenced
by the training corpus itself. Bao et al. (2021) in-
corporates a locality assumption as an inductive
bias into the Transformer model, which reduces
the complexity of target-to-source attention. As
a result, their method allows for the setting of
larger maximum lengths, thereby augmenting the
model’s ability to handle longer documents. How-
ever, this method can only bring limited improve-
ments for the short sequences. Besides, the afore-
mentioned approaches are still incapable of directly
handling sequences that exceed the maximum se-
quence length during testing and still require seg-
mentation of excessively long test sequences.

Given above, we aim to enhance the capabil-
ity of our model to handle both long and short se-
quences. Additionally, we seek to enable the model
to directly translate sequences that exceed the max-
imum length, thereby avoiding information loss
caused by segment truncation. To achieve these
objectives, we have made improvements in the sam-
pling of training data, attention weight computa-
tion, and decoding strategies. During training, we
first sample the sequence lengths and then construct
the training data accordingly. This dynamic vari-
ation in sequence lengths within different epochs
ensures that the model encounters a more balanced
distribution of sequence lengths during training.
Furthermore, we introduce a scaling factor during
attention computation to ensure that, even as the
sequence length increases, the model can still focus
on relevant target information and prevent attention
divergence. Lastly, when decoding sequences that
exceed the maximum length, we employ a sliding
window decoding strategy which allows for the
retention of more context information while en-
suring that the context length remains below the
maximum sequence length. These three proposed
methods collectively contribute to improving the
length generalization capabilities of the DNMT
model from different perspectives. Moreover, their

combined application yields further performance
enhancements. We conduct experiments on several
document-level open datasets and the experimental
results indicate that our method can bring signif-
icant improvements. Further analysis shows that
our method can significantly alleviate the length
bias problem.

2 Background

In this section, we will give a brief introduction to
the Transformer (Vaswani et al., 2017) model and
the doc2doc DNMT model.

2.1 The Transformer
The transformer model is based on the encoder-
decoder architecture. The encoder is composed
of N identical layers. Each layer has two sublay-
ers. The first is a multi-head self-attention sublayer,
and the second is a fully connected feed-forward
network. Both of the sublayers are followed by a
residual connection operation and a layer normal-
ization operation. The decoder is also composed
of N identical layers. In addition to the same kind
of two sublayers in each encoder layer, the cross-
attention sublayer is inserted between them, which
performs multi-head attention over the output of
the encoder.

The attention mechanism is the core part of the
Transformer model, which is computed as:

Attention(Q,K,V) = softmax
(
QK⊤
√
dk

)
V,

(1)
where Q,K and V represent the query, key, and
value vectors, respectively. dk denotes the dimen-
sion of the key vectors. The softmax function is
applied to normalize the dot-product similarities
between the queries and keys, and the result is mul-
tiplied by the value vectors to obtain the weighted
sum.

2.2 The doc2doc DNMT model
The doc2doc DNMT model is to translate the whole
document directly. Different from the conventional
DNMT model, which translates documents sen-
tence by sentence with an additional context en-
coder (Tan et al., 2019; Maruf et al., 2019; Yang
et al., 2019; Zheng et al., 2020; Xu et al., 2020;
Yun et al., 2020), multiple sentences will be simul-
taneously input into the doc2doc DNMT model for
training and decoding. The training data consists
of different documents D =

⋃n
i=1{di}, where n
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Figure 2: An example of the sampling probabilities of
different sequence lengths during training.

denotes the number of documents in the training
data. Each document di contains source and tar-
get sentences di =

⋃m
j=1{(xij ,yij)}, where m

denotes the number of sentences in each document.
Besides, special symbols are often inserted within
the documents to distinguish between different sen-
tences. The training objective can be written as:

argmax
θ

n∑

i=1

m∑

j=1

|yij |∑

k=1

P (ykij |y<k
ij ,xi,yi,<j), (2)

where |yij | denotes the number of the words in the
j-th target sentence of the i-th document. During
decoding, documents that exceed the maximum
sequence length are also segmented, otherwise it
will result in a significant decrease in translation
quality.

3 Method

Our method aims to enhance the length general-
ization capabilities of the doc2doc DNMT model,
thereby alleviating the length bias problem. To
achieve this goal, we have made improvements
in three aspects: training data sampling, attention
computation, and decoding strategies.

