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Abstract

In natural language processing (NLP), the rep-
resentation of text plays a crucial role in vari-
ous tasks such as language modeling, sentiment
analysis, and machine translation. The standard
approach is to represent text in the same way as
we, as humans, read and write. In this paper, we
propose a novel approach to represent text with
only consonants which presents a compact rep-
resentation of English text that offers improved
efficiency without sacrificing performance. We
exploit the fact that consonants are more dis-
criminative than vowels and by representing
text using consonants, we can significantly re-
duce the overall memory and compute footprint
required for storing and processing textual data.

We present two alternative representations:
’consonants-only’, where we completely re-
move the vowels from the text, and ’masked-
vowels’, where we mask all the vowels into
one special symbol. To evaluate our ap-
proaches, we conducted experiments on var-
ious NLP tasks, including text classification,
part-of-speech (POS) tagging, named-entity
recognition (NER), and neural machine trans-
lation (NMT), in addition to language model-
ing. Our results demonstrate that the proposed
consonant-based representation achieves com-
parable performance compared to the standard
text representation while requiring significantly
fewer computational resources. Furthermore,
we show that our representation can be seam-
lessly integrated with existing NLP models and
frameworks, providing a practical solution for
efficient text processing.

Last but not the least, we present a technique
to retrieve the vowel information from our pro-
cessed text representation keeping in mind the
need to reproduce text in human readable form
in some NLP applications. The experiments
implementation for this study is made publicly
available1.

1https://github.com/MagedSaeed/EnglishConsonants

1 Introduction

In the field of Natural Language Processing (NLP),
text representation and tokenization are closely in-
tertwined and have significant implications for var-
ious aspects of an NLP task, such as the vocabu-
lary size, embedding size, and out-of-vocabulary
(OOV) rates. The standard approach to text repre-
sentation in English involves including both conso-
nants and vowels, mirroring the way humans read
and write. However, this representation may not
be an optimal representation for English NLP. In
this paper, we propose a novel approach to English
text representation in NLP, inspired by the Abjad
writing system, where only consonants are con-
sidered as characters and vowels can be inferred
(cf. (Daniels, 2013)). Our objective is to develop
a compact and efficient representation of English
text that not only reduces computational demands
but also impacts key aspects of NLP tasks. By
focusing solely on consonants, we aim to achieve
a significant reduction in vocabulary size, result-
ing in smaller embedding layers and lower OOV
rates. We present two alternative representations:
the "consonants-only" approach, where vowels are
entirely removed from the text, and the "masked-
vowels" approach, where all the vowels are masked
to a special symbol. By leveraging the inherent
discriminative nature of consonants, which carry
more linguistic information compared to vowels,
we can substantially decrease the memory and com-
pute footprint associated with storing and process-
ing textual data. To evaluate the effectiveness of
our proposed consonant-based representations, we
conducted experiments on various NLP tasks, in-
cluding text classification, POS tagging, named-
entity recognition (NER), neural machine transla-
tion (NMT), and language modeling. Our results
demonstrate that our approach not only achieves
comparable performance to the standard text repre-
sentation but also leads to significant reductions
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in vocabulary size, resulting in smaller embed-
ding layers and lower OOV rates. These findings
highlight the practical benefits of our approach in
terms of memory efficiency and improved handling
of unseen words. Furthermore, we address the
need for human readability in certain NLP appli-
cations, such as machine translation and question
answering, by introducing a technique to retrieve
the vowel information from our consonants-only
text representations. This ensures that our approach
remains practical and applicable in scenarios where
reproducing text in its original form is necessary.
The contributions of the paper can be summarized
as below:

• We present novel representations of English
text for NLP where the vowel characters are
either completely removed or masked to one
special symbol. This leads to significant re-
duction in vocabulary size, embedding layers,
OOV rates, and training times.

• A statistical n-gram language model, as well
as two neural language models, RNN-based
and transformer-based, were built and ana-
lyzed to study and compare the new represen-
tations.

• We performed several NLP tasks such as sen-
timent analysis, text classification, POS tag-
ging, NER and NMT using the standard text
representation and our two proposed represen-
tations and compared their performances.

• We present and evaluate a technique to retrieve
the vowel characters from our consonants-
only or masked-vowels representations. This
can be useful in NLP tasks where the output
from an NLP task is English text to be used
by humans.

