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Abstract

Adapting general-purpose language models has
proven to be effective in tackling downstream
tasks within specific domains. In this paper,
we address the task of extracting entities from
the economics literature on impact evaluation.
To this end, we release EconBERTa, a large
language model pretrained on scientific pub-
lications in economics, and ECON-IE, a new
expert-annotated dataset of economics abstracts
for Named Entity Recognition (NER). We find
that EconBERTa reaches state-of-the-art perfor-
mance on our downstream NER task. Addi-
tionally, we extensively analyze the model’s
generalization capacities, finding that most er-
rors correspond to detecting only a subspan of
an entity or failure to extrapolate to longer se-
quences. This limitation is primarily due to
an inability to detect part-of-speech sequences
unseen during training, and this effect dimin-
ishes when the number of unique instances in
the training set increases. Examining the gener-
alization abilities of domain-specific language
models paves the way towards improving the
robustness of NER models for causal knowl-
edge extraction.

1 Introduction

Implementing robust systems capable of automat-
ically extracting structured information from un-
structured text is critical for a variety of applica-
tions, ranging from event detection (Nguyen and
Grishman, 2015; Bekoulis et al., 2019; Tong et al.,
2020; Pouran Ben Veyseh et al., 2021; Liang et al.,
2022) to building knowledge databases (Khoo et al.,
2000; Kim et al., 2020; Harnoune et al., 2021;
Wang et al., 2022). In particular, Named Entity
Recognition (NER) is a canonical information ex-
traction task which consists of detecting text spans
and classifying them into a predetermined set of en-
tity types (Tjong Kim Sang and De Meulder, 2003;
Lample et al., 2016a; Chiu and Nichols, 2016; Ni
et al., 2017). In the past decade, numerous bench-

mark datasets have enabled researchers to com-
pare and improve the performances of NER models
within specific domains such as science (Luan et al.,
2018), medicine (Jin and Szolovits, 2018), law (Au
et al., 2022), finance (Salinas Alvarado et al., 2015),
and social media (Ushio et al., 2022); in some cases,
these datasets have spanned multiple domains (Liu
et al., 2020b) or languages (Tjong Kim Sang and
De Meulder, 2003). Such datasets are crucial for
building models capable of handling a wide range
of downstream applications. In medicine for in-
stance, information extraction systems can allow
clinician and medical researchers to easily deter-
mine which medication is an effective treatment for
a specific disease. Analogously, knowing which
policy intervention produces a certain economic
outcome is imperative for evidence-based policy-
making. However, while much work has been done
on identifying relevant causal entities in biomedi-
cal research (Chang et al., 2022), this question has
been unexplored for impact evaluation (IE) in eco-
nomics. To fill this gap, we introduce ECON-IE, a
NER dataset of 1,000 abstracts from economic re-
search papers annotated for entities describing the
causal effects of policy interventions: intervention,
outcome, population, effect size, and coreference.
To the best of our knowledge, this is the first dataset
of this kind in economics, thereby laying founda-
tions for causal knowledge extraction in the field.

The introduction of pretrained language mod-
els, sometimes referred to as foundation models
(Bommasani et al., 2022), had a profound impact
on the field of information extraction, enabling
substantial gains in performance across domains
by fine-tuning these general-purpose systems on
downstream tasks (Alt et al., 2019; Papanikolaou
et al., 2022). In this paradigm, such models are
often fine-tuned and deployed to perform a domain-
specific task, introducing a distribution shift be-
tween the pretraining data and examples seen at
inference time. Existing work shows that pretrain-
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Figure 1: Illustration of the pipeline for the models under investigation, from modeling to diagnosis

ing a language model on documents from the same
domain as the downstream task improves perfor-
mance (Beltagy et al., 2019), where this domain
adaptation can either be implemented by in-domain
pretraining from scratch (Chu and Wang, 2018; Ri-
etzler et al., 2020; Grangier and Iter, 2022; Huang
et al., 2019), or by further in-domain pretraining
starting from the weights of an existing pretrained
general-purpose model (Lee et al., 2019; Alsentzer
et al., 2019). While pretrained language models
are available across a wide range of domains (Belt-
agy et al., 2019; Lee et al., 2019; Chalkidis et al.,
2020), economics has yet to follow suit. There-
fore we contribute EconBERTa, a language model
pretrained on 1.5 million scientific papers from
economics, demonstrating that it outperforms open-
source general-purpose pretrained models on the
ECON-IE benchmark dataset.

While assessing the quality of a model is of-
ten achieved by measuring performance after fine-
tuning, the knowledge captured by such transfer
learning approaches is opaque. Therefore, it re-
mains unclear, which aspects of a model require
improvement in order to increase robustness dur-
ing deployment. Understanding the weaknesses
of state-of-the-art models on downstream tasks re-
quires operationalizing the notion of generalization.
However, we lack a precise definition of general-
ization in spite of recent attempts to re-explore
the concept (Hupkes et al., 2023). For instance,
high performance on a held-out test set does not
necessarily imply that a model is achieving robust
generalization (McCoy et al., 2019). In this con-
text, we challenge the surface performance of our
pretrained model, and seek cases where it fails to
generalize on the NER task. Our examination re-
veals three common error patterns. First, we show
that most errors occur when the model detects an

entity but fails to properly delimit its boundaries.
We further find that, as the number of tokens in a
span increases, the model is more likely to incor-
rectly predict boundaries. Lastly, our model extrap-
olates more easily to part-of-speech sequences seen
during training, a tendency exacerbated by a low
number of unique spans for a given entity type in
the training dataset.

Taken together, our contributions can be summa-
rized as follows:

• In §3.1, we introduce ECON-IE, a new NER
dataset of 1, 000 abstracts from economic re-
search annotated for entities describing the
causal effects of policy interventions.