3.1 Dynamic Length Sampling
Dynamic length sampling (DLS) aims to ensure
that the model has the opportunity to encounter
training sequences of various lengths throughout
the training process, thereby facilitating better
learning and retention of the ability to translate
sequences of different lengths. Therefore, the
key challenge of this method lies in determining
the sampling probabilities for different sequence
lengths. Given that translating complete docu-
ments usually involves longer input and output

Figure 3: An example of the segmented sequences.

sequences, directly learning document-level trans-
lation is more difficult. Hence, in the initial stages
of training, we focus more on training the model on
shorter sequences, which improves training stabil-
ity and accelerates model convergence. As training
progresses, we hope to increase the probability of
sampling longer sequences or documents, allow-
ing the model to gradually learn longer contextual
dependencies.

Following the above intuitions, we define the
sampling probabilities of different lengths as:

pl =
w

1
T
l

∑L
l=1w

1
T
l

, (3)

where L denotes the maximum sequence length
and wl denotes the sampling weight assigned for
different lengths which is defined as wl = e−l.
T is a sampling temperature (Arivazhagan et al.,
2019), which is computed as T = e(ep−γ), where
ep denotes the current epoch number and γ is a
hyperparameter, which should be adjusted accord-
ing to the dataset. The temperature T varies with
the training epoch. An example of the sampling
probabilities of different sequence lengths during
training is shown as in Figure 2, where γ is set
as 5 and max length is set as 8. We can see from
the figure that in the initial stage of training, the
probability of short sequence length being sampled
is relatively high. In the later stages of training,
the probability of different sequence lengths be-
ing sampled tends to be equal. Although in real
training processes, the maximum sequence length
is typically much greater than 8, the pattern of the
sampling probabilities follows a similar trend.

Specifically, before the training of each epoch
begins, we first update the probability of each se-
quence length being sampled according to Equa-
tion 3. Then, for each document di in the train-
ing set, we sample different sequence lengths
[li1, li2, . . . , lik, . . .]. We segment the documents
di into different sequences sik from left to right
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Figure 4: An illustration of the sliding decoding strategy. We set the window size as three sentences in this example
for display convenience.

if the segmented length is shorter than the sam-
pled length. But if the sampled sequence length
is less than the current sentence length of the doc-
ument, we will select the current single sentence
as the input sequence. This overall process can be
demonstrated as:

sik = {xi,a:b,yi,a:b},

s.t.





|xi,a:b| ≤ lik,|yi,a:b| ≤ lik, a < b,

or

|xi,a:b| > lik,|yi,a:b| > lik, a = b

(4)

Different sequences sik don’t overlap with each
other. We show an example of the above process
in Figure 3. In this example, the document has
4 sentences, with lengths of 9, 15, 25, and 8, re-
spectively. The sampled lengths are 35, 1, and 12,
respectively. Therefore, the final input sequence
we obtained contains three segments, with lengths
of 24, 25, and 8, respectively. After processing
the entire training set, we can obtain the sequences
required for the current epoch.

3.2 Length Aware Attention
The role of the attention mechanism is to retrieve in-
formation from the target sequence that is relevant
to itself (self-attention) or the current translation
(cross-attention). However, the DNMT model usu-
ally needs to handle a wide range of context except
for the target sequence, which may interfere with
the normal operation of the attention mechanism,
leading to the divergence of the attention results
and consequently deteriorated translation quality
for long segments.

Inpired by Chiang and Cholak (2022), we pro-
pose the length aware attention (LAA), which adds
a scaling factor to the original attention computa-
tion (Equation 1) to mitigate this issue:

Attention = softmax
(
QK⊤
√
dk

∗ log
ι
l

)
V, (5)

where l denotes the length of the attended sequence
and ι denotes the average length of sequences in
the current training epoch. Because the sequence
lengths are sampled per epoch by DLS, ι also
changes gradually. It can be demonstrated that
incorporating the aforementioned length scale ef-
fectively mitigates the issue of entropy divergence
in attention results when dealing sequences with
different lengths. We have included the proof pro-
cess in A. During decoding, ι is set as the value
corresponding to the final epoch of the training
phase.

3.3 Sliding Decoding

During training, the DNMT model needs to set a
maximum sequence length. However, during the
decoding phase, it often encounters documents that
exceed this maximum length. Directly decoding
such long documents can lead to inferior results,
as the model has not been exposed to documents
exceeding the maximum length during training. A
common approach is to split the long document
into shorter segments and translate them separately,
subsequently concatenating the translation results.
However, such segmentation may result in the loss
of contextual information, thereby affecting trans-
lation quality.