The rest of the paper is organized as follows: in
Section 2 we present related works. In Section 3 we
present our text representations and the different
tasks we conducted to compare the effectiveness of
our approach. In Section 4, we present the experi-
ments conducted, the results and the discussions on
the results. In Section 5, we present the conclusions
and discuss some possible future works. Finally,
in Section 6, we present some of the limitations of
our work.

2 Related Work

To the best of our knowledge, we did not find any
work in the literature that introduces consonant-
based text representations for NLP tasks. How-
ever, one of the prominent advantages of using
these representations is the reduction in vocabu-
lary size. Word-based embedding layer is usually
a large layer due to the size of the vocabulary. For
that reason, it has a high potential to suffer from
overfitting. To address this issue, regularization
techniques like embedding dropout can be applied
(Gal and Ghahramani, 2016). On the other side,
techniques such as dimensionality reduction (Rau-
nak et al., 2019) quantization (Gholami et al., 2021)
and distillation networks (Hinton et al., 2015) can
be also be used. Although these methods are effec-
tive in addressing the issue of embedding overfit-
ting, they do not address the issue by manipulating
the vocabulary before embedding them. It would
be an interesting to explore the model performance
where these methods are combined with vocabulary
reduction techniques.

Switching focus back to the issue of vocabulary
size and reduction techniques, methods such as bag-
of-words and TF-IDF were employed, traditionally.
However, these approaches suffered from the issue
of out-of-vocabulary (OOV) words and represent-
ing the words with huge sparse embeddings. While
these methods excelled in modeling word relations,
the OOV problem limited their use, particularly in
natural language generation tasks. Additionally,
they also faced the challenge of vocabulary explo-
sion, where a large number of vocabulary items
needed to be embedded, most of which had very
few occurrences in the text (cf. Zipf’s law (Zipf,
2016)). To overcome the limitations of sparse em-
beddings, dense-embedding representations, such
as Word2Vec (Mikolov et al., 2013), were proposed
that were more efficient and effective as compared
to spare representations.

On the other hand, using characters as tokens do
not suffer from the aforementioned issue. More-
over, tokenizing text as characters leads to a very
small vocabulary size and no OOV issues. How-
ever, they do result in longer sequences, which
can introduce bottlenecks such as vanishing and
exploding gradients in sequence modeling models
(Bengio et al., 1994). Character-based approaches
are known to generate meaningless new words.
Nonetheless, a promising approach is to first in-
put characters into CNNs to extract features be-
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fore feeding them into an RNN layer, as this has
been shown to yield good results (Bradbury et al.,
2017; Zhang et al., 2015; Conneau et al., 2017).
This character-level approach has also been incor-
porated into transformer-based architectures (Ma
et al., 2020; El Boukkouri et al., 2020).

Subword tokenization techniques were intro-
duced as a trade-off between characters and words
as tokens. These methods split a given word into
chunks of characters called subwords. Numerous
techniques have been proposed to achieve optimal
subword splits for a given text. The main motiva-
tion behind this approach is to represent the text
with a smaller vocabulary size of subwords without
compromising performance on a given task. Some
of these methods are language-specific, while oth-
ers are data-driven (Alyafeai et al., 2022; Mielke
et al., 2021). Data-driven methods are prevalent in
recent language models such as the BERT family
(Devlin et al., 2019), GPT family (Brown et al.,
2020), and other large models. Examples of these
methods include SentencePiece (Kudo and Richard-
son, 2018), WordPiece (Song et al., 2021), and
UnigramLM (Kudo, 2018). Most of these meth-
ods are based on Byte-Pair-Encoding (BPE) data
compression methods (Gage, 1994).

Another direction to mitigate the issues associ-
ated with tokenization is to utilize visual represen-
tation (Mansimov et al., 2020; Salesky et al., 2021).
This approach has demonstrated robustness against
noise and spelling mistakes. However, it is not
widely adopted and may not be sufficiently compet-
itive at its current stage of development (Mansimov
et al., 2020).