• In §3.2, we present EconBERTa, a language
model pretrained on economics research pa-
pers, which demonstrates state-of-the-art per-
formance on in-domain NER.

• In §4, we evaluate the generalization capabili-
ties of our fine-tuned NER-model by perform-
ing a series of diagnostic tests.

The pretrained EconBERTa models, the ECON-IE
dataset, the metadata of the economic pretraining
corpus and the source code to replicate the ex-
periments are available via https://github.com/
worldbank/econberta-econie

2 Related Work

2.1 NLP for economics

Existing work in NLP for economics have focused
on developing models and datasets for the finance
domain. Notably, several studies investigate the
pretraining of BERT-based (Devlin et al., 2018)
architectures on financial data (Araci, 2019; Yang
et al., 2020; Peng et al., 2021; Sakaji et al., 2022).
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Previously released datasets typically comprise
news articles or press releases annotated for senti-
ment analysis (Malo et al., 2014), event extraction
(Jacobs and Hoste, 2022; Lee et al., 2022; Han
et al., 2022), opinion analysis (Hu and Paroubek,
2021) or causality detection in finance (Mariko
et al., 2020). In addition to news articles, corpo-
rate reports (Loukas et al., 2021; Händschke et al.,
2018) are text corpora from economics and busi-
ness, but lack token-level annotations. Our work
fills two gaps by (i) being the first to address infor-
mation extraction from scientific economic content
and releasing a neural language model pretrained
in that domain and (ii) defining a NER annota-
tion scheme and releasing an annotated dataset for
causal entities of economic impact evaluation.

2.2 Domain adaptation
Previous work has also highlighted the utility of do-
main adaptation when developing models so they
can handle tasks in specific domains, as the distri-
bution of input texts can be different in such cases.
This has given rise to a number of adaptation tech-
niques (Daumé III, 2007; Wiese et al., 2017; Ma
et al., 2019; Cooper Stickland et al., 2021; Grang-
ier and Iter, 2022; Ludwig et al., 2022). In the
pretrain-fine-tune paradigm, for pretrained models
to generalize over a task in a specific domain, it
is advised to fine-tune them on domain-specific
datasets, which requires domain-specific annotated
resources (Tsatsaronis et al., 2015; Zhu et al., 2022;
Au et al., 2022; Li et al., 2021). In this paper, we
test whether in-domain pretraining improves per-
formance on a domain-specific task, but we addi-
tionally try to gain a better understanding on these
models’ weaknesses by examining their generaliza-
tion abilities.

2.3 Diagnosing fine-tuned models
Since the rise of general purpose pretrained model,
examining the generalization abilities of fine-tuned
models has sparked interest in the NLP commu-
nity. Early work has shown that it is possible to
achieve seemingly high performance without learn-
ing a given task, and by relying on heuristics and
spurrious correlations (McCoy et al., 2019; Niven
and Kao, 2019; Zellers et al., 2019; Xu et al., 2022;
Serrano et al., 2023). This has pushed recent efforts
to complement coarse-grained metrics such as ac-
curacy and F1-score with new evaluation sets and
metrics (Ribeiro et al., 2020), or with novel ways to
diagnose a model’s errors (Wu et al., 2019; Bernier-

Colborne and Langlais, 2020; de Araujo and Roth,
2023). In this study, we also propose novel fine-
grained analyses aimed at gaining a deeper under-
standing of our model’s performing abilities.

3 Experimental Setup

In this section, we introduce the ECON-IE dataset
for NER (§3.1), present the training procedure
for EconBERTa, and describe the baseline mod-
els (§3.2).

3.1 ECON-IE dataset

Data collection ECON-IE consists of 1, 000 ab-
stracts from economics research papers, totalling
more than 7, 000 sentences.1 The abstracts summa-
rize impact evaluation (IE) studies, aiming to mea-
sure the causal effects of interventions on outcomes
by using suitable statistical methods for causal in-
ference. The dataset is sampled from 10, 000 stud-
ies curated by 3ie2 (White and Gaarder, 2009), pub-
lished between 1990 and 2022, and covering all 11
sectors defined by the World Bank Sector Taxon-
omy (Bumgarner, 2017). To maximize the diversity
of our annotated sample, we perform stratified sam-
pling, i.e. we assign higher sampling weights to
sectors and year ranges under-represented in the
3ie database.3 We then generate a fixed heldout test
set by sampling 20% of the abstracts; the remaining
80% are split to perform a 5-fold cross-validation
set.

Annotation procedure As our goal is to extract
information relevant to describe causal analyses
performed in impact evaluation studies, we draw
from annotation schemes for clinical randomized
control trials. In evidence-based medicine, the
PICO elements are a common knowledge repre-
sentation structure and consists of population, in-
tervention, comparators and outcome (Huang et al.,
2006). We further adjust the PICO scheme to rep-
resent the causal knowledge found in impact eval-
uation studies. We first follow Nye et al. (2018)
and collapse comparators and intervention into a
single category. We further extract two additional
entity types, namely effect size as this information
is key to compare the effectiveness of various inter-
ventions on an outcome, and coreference as spans
referring to a previously mentioned entity can be
useful for a downstream relation extraction model.

1See Fig. 1 for an example of a sentence.
2International Initiative for Impact Evaluation
3See Fig. 6 in App. A.2.6
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Figure 2: Example annotation in INCEpTION interface

Based on these entity types, we designed explicit
annotation guidelines paired with examples.4 10
annotators with at least graduate-level education
in economics and experience reading research pa-
pers were recruited to perform the annotation task.
They received training on the annotation guidelines
including videos on how to use the annotation plat-
form INCEpTION (Klie et al., 2018). Each annota-
tor performed a test round on 10 abstracts and re-
ceived personal feedback from the domain experts
who defined the annotation guidelines. We required
two rounds of annotation per abstract to ensure an
acceptable level of consistency for a reasonable
budget. The corpus of abstracts was divided into
20 subsets of 50 abstracts; each annotator was as-
signed four subsets of 50 abstracts, such that all
1,000 abstracts were annotated by two annotators.
Fig. 2 shows an example sentence of resulting an-
notations.