To address these issues, we propose a method
that utilizes a sliding window for decoding (SD).
Specifically, when the length of the input sequence
is smaller than the maximum length, the complete
sequence, including the target sentence and the
context, is used for translation. However, when the
input sequence exceeds the maximum length, we
discard the oldest source-side context information
from the current time step onwards and no longer
employ it to assist in translation. Simultaneously,
the corresponding oldest target-side context infor-
mation is also discarded, but it will be preserved
as part of the translation result. The illustration
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of the overall process is shown in Figure 4. If we
employ a beam search strategy during the decoding
process, we retain the candidate with the highest
generation probability within the current beam for
output and subsequent decoding.

4 Experiments

4.1 Data Preparation

We conduct experiments on 3 most commonly used
English to German (En→De) translation datasets.
The description of the datasets are as follows:

• TED is provided by IWSLT2017 (Cettolo
et al., 2012), containing talks from TED. We
adopt tst2016-2017 as the test sets, and the
rest for the valid sets.

• News contains parallel documents extracted
from NewsCommentary in news domain2.
In our experiments, newstest2015 and new-
stest2016 are used for validation and test, re-
spectively.

• Europarl is extracted from Europarl v7
(Koehn, 2005) and split using SPEAKER tags.
We follow the train/develop/test sets spliting
as Maruf et al. (2019).

We use the Moses toolkit (Koehn et al., 2007)
to tokenize other languages. Besides, integrating
operations of 32K is performed to learn BPE (Sen-
nrich et al., 2016). Following Bao et al. (2021); Liu
et al. (2020), we set the maximum sequence length
as 512 in our main experiments.

4.2 Systems

The systems used for comparision in our experi-
ments are as follows:

• Transformer (Vaswani et al., 2017): We have
obtained three systems with different train-
ing methods based on the Transformer model.
The Trans-sent model is trained with the
sentence-level corpus. The Trans-doc model
is trained with the document-level training
corpus. The Trans-FT model is fine-tuned
based on the Transformer-sent model with the
document-level corpus.

2https://www.casmacat.eu/corpus/news-
commentary.html

• HAN (Tan et al., 2019): This method employs
a hierarchical attention mechanism in Trans-
former to capture contextual information at
sentence-level and word-level.

• Flat (Ma et al., 2020): This methods feeds
the concatenated sentences into a pre-trained
BERT to collect the contextualized represen-
tations of the sentence being translated.

• LED (Beltagy et al., 2020): The proposed
model in this method is equipped with a well
designed sparse attention mechanism. We re-
produce this by using transformers3.

• Doc-Trans (Zhang et al., 2018): This method
introduces a new context encoder to represent
document-level context. They also propose a
two-step training approach to effectively uti-
lize abundant sentence-level parallel corpora.

• G-Transformer (Bao et al., 2021): This
method incorporates a locality assumption as
an inductive bias into the Transformer model.
We train the model with the document-level
corpus from scratch (G-Trans) and also pre-
train the model with sentence-level corpus and
then fine tune the model with the document-
level corpus (G-Trans-FT).

• MR (Sun et al., 2022b): This method splits
each document averagely into different parts
for multiple times and collect all the se-
quences for training.

• ALiBi (Press et al., 2021): This method im-
proves length generalization by adding static
non-learned bias to attention weights. We
train the model with the document-level cor-
pus from scratch (ALiBi) and also pretrain
the model with sentence-level corpus and then
fine tune the model with the document-level
corpus (ALiBi-FT).

• Our System: We applied the proposed
methods, including dynamic length sampling
(DSL), length aware attention (LAA) and
sliding decoding (SD), to the Transformer-
doc model (Trans-doc+Ours) and the G-
Transformer model (G-Trans+Ours), respec-
tively.

3https://github.com/huggingface/transformers
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Models
TED Europarl News

s-BLEU d-BLEU s-chrF d-chrF s-BLEU d-BLEU s-chrF d-chrF s-BLEU d-BLEU s-chrF d-chrF

Trans-sent 24.12 28.02 30.33 32.45 24.91 26.94
Trans-doc 18.51 25.20 30.86 33.11 21.11 24.02
HAN 23.79 28.17 30.74 32.90 24.22 26.31
Flat 24.32 28.17 30.92 33.04 24.85 26.88
LED 18.46 24.29 29.90 32.48 12.13 16.63
Doc-Trans 23.81 27.64 30.74 32.88 24.79 26.77
G-Trans 22.53 25.90 32.02 34.14 23.87 25.90
MR 23.99 28.61 53.73 70.54 31.54 33.75 61.36 69.83 24.79 27.14 54.06 64.33
ALiBi 19.65 26.30 47.22 68.26 29.99 32.54 60.19 69.28 12.67 22.83 36.19 59.91
ALiBi-FT 20.85 27.55 49.54 69.71 29.64 32.55 59.76 69.41 17.37 24.02 43.49 60.79