3 Methodology

We introduce two variants of consonant-based rep-
resentations for English text. The first representa-
tion involves removing all vowel letters (A, E, I,
O, and U), regardless of their case, from the text,
resulting in a consonants-only representation. This
approach may exclude complete words that consist
solely of vowels, such as the determiner ’A’ and
pronoun ’I’. However, such vowel-only words are
rare in English. It is worth noting that certain NLP
tasks require preserving the total number of words
in the input sequence in the output sequence, as is
the case with sequence labeling tasks such as POS
tagging. For these tasks, this representation might
be less suitable. This leads us to propose our sec-
ond representation, where we mask all vowels with

Figure 1: An example of the proposed representations
compared to the standard English text. The first line is
the standard English text. The second line represents
the consonants-only representation. The third line rep-
resents the masked-vowels representation.

the symbol ’#’. Figure 1 illustrates an example of
an English statement written in standard English as
well as using our introduced representations.

3.1 Text analysis

We investigated the vocabulary reduction achieved
by both of these representations compared to stan-
dard English text in a number of text corpora. In
deep learning systems, the vocabulary size plays
a crucial role in determining the embedding size
and, in certain tasks involving text generation, the
output layer size. This factor significantly impacts
various aspects of the resulting model, including
its overall size, the number of parameters involved,
and training and inference times.

To assess the information loss resulting from the
removal of vowels and evaluate the efficiency of
the proposed representations, we examined their
entropy (Shannon, 1951). Deep learning models
learn their parameters by minimizing losses, such
as cross-entropy, between their predictions and the
expected output. If the entropy of these representa-
tions is similar to the entropy of standard English
text, then, theoretically, they should be approxi-
mately as learnable as the standard English text.
We computed entropy using the formula provided
in Equation 1, where t represents a token from the
set of T vocabulary in a given text.

H(t) =
T∑

t

−P (t) log2 P (t) (1)

3.2 Language modeling

To investigate language models, we trained three
types of causal language models: statistical, RNN-
based, and transformer-based models. The train-
ing corpus used for these models is the Wikitext-2
benchmark (Stephen et al., 2017).
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For the statistical models, we trained (2 to 6)-
gram models using the KenLM toolkit (Heafield,
2011). KenLM implements a modified Kneser-
Ney smoothing technique (Heafield et al., 2013),
which has been demonstrated to produce sequences
with low perplexity. In all of our experiments, we
maintained the default hyperparameters.

For the RNN-based language models, we con-
structed a network comprising an embedding layer,
followed by a dropout layer (set to 0.333) (Gal
and Ghahramani, 2016). This was then followed
by 4 LSTM layers, each with 512 hidden units,
and another dropout layer. The outputs were ac-
tivated by a ReLU activation function and passed
to a dense layer for prediction. We utilized cross-
entropy with softmax activation as the loss func-
tion and employed the Adam optimizer for network
optimization. We set the initial learning rate to
0.001 and decayed it by half when there was no
improvement for an entire epoch. Training was
performed for 100 epochs, and early stopping was
implemented when there was no improvement in
the validation loss for 5 consecutive epochs. Addi-
tionally, we employed output and embedding tying
techniques similar to those described in (Press and
Wolf, 2017; Inan et al.).

For the transformer-based language model, we
implemented two decoder layers with two attention
heads with dropout of 0.2. The feed-forward size is
200. The optimizer used is SGD with a decay fac-
tor of 0.25 if the validation loss does not improve
for 1 epoch. The training stops if there is no im-
provement for 5 consecutive epochs. To overcome
potential gradient explosion, we clipped gradient
norms to 0.25.

For the RNN-based and the transformer-based
models, we experimented with two tokenization
schemes, word-based tokenization, as well as sub-
words tokenization using BPE implementation
from sentencepiece (Kudo and Richardson, 2018).

3.3 NLP tasks

We expanded our investigation on these represen-
tations by comparing their performance with stan-
dard English text across various NLP tasks, employ-
ing different settings and configurations. These
tasks include binary and multiclass text classifi-
cation, POS tagging, NER and NMT. Language
modeling serves as an upstream task for many
downstream tasks such as spell correction, auto-
matic speech recognition (ASR), machine trans-

lation, and optical character recognition (OCR).
Therefore, it is crucial to evaluate the performance
of the proposed representations on this task. Ad-
ditionally, POS tagging and NER are examples of
sequence labeling tasks, where the output has the
same length as the input.