Given the complexity of the documents and of
the annotation task, we expected some level of dis-
agreement between human annotators. We indeed
found the inter-annotator agreement measured by
the F1-score and the Cohen’s Kappa to be equal
to F1 = 0.87 and κ = 0.71 respectively. Start-
ing from the annotated abstracts, the experts who
defined the guidelines then performed a curation
phase to resolve any disagreement between annota-
tors. When a disagreement was not due to a mistake
in applying the rules but rather to multiple plausi-
ble annotations given existing rules5, the case was
raised and discussed between the experts who came
up with a new rule, e.g. “Annotate the shortest pos-
sible span as long as no information is lost”. The
curation phase led to a final annotation per abstract
and Table 1 summarizes our dataset statistics after
the task was completed.

3.2 Models
Domain-specific language models for economics
While the past few years have seen an explo-
sion of the size of generative language models
(Brown et al., 2020; Zhang et al., 2022; OpenAI,
2023), their autoregressive nature makes them less

4For more details, see App. A.2.6
5Examples of sentences where multiple annotations are

plausible are presented in App. A.3.

# abstracts 1,000
# sentences 7,522

# intervention 6,157
# outcome 8,628
# effect size 1,445
# population 4,824
# coreference 2,518

Total annotations 23,572

Table 1: Summary statistics of the Econ-IE dataset

suited than their bidirectional counterparts for se-
quence labeling tasks such as NER (Devlin et al.,
2018; Schweter and Akbik, 2020; Yamada et al.,
2020). The DeBERTa-v3-base architecture is one
of the current state-of-the-art bidirectional archi-
tectures for NER tasks among encoder-based mod-
els of the same size (He et al., 2023). Our initial
choice was to further pretrain the english-specific
DeBERTa-V3-base model, however its generator
model is not publicly available. We therefore pre-
train our economics-specific models based on the
mDeBERTa-v3 architecture by following the ELEC-
TRA pretraining approach (Clark et al., 2020)6.
Our first model, EconBERTa-FS, is pretrained from
scratch using a vocabulary tailored to the eco-
nomics domain. The second one, EconBERTa-FC,
relies on mDeBERTa-V3-base’s generator and dis-
criminator checkpoints as initial weights.

Pretraining dataset We pretrain the two
EconBERTa models on a corpus consisting of 1.5
million economics papers – 800, 000 full articles
and 700, 000 abstracts. The documents were col-
lected from the leading digital libraries in the field.
A breakdown of the data sources can be found in
Table 2. The resulting dataset consists of 9.4 billion
tokens, i.e. almost three times more than the 3.3 bil-
lion tokens used to train BERT (Devlin et al., 2018).
For more details about the pretraining procedure,
see App. B.1 and App. B.2.

Baseline models To evaluate the effects of pre-
training the EconBERTa models in domain, we com-
pare them against mDeBERTa-v3-base (He et al.,
2023), which has the same architecture. Addi-
tionally, we also include BERT-base-uncased (De-
vlin et al., 2018) and RoBERTa-base (Liu et al.,
2019) as baselines, as they were extensively stud-
ied to analyse the role of domain-specific pretrain-
ing (Beltagy et al., 2019; Chalkidis et al., 2020;
Nguyen et al., 2020; Carrino et al., 2022).

6https://github.com/microsoft/DeBERTa
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Source Documents Tokens Type

RePEc 399,708 5.0B (53%) full articles
SSRN 355,881 3.9B (42%) full articles
NBER 28,456 0.3B (3%) full articles
EconLit 16,517 0.1B (1%) full articles
Scopus 700,340 0.1B (1%) abstracts

Total 1,500,902 9.4B -

Table 2: Summary statistics for each source of eco-
nomics research papers included in the pretraining cor-
pus

NER fine-tuning Finally, all our fine-tuned NER
models rely on a conditional random field (CRF)
layer for classification (Lafferty et al., 2001), as it
has been shown to improve results for sequential
classification tasks (Lample et al., 2016b; Souza
et al., 2020). All the trainings were conducted using
the crf_tagger model from the AllenNLP library7

(Gardner et al., 2017). The hyperparameters used
for fine-tuning are presented in table App. B.3.

4 Model Diagnosis and Results

In this section, we present the performance of the
different pretrained models on the NER task, and
analyze their generalization capabilities.

4.1 Downstream performance

To characterize the models’ ability to generalize on
the NER task, we start by measuring their aggre-
gate performance on the ECON-IE dataset. Each
model’s F1-score is reported in Table 3. In line
with previous studies, we find that EconBERTa-FS,
which is pretrained from scratch on economics re-
search papers, outperforms the general-purpose
mDeBERTa-v3-base model. This result confirms
that in-domain pretraining offers a key advan-
tage for maximizing a model’s robustness when
deployed on a downstream task. Additionally,
in-domain pretraining of EconBERTa-FC from an
existing pretrained model also improves perfor-
mance on the task and produces a small but in-
significant gain relative to pretraining from scratch.
Finally, we find that mDeBERTa-v3-base outper-
forms RoBERTa-base, which itself outperforms
BERT-base, which confirms the findings from pre-
vious studies (Liu et al., 2020a; He et al., 2023)
and supports our choice of pretraining from a
DeBERTa-based architecture.

7https://github.com/allenai/allennlp-models/
blob/main/allennlp_models/tagging/models/crf_
tagger.py

Model Name F1-score

EconBERTa-FC 0.687 (±0.003)
EconBERTa-FS 0.684 (±0.005)
mDeBERTa-V3 (He et al., 2023) 0.670 (±0.004)
RoBERTa (Liu et al., 2020a) 0.659 (±0.004)
BERT (Devlin et al., 2018) 0.649 (±0.003)

Table 3: Comparison of models’ performance for the
NER task on the ECON-IE dataset.