Trans-FT 24.31 28.48 54.70 70.51 31.16 33.58 61.29 69.91 23.96 27.33 53.27 64.98
Trans-doc + DLS + LAA 24.93 28.95 55.18 70.69 31.85 34.32 61.26 70.01 24.57 28.52 53.13 65.47
Trans-doc + Our method 24.60 28.43 55.16 70.55 31.63 34.33 60.91 69.93 23.72 27.95 52.50 65.20
G-Trans-FT 25.07 28.86 55.65 70.79 32.38 34.51 62.15 70.32 25.87 27.82 55.71 65.14
G-Trans + DLS + LAA 25.37 29.07 55.76 70.81 32.67 34.81 62.06 70.23 26.70 28.66 55.96 65.24
G-Trans + Our method 24.87 28.53 55.34 70.51 32.67 34.82 61.99 70.17 26.56 28.52 55.78 65.09

Table 1: The experimental results of our proposed method on TED, Europarl and News. The best score are shown in
bold. For our proposed Trans-doc + Our and G-Trans + Our, the documents are translated as a full unit without
segmentation, while for other methods, the documents are segmented according to the maximum sequence length of
512.

Components Scores
ID DLS LAA SD s-BLEU d-BLEU s-chrF d-chrF

1 ✔ ✔ ✔ 31.63 34.33 60.91 69.93
2 ✔ ✔ ✘ 31.85 34.32 61.26 70.01
3 ★ ✘ ✘ 31.86 34.21 61.33 69.84
4 ✔ ✘ ✘ 32.06 34.37 61.52 69.94
5 ✘ ✔ ✘ 31.36 33.72 61.26 69.93
6 ✘ ✘ ✘ 31.16 33.58 61.29 69.91

Table 2: The ablation study of our proposed method. We
conduct ablation study on Europarl with Trans-FT. The
marker ✔ and ✘ indicate the component is involved and
not involved, respectively. The marker ★ indicate the
length sampling is applied without dynamic adjusting
the temperature.

Implementation Details All the systems are
implemented as the base model configuration
in Vaswani et al. (2017). We train our system on
4 NVIDIA 3090 GPUs by using Adam (Kingma
and Ba, 2017) optimizer. Most training param-
eters are kept the same with Bao et al. (2021),
where the learning rate lr = 5e − 4, β1 = 0.9,
β2 = 0.98. The warmup step is set to 4000 and
the label smoothing (Szegedy et al., 2015) value is
set to 0.1. The dropout ratio is set to 0.3 on TED
and News, and 0.1 on Europarl for its larger scale.
During decoding, we set the context window to 0.8
of the maximum sequence length used during the
training phase to prevent performance degradation
caused by overly long target sequences.

4.3 Main Results

During decoding, the test documents with a length
less than the maximum length will be directly in-
put into the model. Documents with a length
greater than the maximum length will be seg-
mented into several shorter sequences accord-
ing to the maximum length and input into the
model separately (Liu et al., 2020). We gener-
ate the translations with a beam size of 5 and
length penalty α = 1. We use the SacreBLEU
tool (Post, 2018) to evaluate the output with s-
BLEU (sentence BLEU) (Papineni et al., 2002),
d-BLEU (document BLEU) (Liu et al., 2020), s-
chrF (sentence-chrF) (Popović, 2015) and d-chrF
(document-chrF), respectively. To make our exper-
imental results comparable with previous studies
(Sun et al., 2022b), our BLEU scores are calculated
in a case-insensitive manner.

The main results are shown in Table 1. In the
En→De translation task, our method outperforms
the majority of the comparative systems, when
in combination with the conventional doc2doc
DNMT (Trans-doc+DLS+LAA). Furthermore, our
proposed Trans-doc+DLS+LAA achieves perfor-
mance comparable to the best-performing com-
parative system G-Trans-FT and surpass MR by
a large margin. Further improvements are observed
when integrating our method with G-transformer
(G-Trans+DLS+LAA), and it can achieve state-
of-the-art performance on all datasets. However,
when combined with the slide decoding strategy,
the performance drops slightly. We suspect that

11550



this may be due to the error accumulation problem.
On the other hand, the slide decoding strategy aims
to solve the length extrapolation problem, and we
further explore its advantages in Section 5.2.