We emphasize that, in order to ensure a fair com-
parison, the proposed models were tuned to achieve
the best results for standard text. Tuning the models
to optimize the performance for the proposed repre-
sentations might potentially yield superior results
compared to standard text. However, this aspect
was not explored in the scope of this study.

3.3.1 Text classification
For text classification, we explored two types of
tasks: binary sentiment analysis and multiclass text
classification. For binary text classification, we
utilized the IMDB reviews dataset (Maas et al.,
2011). This dataset comprises 25,000 samples for
training and 25,000 samples for testing. From the
training set, we randomly allocated 10% of the
samples for the validation set. For multiclass clas-
sification, we employed the AGNews benchmark
(Zhang et al., 2015). This benchmark consists of
four news classes, with 120,000 samples for train-
ing and 7,600 samples for testing. Similar to the
IMDB dataset, we reserved 10% of the training set
for validation.

We employed a similar architecture for both
the datasets, consisting of a 4-layer bidirectional
LSTM with 256 hidden units each and embedding
layers of size 512. We applied a dropout rate of 0.4
to the embeddings layer and 0.333 to the LSTM lay-
ers. For the sentiment analysis task, we used binary
cross entropy loss with sigmoid activation. For the
multiclass text classification task, we utilized cross
entropy loss with softmax activation. Similar steps
were applied for cleaning and preprocessing in both
experiments. In the cleaning phase, HTTP links,
HTML tags, numbers, punctuation marks, emojis,
and non-ASCII characters were removed from the
text. The text was further processed by removing
stopwords and lemmatizing the remaining words
using the NLTK toolkit (Loper and Bird, 2002).

3.3.2 Sequence labeling
Sequence labeling is a category of tasks where the
input is a sequence of tokens, and the output is
another sequence of tokens with the same length.
These tasks, also known as token classification
tasks, involve assigning a label to each token in
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the input sequence, hence the name. In our study,
we focused on two sequence labeling tasks: POS
tagging and NER.

For POS tagging, we utilized the Universal De-
pendencies project (Nivre et al., 2020) tags. These
tags consist of a total of 17 labels that can be used
in multilingual settings. We trained our model on
the English Web Treebank (EWT) dataset. The
dataset comprises 254,825 words from 16,621 sen-
tences. It has already been split into training, val-
idation, and testing sets. For NER, we utilized
the amended version of the CoNLL2003 dataset
(Tjong Kim Sang and De Meulder, 2003), which
was corrected by (Wang et al., 2019) and referred
to as CoNLLpp. The CoNLLpp dataset consists
of a total of 20,744 samples, with 14,041 samples
allocated for training, 3,250 samples for validation,
and 3,453 samples for testing. The dataset contains
a total of 301,418 words. In this dataset, there are 9
different named entities. The model configuration
used for training on the CoNLLpp dataset is similar
to the one implemented for the text classification
task, with the exception of the embedding dropout,
which is set to 0.5. Additionally, the output size of
the model is equal to the number of classes specific
to each task.

3.3.3 Translation
Translation is an interesting task to study for this
problem. We implemented a transformer-based
translation model to translate from English (en)
to German (de), and vice-versa. The tokenization
method used for this experiment is word-based to-
kenization. To model the unknown tokens, we re-
moved tokens that occur only once from the tar-
get sequence. The model is trained on Multi30K
dataset (Elliott et al., 2016) which is an English-
German image description parallel dataset. The
dataset consists of 31.1K samples. 1K of these
samples are reserved for testing, and another 1K
samples are reserved for validation. We used the
split provided by (Bentrevett). The employed ar-
chitecture is a transformer model consisting of one
encoder layer as well as one decoder layer with 8
multi-head attention, 2048 latent dimension, and
256 embedding size. The batch size used is 64.
The optimizer used is RMSProb with sparse cat-
egorical cross-entropy loss. The model is trained
for 10 epochs saving the checkpoint that achieved
the lowest validation loss during training. The met-
ric used to analyze the model performance is the
4-gram BLEU score.