4.2 Entity-level evaluation

Previous work has argued that comparing F1-scores
on a held-out test set fails to highlight the strengths
and weaknesses of the models being tested (Fu
et al., 2020). In the context of NER, the F1-score is
typically computed at the token-level, which makes
it difficult to know if a model is capturing entity
boundaries accurately. Instead of considering each
token separately, a solution is to measure whether
the entire span of an entity is accurately predicted.
However, only considering an entity to be correctly
predicted when the model detects both the correct
label and its boundaries would be too restrictive,
as it would fail to distinguish between cases when
a model completely misses an entity, when it is
confuses an entity type for another, or when it fails
to capture the correct boundaries.

To address these issues, we draw inspiration
from alternative metrics to evaluate information
extraction systems and adapt them to our NER task
(Chinchor and Sundheim, 1993). We introduce six
fine-grained prediction metrics which allow us to
analyze the models’ successes and failures at the
entity-level. In addition to exact matches, three of
the metrics account for answers that are partially
correct, as described in Table 4. Finally, we count
as Missed Labels (ML) entities that were labeled
but not predicted at all by a model, which could
reflect undergeneralization; and False Alarms (FA)
cases when an entity is predicted by a model but
no entity was labeled, which could indicate over-
generalization.

Metric Entity Type Boundaries

Exact Match (EM) Match Match
Exact Boundary (EB) Mismatch Match
Partial Match (PM) Match Overlap
Partial Boundaries (PB) Mismatch Overlap

Table 4: Attributes of the various prediction types based
on the comparison of the predicted and labeled entity
types and span boundaries.
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These fine-grained evaluation metrics are pre-
sented in Fig. 3. We find a consistent pattern across
models: most predictions are either matched ex-
actly or with the right label but inexact boundaries
(Partial Match); on the contrary, label confusions
(Exact Boundary and Partial Boundary) are very
rare. We also find that the models miss less than
10% of entities (Missed Label), which indicates
that they could be undergeneralizing, especially
when presented with entities that were not seen
during training. Finally, we find that they mistak-
enly predict annotations that weren’t labeled about
10% of the time (False Alarm), which suggests that
they could also be overgeneralizing, in particular
for entities that could systematically be mapped
into a label regardless of the context. In the next
subsections, we will test alternative hypotheses to
better characterize these generalization failures.
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Figure 3: Proportion of exact matches and of the differ-
ent error types for each model.

4.3 Generalization to longer spans

For conciseness purposes, we now focus on
EconBERTa-FC for the rest of the analysis, as we
demonstrated its ability to outperform other fine-
tuned architectures.8 To test the model’s capacity to
generalize over any entity, we first explore whether
the length of an entity affects its ability to detect it
accurately. We expect that a longer entity would be
harder to predict, as (i) accurately matching bound-
aries should be more difficult for longer spans, and
(ii) longer entities should be less frequent in the

8The results for rest of the analysis were found to be quali-
tatively similar across architectures, consistently with Fig. 3.

training data.9 We therefore examine the impact
of lengths on EconBERTa-FC’s ability to correctly
detect entities in Fig. 4. We find that the model’s
robustness decreases with entity length. This sug-
gests that the model is failing to generalize properly,
as it fails to extrapolate to longer sequences. This
failure is relative however, as the reduction in ex-
act matches is mirrored by an increase in partial
matches, indicating that the model is still able to
capture a sequence which overlaps with the original
annotation.
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Figure 4: Proportion of exact matches and of the differ-
ent error types for EconBERTa-FC as a function of entity
length.

4.4 Inference scheme: reliance on
memorization

As our task consists in tagging sub-strings with
the correct entity type, a model could rely on a
variety of implicit heuristics to achieve good per-
formance without having truly generalized. For in-
stance, we previously identified that our best model
was increasingly struggling to correctly capture the
boundaries of an entity as span length increases. In
this section we test various hypotheses to uncover
heuristics causing the model’s failures.

Lexical memorization We first test the assump-
tion that our model could be memorizing strings
that were seen during training to successfully detect
entities at test time. In other words, we test whether
the model is more successful at detecting in-train
entities. We compare the predictions at test time
in two settings: in-trainlex, in which we isolate
entities also present in the training set in the exact
same lexical form, and out-of-trainlex, in which we
isolate the remaining entities that were not seen

9Another factor to consider is that the annotation decision
on how to set the boundaries of a span becomes increasingly
more complex as span length increases.
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Figure 5: Difference in prediction types for entities and POS sequences that are present and absent from the training
set (top) as proxies to measure memorization effects, along with number of unique entities and number of POS
sequences (bottom)

during training. We then compute the difference
in the proportion of each prediction type between
in-trainlex and out-of-trainlex entities. The results
are displayed in Fig. 5a.

We find that, for all entity types, the model pro-
duces a higher proportion of exact matches on in-
trainlex entities, which suggests a tendency to rely
on memorization. This is particularly true for coref-
erences, where the difference is near 0.6. We also
find that the model has fewer partial matches on in-
trainlex entities, confirming this observation. For
coreferences, we also observe a reduction of mis-
matched entities, captured by the “Exact Bound-
ary" metric, and more false alarms, thus a stronger
tendency to overgeneralize by memorizing for this
entity class.

We further hypothesize that the mean number
of occurrences across unique entities during fine-
tuning could explain the tendency to rely on mem-
orization. As indicated in Fig. 5c, this metric is
significantly higher for the coreference entity type
compared to the other entity types, which suggests
a direct link between the tendency for a model to
rely on memorization and the mean frequency of
occurrence, i.e. the mean count, for each unique

entity present in the training set.