5 Discussion

5.1 Ablation Study

To further understand the impact of each step of
our method, we perform further studies by remov-
ing certain parts of our method. The results are
given in Table 2. Upon comparing the performance
of systems 2 and 6, it is evident that removing
dynamic length sampling (DLS) significantly de-
teriorates the model’s performance. This obser-
vation validates the importance of DLS and LAA
in enhancing the system’s performance. Further-
more, comparing the results of system 5 and 6,
Length Aware Attention (LAA) also demonstrates
a notable improvement, indicating that our method
can effectively capture the contextual information.
Lastly, when comparing system 3 and system 4, we
find that dynamic adjust the temperature can fur-
ther improve the performance without the need for
fine-tuning. Therefore, the above results provide
evidence that all of our methods are effective in
enhancing the performance of doc2doc DNMT.

In addition, to verify the effectiveness of our
proposed Length Aware Attention (LAA), we con-
ducted a statistical analysis of the average entropy
of the attention mechanism when translating sen-
tences and documents of length 512. As shown
in 4, it can be observed that the entropy of the at-
tention mechanism is more stable after applying
the LAA method, which indicates that after apply-
ing the LAA mechanism, the model demonstrates
better consistency in handling sentence-level and
document-level text. Furthermore, by applying the
DLS and LAA method, the entropy of attention
when translating the document is lower than that of
the FT method, indicating that the model concen-
trates more on the long-range contexts.

5.2 Length Generalization

The main motivation of our approach is to en-
hance the length generalization performance of the
doc2doc DNMT model, thereby addressing the is-
sue of length bias. To assess the effectiveness of
our method in achieving this goal, we conduct fur-
ther analysis based on the English-German datasets.
We decode the test set using the systems in the
main experiments with different maximum lengths

and measured their corresponding d-BLEU scores.
The results are presented in Figure 5. The results
indicate that the baseline system and many com-
parison systems experience a significant decrease
in d-BLEU score when the decoding length devi-
ates from the maximum length used during training
(512). In contrast, our method exhibits no signifi-
cant decrease in BLEU score. This demonstrates
that our approach can enhance the length general-
ization performance of the doc2doc model and al-
leviate the issue of length bias. In particular, when
the decoding length exceeds the training length, the
performance of the existing methods suffers from
a huge drop, while our proposed slide decoding is
able to maintain the high translation quality.

To further comprehend why our approach can
enhance the length generalization performance of
the model, we perform a visualization of the length
distribution of the training data. We visualized the
length distribution of the original corpus used for
training, the data employed by the MR method, and
the data used in the final epoch after incorporating
DLS. The results are presented in Figure 6, which
demonstrates that our approach achieves a more
uniform length distribution. Consequently, our
method has the capacity to improve the length gen-
eralization performance of the model to a greater
extent.

5.3 The Discourse Phenomena

To investigate the translation of discourse phenom-
ena, we conduct experiments on ContraPro test
suite (Müller et al., 2018), a large contrastive test
suite extracted from OpenSubtitles 2018 (Lison and
Tiedemann, 2016)., to measure the translation accu-
racy of English pronoun "it" into the corresponding
German translations "er", "sie" or "es". We employ
Europarl as the training set, and the maximum se-
quence length is setting to 512. As shown Table 3,
compared to random selection, the sentence-level
translation model has the ability to infer a portion of
the correct answer based on the information within
the sentence. However, with the help of contextual
information, document-level neural machine trans-
lation models outperforms sentence-level baseline
by a large margin. Utilizing our proposed DLS and
LAA, the error rate of Transformer-doc is further
reduced, indicating that our approach can further
enhance the capability of the model to capture the
contextual information.
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Method ContraPro ACC(%)

Random 33.33
Trans-sent 52.00
Trans-FT 70.58
Trans-doc+DLS+LAA 72.28

Table 3: The results of ContraPro test suit, measured by
accuracy.

Method sentence document δ

Trans-FT 2.65 4.0 1.35
Trans-DLS 2.51 3.95 1.44
Trans-DLS-LAA 2.74 3.94 1.20

Table 4: The average entropy of the attention mecha-
nism when translating at sentence and document level.
δ represents the difference in entropy when translating
at different granularity.