3.4 Retrieving standard English
representation from the proposed
representations

We propose a sequence-labeling-based approach to
retrieve the standard text from the proposed repre-
sentations. This retrieval is crucial for tasks where
human-readable text is required. We trained our
system on the AGnews dataset, where the input
texts are in our representations and the output text is
in standard English. For the word-based sequence-
labeling approach, we used models similar to those
used in the text classification task. The models con-
sist of 2 layers of bidirectional LSTMs with 512
hidden units each, and an embedding layer with a
dropout of 0.25. The output layer is a softmax with
the size equal to the vocabulary of the standard
English text computed from the training set of the
dataset.

For evaluating the performance of the models,
we used the word error rate (WER) and character
error rate (CER) as metrics. Additionally, to specif-
ically analyze the performance on vowels, we in-
troduced a new metric called the vowels error rate
(VER). In this metric, we exclude the consonant
characters while calculating the character error rate
as mistakes can only be made on the vowel charac-
ters.

4 Results and Discussion

This section presents the results of the experiments
conducted in this study. We begin by presenting
the text analysis on the text corpora, followed by
a discussion of the performance of the proposed
representations compared to standard text in the
context of language modeling. Next, we compare
the performance of the proposed representations
with standard English text across various NLP tasks.
Additionally, we report the results on retrieval of
the standard text representation from the proposed
vowels-free representations. Finally, we conclude
this section by providing further comparisons be-
tween these representations.

4.1 Text analysis

In Table 1, we present a summary of the vocabu-
lary and token statistics at the word level for all
the datasets (training sets) used in our experiments
for the three text representations. The table reveals
that dropping vowels results in a reduction of vo-
cabulary size by at least 15% on the training sets,
with an average reduction of 18%. This reduction
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ratio tends to increase as the dataset size increases,
as evidenced on the Wikitext dataset, where the
reduction reaches approximately 23%. A similar
pattern is observed for masked vowels, although
the reduction is less significant, with a maximum
of around 10% and an average of around 7%.

Regarding token size, the consonants-only repre-
sentation experiences a decrease of approximately
4% caused by the omission of words consisting of
vowels-only characters, except for the Multi30K
dataset where this reduction is relatively large com-
pared to other datasets. This is due to the nature of
this dataset, as describing images extensively uses
the "a" determiner. In fact, the determiner "a" and
the pronoun "I" are the most prominent examples
of such tokens. The smallest decrease in token size
is observed in the Wikitext dataset, with only a 2%
reduction. This discrepancy may be attributed to
the fact that the dataset contains various charac-
ters besides English letters, including punctuation
marks and characters from other languages. We
intentionally did not preprocess this dataset by re-
moving these characters to maintain its originality
and reflect real-world language usage, as stated by
the dataset authors (Stephen et al., 2017).

In Table 2, we present the entropy of the text at
the word and character levels. In terms of word
entropy, we observe that the consonants represen-
tation has the lowest entropy except for Multi30K
due to the removal of the determiner "a" as previ-
ously discussed, followed by the masked-vowels
representation, and then the standard English text.
This result is expected considering the vocabulary
size of each representation.

In terms of entropy at the character level, we
observe a different pattern compared to the word
level. The masked-vowels representation has the
lowest entropy of all the three representations. This
may seem counter-intuitive, but it can be explained
by the fact that, on average, one or two consonant
letters are followed by one or two vowels within a
single word in the masked-vowels representation.
By masking all vowels with a single character, the
task of predicting the next character becomes eas-
ier, resulting in a reduction in the entropy of the
entire text. The consonants-only representation ex-
hibits a character entropy that is close to that of the
standard English text, despite the fact that almost
a fifth of the character set has been dropped (i.e.,
the 5 vowels out of the 26 characters). However,
it should also be noted that the length of the text

is significantly reduced as vowels comprise more
than a third of the text (approximately 38% in the
datasets we are using).

4.2 Language Modeling
Table 3 presents the perplexity results for the lan-
guage modeling (LM) tasks. From the table, we
observe that, for n-gram LMs, the standard text
has the highest perplexity, followed by the masked-
vowels representation, and then the consonants-
only representation. This pattern holds true across
all the ngrams. The results are inline with the vo-
cabulary sizes for the three representations. In
contrast to the n-gram models, the RNN-based
language models exhibit significantly lower per-
plexities, highlighting their power and capacity
in language modeling tasks. Interestingly, there
is a minimal difference in perplexity among the
three representations in this experiment. In fact,
the consonants-only representation shows slightly
higher perplexity compared to the standard repre-
sentation. This can be attributed to the absence
of words like ’a’ and ’I’ in the consonants-only
representation, which may pose a slight challenge
in predicting the next words in their absence. The
perplexity result for the standard text is the low-
est for the transformer-based model showcasing
the unique capabilities of transformers on this task.
Following a similar pattern to RNN-based models,
yet more notable, the difference between the three
representations is almost negligible.