Lexicosyntactic memorization In addition to
lexical memorization, an alternative hypothesis
addressing a milder form of memorization could
be that the model learns to associate specific lexi-
cosyntactic sequences seen during training to spe-
cific entity types. To test this hypothesis, we first
map each entity to its part-of-speech (POS) se-
quence. We then partition entities at test time be-
tween those whose POS is present in the training
set (in-trainPOS) and those whose POS is absent
from the training set (out-of-trainPOS). For in-
stance, the POS sequence NNS-NNS for the out-
come entity “household income" is present in the
training set, therefore the outcome entity “school
attendance" which has the same POS belongs to
the in-trainPOS set. The results of this analysis are
presented in Fig. 5b.

We discover that the effect of prior exposure
to part-of-speech is higher than prior exposure to
lexical content. This suggests that seeing a given
POS sequence during training plays a key role in
the model’s successes and failures. In line with
the results on lexical memorization, we find a dif-
ference of 0.7 for coreferences on exact matches
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(see Fig. 5d). Once again, the differences between
entity types in the mean number of occurrences for
each unique part-of-speech seems to explain the
difference in memorization patterns observed for
coreferences. The number of entities for each entity
type alone could not explain such effect as Table 1
shows that there are more annotated coreferences
than effect sizes in our dataset. Finally, we note that
the shares of False Alarms and Missed Labels are
not significantly different for in-trainPOS and in-
testPOS entities, except for coreferences. Again in
this case, Missed Labels are fewer for in-trainPOS ,
suggesting that the model undergeneralizes and
misses entities that are too dissimilar from those
seen during training. For other entities, the increase
in Exact Match is mirrored by a decrease in Partial
Match, which echoes the difference in prediction
types for different lengths found in section 4.3.

4.5 Disentangling lexical and lexicosyntactic
memorization

Finally, we complement the two tests in section 4.4
with a replacement experiment. As we measured a
similar effect for both forms of memorization, the
root cause for failures remains unknown as both
factors are entangled. Behavior tests have been suc-
cessfully implemented in previous studies to test
targeted hypotheses on fine-tuned models (Vajjala
and Balasubramaniam, 2022). In our substitution
test, we generate random combinations by sam-
pling entities and placing them in contexts where
the part-of-speech is preserved. We perform this
generation by sampling entities from the training
set on the one hand (in-train), and from the test
set on the other hand (out-of-train). If the perfor-
mance drop is higher in the second case, it shows
the model does rely on lexical memorization. If
they are similar, the model does not significantly
rely on lexical memorization. If the perfomance
drop is lower, it is a sign that the model relies on the
POS sequence to generalize, but not significantly
on the mutual semantic constraints between the con-
text and a given entity, as these factors define the
generative procedure for the resulting sentences.

Condition ∆ Acc. ∆ Prec. ∆ Rec. ∆ F1
in-train -0.38% -1.28% -2.24% -1.75%
out-of-train -0.39% -1.28% -2.56% -1.92%

Table 5: Variation in performance when randomly sub-
stituting entities based on their lexical category, given
that they are sampled randomly from the train set (top)
or from the test set (bottom).

We report the results of our substitution tests in
Table 5. It disentangles the two forms of mem-
orization (lexical and lexicosyntactic) previously
observed. We observe that replacing entities which
are identified by a POS sequence present in the
training data has little effect over the model’s per-
formance overall. This holds true both when the
new entity’s lexical content is sampled from the
training set or out of it. This confirms that the
model has reached a degree of generalization that
extends beyond the shallow memorization of spans
during training. Additionally, the drop in perfor-
mance is low when performing random replace-
ments, therefore the model’s performance does not
depend on the mutual semantic constraints between
the substituted entity and other parts of the original
context to perform the task.

5 Discussion

Memorization: a core component of learning
or a sign of undergeneralization? Throughout
this study, we tested several memorization effects
ranging from the shallow memorization of lexical
patterns to that of lexicosyntactic sequences. While
memorization is often opposed to generalization
and considered to be a weakness of models (Elango-
van et al., 2021; Mireshghallah et al., 2022), its role
in the learning process is a source of debate. For
instance, some authors have argued that memoriza-
tion and in particular lexical memorization is a key
component of language acquisition and linguistic
knowledge (Kess, 1976; Carey, 1978; Nooteboom
et al., 2002). While relying too much on memo-
rized associations might be detrimental to learning
a task properly (Tänzer et al., 2022) (see results
on coreferences in section 4.4), penalizing this
phenomenon entirely could also be too prescriptive.
Memorization could also play a crucial role either
in early or in late stages of the learning process, es-
pecially if the task is characterized by a multiplicity
of implicit rules and exceptions.

Learning from mistakes Uncovering how a
model reaches a decision is helpful to understand
why it makes certain mistakes and implement mod-
eling strategies to improve its performance. Re-
cent work proposed to teach fine-tuned models to
learn from their mistakes on NLU tasks (Malon
et al., 2022). Similarly, Xu et al. (2022) attempted
to debias NER models by using a counterfactual
data-augmentation technique. Together with the
diagnoses presented in this paper, these studies pro-
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vide a blueprint on how to improve models used for
deployment, which constitute interesting directions
for future work. To improve models’ ability to ex-
trapolate to longer sequences, future work could
also explore the impact of the splitting strategy
or of augmenting the training data with difficult
examples.