6 Related Work

6.1 Document-Level Neural Machine
Translation

Document-level neural machine translation can
be broadly divide into two categories, in-
cluding sentence-to-sentence (sen2sen) approach
and document-to-document (doc2doc) approach
(Maruf et al., 2021). The former feed the con-
text as additional information to assist the transla-
tion of each single sentence in the document inde-
pendently, which is also known as multi encoder
method (Lupo et al., 2022). Jean et al. (2017) lever-
aged additional attention to capture the previous
context; Kuang and Xiong (2018) proposed to con-
trol the usage of context by a gate function; Wang
et al. (2017), (Miculicich et al., 2018), and (Zheng
et al., 2020) introduced hierarchical attention net-
works to model the contextual information from
the documents; Maruf et al. (2019) and Martins
and Astudillo (2016) designed a selective atten-
tion network to extract most useful information
from the massive context; Yang et al. (2019) pro-
posed a query-guided capsule network to further

11552



model the relationship between the context words.
However, the scarcity of the datasets (Chen et al.,
2021) and the sparsity of the contextual informa-
tion make these model hard to be trained. Lupo
et al. (2022) further address this problem by split-
ting the sentence into smaller pieces to augment
the document-level corpus.

Another type of methods fall into doc2doc
paradigm, which treats the entire document as a
whole unit. Tiedemann and Scherrer (2017) pro-
posed that by extending the translation granularity
from sentence to documents the translation become
more coherent; Liu et al. (2020) and (Ma et al.,
2020) found that the translation quality could be
improved by a large margin through incorporating
pretraining; Bao et al. (2021) suggest that direct
training a doc2doc transformer may fail to con-
verge on small datasets, and proposed to solve this
problem by incorporating group attention masks.
Similarly, (Sun et al., 2022b) proposed to tackle
the same problem by expanding the dataset with a
multi-resolution (MR) strategy. On the other hand,
this strategy improves the length generalization of
the doc2doc models. Compared to the MR strategy,
our proposed DLS effectively balances the amount
of the text of different lengths. The experimental
results shows that our proposed method is capable
of handling the text with arbitrary length.

6.2 The Length Bias Problem

Although the length bias problem has not been ex-
plore in the field of DNMT, there still exists several
studies emphasis on the length extrapolation prob-
lem. Press et al. (2021) proposed to solve the length
extrapolation problem by introducing local assump-
tion as the inductive bias in the positional encoding.
Following this work, Chi et al. (2022) and Sun et al.
(2022a) further proposed new positional encoding
methods to overcome this issue. Additionally, (Ru-
oss et al., 2023) introduced random positional en-
coding training strategy to overcome the length
extrapolation problem, and achieved remarkable
progress within the field of language modeling.

7 Conclusion

In this work, we aim to address the issue of length
bias in the training of the doc2doc DNMT model.
To achieve this objective, we propose several meth-
ods, including dynamic length sampling, length
aware attention and sliding decoding. We conduct
experiments on multiple publicly available datasets,

and the results demonstrate a significant improve-
ment achieved by our method. Further analysis
indicates that our approach can enhance the length
generalization capability of the model effectively.
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Limitations

Although our proposed methods significantly im-
prove the translation quality and the length general-
ization capability, there still exist some limitations:
(1) the slide decoding can not further improve the
translation quality as the error accumulation prob-
lem of auto-regression model has not been solved;
(2) the decoding consumption using SD is slightly
higher than the "segment then decoding" method.
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A The Proof of the Length Aware
Attention

The entropy of the attention mechanism can be
calculated using the following formula4:

Hi = −
n∑

j=1

ai,j log ai,j

= log
n∑

j=1

eλqi·kj −

n∑
j=1

eλqi·kj (λqi · kj)

n∑
j=1

eλqi·kj

,

(6)

where Hi indicate the attention entropy of the i-th
token, λ is the scale factor, and ai,j is the attention
weight. Let si,j = qi · kj and pi,j =

si,j
n∑

j=1
eλsi,j

, we

get:

Hi = log
n∑

j=1

eλsi,j − λ
n∑

j=1

pi,jsi,j ,

= log n+ log
1

n

n∑

j=1

eλsi,j − λ
n∑

j=1

pi,jsi,j

(7)

According to Mean-field theory, we could
change the order of computation between the expo-
nential function and summation:

Hi ≈ log n+ λs̄i − λ
n∑

j=1

pi,jsi,j (8)

where s̄i =
n∑

j=1
si,j/n. Considering the proper-

ties of the softmax function, we can obtain further
approximations:

Hi ≈ log n+ λ(s̄i − λsmax) (9)

Thus, we get:
λ ∝ log n, (10)

where λ is proportional to log n.

4Our derivation is motivated by the following blog:
https://spaces.ac.cn/archives/9034
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