6 Conclusion

In this work, we presented EconBERTa, a novel
language model adapted to the economic domain.
We demonstrated that it achieves state-of-the-art
performance on Econ-IE, a novel NER dataset of
1,000 abstracts from economic research annotated
for entities describing the causal effects of policy
interventions. In doing so, we demonstrated the
advantages of domain adaptation, specifically fur-
ther pretraining from existing checkpoints. Addi-
tionally, we diagnosed the model’s generalization
abilities in a series of fine-grained tests. We found
that most mistakes stem from its inability to elicit
the exact boundaries of detected entities, and that
this phenomenon is due to the model relying on
memorization. The memorization effect is mild
and extends beyond lexical memorization, as the
model is able to extrapolate to entities which have
the same part-of-speech sequence as entities seen
during training. Finally, we found that the effect
of memorization is more pronounced for entities
which are less diverse in the training data. Taken
together, these findings pave the way towards de-
veloping more robust downstream information ex-
traction systems.

Limitations

The results and methods presented throughout this
work present certain limitations which should be
taken into account in future work.

Some of the annotations can be debatable. As-
signing labels can be straightforward for simple
learning tasks, but can become increasingly com-
plex with natural languages due to the multiplicity
of strings encountered in real-world corpora and
the ambiguity which lies in certain sentences. This
could lead to annotations resulting from subjec-
tive or even arbitrary judgements from annotators.
While we tried to reduce this effect by relying on
multiple parallel annotations, arbitrating disagree-
ments, writing precise annotation rules and iter-
ating over the rules to improve their clarity and

coverage, exceptions that are not well captured by
our guidelines remain. This problem is recurring
for certain annotation tasks documents, limiting the
interpretation of performance as the learning task is
not suited for the ground truth reference to capture
several equally plausible answers.

Testing generalization abilities requires forming
hypotheses. In this work, we argued that diag-
nosing a model’s errors is key to improving its
robustness on a given task. This evaluation can
only be achieved by making assumptions on the
mechanisms leading to the errors being observed.
Here, we hypothesized that an entity’s length and
its presence in the training corpus either in its exact
lexical form or in a syntactically similar form could
affect the ability of the model to detect it. In the
general case, forming an hypothesis to diagnose
a model’s errors is not straightforward, reflecting
the fact that there is no consensus on the notion
of generalization. While future work could draw
inspiration from previous studies including ours,
there is a long way to go before we obtain a precise
characterization of what model generalization truly
means and how to operationalize it. The complexity
arises from the variety of parameters encountered
in a real-world scenario that are affecting a model’s
ability to extrapolate from its training data.

Testing a wide range of approaches for in-
domain pretraining is computationally expen-
sive. During pretraining, each choice of architec-
ture, data selection or preprocessing, and hyperpa-
rameters leads to running the entire pipeline, which
requires substantial computing resources. Choos-
ing configurations with parsimony reduces the com-
putational load, but it does so at the expense of the
range of configurations that can be explored.
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A ECON-IE Dataset

A.1 Article Selection
Since our focus lies on causal entity recognition,
we limit ECON-IE to abstracts from studies dedi-
cated to reveal causal relationships. We keep stud-
ies using any of four standard causal inference
methods: randomized control trials, difference-in-
difference, instrumental variable estimation and
regression discontinuity design. The 3ie Develop-
ment Evidence Portal is highly imbalanced across
sectors as well as years. By attributing higher
weights to under-represented sectors and year
ranges, we ensure ECON-IE covers different writ-
ing styles and sector-specific vocabulary. Fig. 6
displays relative share per sector for the source cor-
pus from 3ie and ECON-IE. The latter gives a more
balanced coverage of different economic activities.

Figure 6: Sector share before (3ie database) and after
(ECON-IE) article selection process

A.2 Annotation Guidelines
Our annotation guidelines consist a range of rules,
which comprise seven generic rules common to all
entity types, and five to eight rules specific to each
entity type. In the following, we list the annotation
guidelines as presented to the annotators.

A.2.1 General rules
Span annotation comprises of (1) selecting a span
of tokens (determining boundaries of an entity) and
(2) tagging it with an entity label. The following
rules apply to all entities regardless of their type.

• Use only the context of a sentence for deter-
mining entities. The only exception is the
coreference, which can refer to interventions
or outcomes in other sentences.

• An entity can span over one or more consecu-
tive tokens (words).

• An entity cannot span across sentence bound-
aries.

• Entity spans cannot overlap.

• Try not to include determiners (the, a), or ad-
jective pronouns (this, its, these, such) in the
span.

• Label distributive conjunctions and enumera-
tions as a single span, otherwise as separated
spans (e.g. “vitamins A, B, C and D” as a sin-
gle span but “children and parents” as two).

• Annotate all mentions of entities, including in
sentences providing background, conclusions,
summaries, or with claims of external validity.

A.2.2 Intervention
Intervention describes a deliberate involvement in
a process or system intended to influence events
and/or consequences. In our context, intervention
refers to the activities of a project, program, pol-
icy, or instrument in the field of development that
aims to bring about change in an outcome thereby
improving the conditions of a target population. Ex-
amples: conditional cash transfer, leadership pro-
grams, household rainwater harvesting, research
funding, access to microcredit.

• Annotate program names and acronyms of in-
terventions as interventions (and not as coref-
erences), e.g. Start-and-Improve Your Busi-
ness (SIYB) Program, No Child Left Behind,
Progresa

• Include generic terms in the intervention span
when they describe the entity, e.g. program,
courses, lectures. For example, in the follow-
ing sentence, the generic term courses should
also be part of the intervention span (business
training courses):

We used a randomized experiment
to measure the impact of business
training courses.

The same applies to other generic terms next
to intervention descriptions such as program
or intervention.

• Do not include delivery details or attributes of
the interventions. For example, in the follow-
ing sentence the intervention span should be
Carrying of firearms was banned excluding
the details on which day the ban took place.
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Carrying of firearms was banned
on weekends after paydays, on holi-
days and on election days.

• Annotate as interventions mentions of a
treatment group by a program description,
acronym, or program name; but do not include
the term group in the span.

• Do not label the standard treatment that the
control group receives as an intervention.

A.2.3 Outcome
An outcome is the likely or achieved change and
effects of an intervention. Examples: adoption of
recommended animal breeding practices, institu-
tional trust, math test scores, air pollution, wage
levels, HIV treatment success, knowledge of water
contamination

• Include in the span generic references such as
the word effects or outcomes when they are
next to an outcome. For example:

The outcome we consider is con-
sumer behavior. Consumer behav-
ior effects are measured by a house-
hold survey.

• Include words that make the outcome a quan-
tity (e.g. incidence of HIV and not HIV) when-
ever possible.

• Very important: mentions of effect sizes
should not be annotated as outcomes.

• Do not include population in the outcome, e.g.
in teenage fertility, child mortality tag teenage
and child as population, fertility and mortality
as outcome.

A.2.4 Population
The population, sometimes referred to as popula-
tion target, is the group of people on which the
intervention is implemented or in which the out-
come is measured. Examples: women and girls,
farmers, civil servants, teachers, women in rural
areas

• Include mentions of subgroups of the popula-
tion where the intervention was applied or on
whom an outcome was measured.

• If the text mentions a control group that had
a different population and did not receive an

intervention, do not annotate that. We are only
interested in the populations that received an
intervention.

• Do not annotate standalone generic references
such as the word population with the popula-
tion tag.

• Do not label standalone geographical names
such as countries, regions or cities. For ex-
ample, low-income households in Nairobi.
Label geographical names only when part
of greater entity or when otherwise the pop-
ulation wouldn’t have a noun. For exam-
ple, malnourished Indian children and rural
Bangladesh

• Do not label standalone unit of intervention,
e.g. individuals, households, villages. Label
them when part of a greater entity, e.g. in-
dividuals aged 70 years or more, remittance-
receiving households.

• Do not label treated group as population,
e.g. impregnated chaddar users (impregnated
chaddar is the intervention; user is a generic
term and not labeled).

• Words defining the status of the population
should be part of the population span, e.g. in
child with acute diarrhea and mothers suffer-
ing from anemia the whole spans are popula-
tion.

A.2.5 Effect size
Effect sizes are the mentions of quantitative mea-
sures of the magnitude of the intervention’s effect
in an outcome. Examples: 28 percentage points,
4.7%, 0.37 births, 102 µ/m3

• Whenever possible, the effect size span should
include not only the numeric measure but also
the unit of measure, as long as this is not part
of an outcome span. For example,

PM2.5 exposure means were 266
and 102 µ/m3 during the trial pe-
riod in the control and intervention
groups, respectively.

• Tag all the mentions of effect sizes, including
mentions for different treatment groups, sub-
groups, control groups, or about the difference
between treatment and control groups.
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• Do not include in the span words indicating
the direction of the effect size (example: in-
crement, decrease, increase).

The results indicate that primary
school completion reduces teenage
fertility by 0.37 births and the in-
cidence of teenage childbearing by
around 28 percentage points.

• Statistical measures such as t-stats, p-values,
or confidence intervals should not be consid-
ered effect sizes.

• Odds ratios and incidence rate ratios should
be considered effect sizes.

A.2.6 Coreference
A coreference accounts for all generic expressions
that relate to the same intervention or outcome
entity. Examples: intervention, project, program,
outcome, effect, results, it, they

• Tag only coreferences of interventions and
outcomes.

• Mentions of an intervention by its name (e.g.
Progresa, Sesame Street) should not be tagged
as coreferences but as interventions.

• Words treatment, intervention, experiment in
treatment group, intervention group, experi-
ment group should also be annotated as coref-
erences excluding the word group in the span.

A.3 Multiple Plausible Annotations
Multiple annotations can be plausible for the same
sentence. We illustrate this using examples for
which (non-exhaustive) competing options dis-
played in Table 6.

Our examples comprise candidate nested spans
(1, 2), conjunctions of multiple spans (3), auxiliary
details (4), enumerations (4, 5, 6), potential risk
factors rather than outcomes (6), vague entities (7),
multiple populations (8), and nested entities (9).

B EconBERTa Models

B.1 Pretraining data collection
We sourced economic articles for pretraining from
a variety of online libraries. To ensure economic-
specific content in the pretraining corpus, we im-
plemented a two-step article selection process. In
the first step, we collect articles from both (i) econ-
specific libraries (RePEc, Econlit and NBER) and
(ii) the economic category of general science li-
braries (Scopus and SSRN). Despite this first fil-
tering step, the resulting corpus from the initial
stage turned out to be diverse due to the inclusion
of articles from neighboring fields such as law and
political science.

To ensure we isolate content specifically rooted
in economics, we implemented a second filtering
process based on the journal in which the article
was published. An article is included in the pre-
training corpus if its publication venue meets any
of the following criteria:

• It is listed among the most influential eco-
nomics journals by the SCImago Journal and
Country Rank (González-Pereira et al., 2009),
containing 1166 journals.

• The journal has been classified as economic-
specific in a manual annotation process of
1500 journals that we carried.

• The journal name contains the string "econ".

• The paper is a working paper from RePEc.

The second filtering step reduced the corpus size
from 2.5 million to 1.5 million documents.

B.2 Pretraining procedure
The two EconBERTa models developed in this
work were pretrained using the ELECTRA-style
training (Clark et al., 2020). We display pretraining
hyperparameters in Table 7. For EconBERTa-FS,
our model pretrained from scratch, we used a Sen-
tencePiece vocabulary containing 128.000 tokens,
trained on the same pretraining corpus. As for
EconBERTA-FC, the mDeBERTa based approach,
we used the same vocabulary as DeBERTa-V3-base,
containing the same amount of tokens. We opted
for using a vocabulary size matching DeBERTa’s
instead of its multilingual counterpart due to its
larger dimension, and adjusted the dimensions at
the embeddings layer. The resulting weights were
used as an initial checkpoint for EconBERTa-FC.
Both models were trained on a cluster composed
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Number First annotation option Second annotation option

1 We find that participating in a CSA increased families’
likelihood to report having saved money (outcome).

We find that participating in a CSA increased families’
likelihood to report having saved money (outcome).

2 We evaluate one attempt to make local institutions more
democratic and egalitarian by imposing participation
requirements (intervention) for marginalized groups (in-
cluding women) and test for learning-by-doing effects.

We evaluate one attempt to make local institutions more
democratic and egalitarian by imposing participation
requirements (intervention) for marginalized groups (in-
cluding women) and test for learning-by-doing effects.

3 Neither program affected progression to secondary
school, but children in grade 6 in SFP schools at base-
line were significantly more likely to remain in primary
school and repeat a grade (outcome) than drop out.

Neither program affected progression to secondary
school, but children in grade 6 in SFP schools at base-
line were significantly more likely to remain in primary
school (outcome) and repeat a grade (outcome) than drop
out.

4 The nutrition education intervention programme (NEIP)
(intervention) comprised ten topics emphasising healthy
eating, hygiene and sanitation.

The nutrition education intervention programme (NEIP)
(intervention) comprised ten topics emphasising healthy
eating (intervention), hygiene (intervention) and sanita-
tion (intervention).

5 This study has brought about positive changes in the
knowledge, attitude and practice of mothers and their
children towards the disposal of children’s faeces (out-
come) in rural communities.

This study has brought about positive changes in the
knowledge (outcome), attitude (outcome) and practice
(outcome) of mothers and their children towards the
disposal of children’s faeces in rural communities.

6 Mothers giving birth to low birth weight babies (LB-
WBs) have low confidence in caring for their babies
because they are often still young and may lack the
knowledge (outcome), experience (outcome), and ability
to care (outcome) for the baby.

Mothers giving birth to low birth weight babies (LB-
WBs) have low confidence in caring for their babies
because they are often still young and may lack the
knowledge, experience, and ability to care for the baby.

7 We find large positive impacts on school enrolment (out-
come), number of teachers (outcome), and other inputs
(outcome) for programme schools near the minimum
pass rate.

We find large positive impacts on school enrolment (out-
come), number of teachers (outcome), and other inputs
for programme schools near the minimum pass rate.

8 We implement a randomized experiment offering Sal-
vadoran migrants (population) matching funds for edu-
cational remittances, which are channeled directly to a
beneficiary student (population) in El Salvador chosen
by the migrant (population).

We implement a randomized experiment offering Sal-
vadoran migrants (population) matching funds for edu-
cational remittances, which are channeled directly to a
beneficiary student in El Salvador chosen by the migrant
(population).

9 We find that girls are more likely to refuse free eye-
glasses, and that parental lack of awareness of vision
problems, mothers’ education, and economic factors
(expenditures per capita and price) significantly affect
whether children (population) wear eyeglasses (out-
come) in the absence of the intervention.

We find that girls are more likely to refuse free eye-
glasses, and that parental lack of awareness of vision
problems, mothers’ education, and economic factors
(expenditures per capita and price) significantly affect
whether children wear eyeglasses (outcome) in the ab-
sence of the intervention.

Table 6: Examples where multiple annotations are plausible
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of 16 nodes, each one comprising 4 RTX 8000
GPUs, with 48GB of RAM each. We used the pre-
processing available in DeBERTa’s github reposi-
tory.10

Hyper-parameter EconBERTa-FS EconBERTa-FC
Number of Layers 12 12
Hidden Size 768 768
FNN Hidden Size 3072 3072
Attention Heads 12 12
Attention Heads Size 64 64
Dropout 0.1 0.1
Warmup Steps 10% of total 10% of total
Learning Rate 7 × 10−4 6 × 10−4

Batch Size 3600 3600
Weight Decay 0.01 0.01
Max Steps 65,388 68,650
Epochs 10 10
Learning Rate Decay Linear Linear
Adam ϵ 1 × 10−6 1 × 10−6

Adam β1 0.9 0.9
Adam β2 0.98 0.98
Gradient Clipping 1.0 1.0

Table 7: Hyper-parameters for pre-training

B.3 Fine-tuning Parameters
We display in Table 8 the hyperparameters used to
fine-tune each of our models.

Hyper-parameter Value
Dropout of Task Layer 0.2
Learning Rate [5e-5, 6e-5, 7e-5]
Batch size 12
Gradient Acc. Steps 4
Weight Decay 0
Maximum Training Epochs 10
Learning Rate Decay Slanted Triangular
Fraction of steps 6%
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999

Table 8: Hyper-parameters for fine-tuning

C Training Dynamics

In order to test whether domain adaptation im-
pacted significantly the difficulty to learn the task
for our pretrained models, we measured how the er-
ror types and memorization-related metrics evolved
with the number of epochs. We display such results
in Fig. 7. While we pretrained our models with
10 epochs (see Table 8, we see that most models
almost reach their final share of exact matches after
only a few epochs. We further show that the share

10https://github.com/microsoft/DeBERTa/blob/
master/experiments/language_model/prepare_data.
py

of exact match among entities and part-of-speech
not seen during training also stabilizes early during
finetuning overall. This seems especially true for
EconBERTa-FC, our best performing model, while
it takes more epoch for BERT, the worst perform-
ing model. Note however that the observation is
qualitative at this stage and the evidence remains
weak.
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Figure 7: Training dynamics for EconBERTa-FC, EconBERTa-FS, mDeBERTa-v3, RoBERTa and BERT (from
top to bottom). In all figures, the x-axis shows epochs. We display the evolution of shares of each prediction type
(left column), as well as the rate of Exact Match for entities present/absent from the train set (middle column) and
part-of-speech sequences present/absent from the training set (right column).
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