For the subwords as tokens, Table 4 presents
the results for RNN-based and Transformer-based
models. The vocabulary sizes in these experiments
are 20,110, 13,041, and 17,247 for standard-text,
consonants, and masked-vowels representations, re-
spectively. The results of this experiment are inline
with the results from the word-based tokenization.
RNN-based and transformer-based models show-
case even a smaller difference between the three
text representations regardless of the notable differ-
ence in the vocabulary size.

4.3 NLP tasks
Table 5 provides an overview of the results obtained
from sentiment analysis on the IMDB dataset
and multiclass text classification on the AGNews
dataset. The table indicates that the proposed rep-
resentations exhibit competitive performance com-
pared to the standard English text on both datasets.
Notably, the consonants representation achieves
slightly higher accuracy than the standard text in
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Text Corpora
Vocabulary size |V| Tokens (N)

VS VC VM VC/VS VM/VS NS NC NC/NS

Wikitext 33,277 25,538 30,090 0.77 0.90 2,265,796 2,221,913 0.98
IMDB 280,617 231,543 260,846 0.83 0.93 5,844,680 5,613,725 0.96
AGNews 188,110 154,700 173,749 0.82 0.92 4,541,694 4,430,395 0.98
EWT 32,273 27,305 30,376 0.85 0.94 199,040 191,482 0.96
CoNLLpp 26,883 22,420 25,250 0.83 0.94 254,983 250,387 0.98
Multi30k 15,456 12,844 14,394 0.83 0.93 345,020 295,833 0.86

Table 1: Summary of the vocabulary and token statistics (at word level) comparing the proposed representations
with the standard text. For Multi30K, we only considered the English portion of the dataset. (Please note: from here
on, S represents the standard text, C represents consonants-only, and M represents masked-vowel representations)

Corpora
Hwd Hch

S C M S C M
Wikitext 10.2 9.8 10 4.8 4.7 4
IMDB 11.2 10.8 11 4.7 4.5 3.8
AGNews 12.1 11.6 11.8 4.9 4.7 4
EWT 11.1 10.6 10.8 4.8 4.6 3.9
CoNLLpp 10.8 10.4 10.7 5 4.9 4.2
Multi30k 8.9 9 8.5 4.4 4.1 3.5

Table 2: Text entropy at word and character levels on
the training split of each dataset. Hwd and Hch are the
entropy at word and character levels, respectively. For
Multi30K, we only considered the English portion of
the dataset.

Model
Perplexity (PPL)

S C M
2-gram 515.89 451.74 481.18
3-gram 444.02 388.08 411.84
4-gram 434.92 379.16 402.76
5-gram 433.22 377.49 401.01
6-gram 432.90 377.21 400.73

RNN LM 102.47 106.83 100.29
Transformer LM 94.90 94.60 95.79

Table 3: Perplexity results from the statistical n-grams
and neural language models on the test set of Wikitext
dataset.

Model
Perplexity (PPL)
S C M

RNN LM 8.33 8.20 8.17
Transformer LM 7.52 7.50 7.52

Table 4: Language models perplexity results on sub-
words tokenization

Dataset Accuracy
S C M

IMDB 85.17 83.68 84.68
AGNews 91.70 91.80 91.67

Table 5: A summary of the text classification results
using the three representations.

Task (Dataset)
Accuracy

S C M
POS Tagging (EWT) 91.44 87.26 91.16
NER (CoNLLpp) 93.97 93.88 94.54

Table 6: Summary of the results on the sequence label-
ing tasks.

the AGNews dataset. These results suggest that
vowels contribute minimal information in text clas-
sification tasks, and comparable performance can
be achieved using the proposed representations, of-
fering the advantages of smaller model size and
faster training. Further discussions on this topic are
presented in Section 4.5.

In Table 6, we present the results of the POS
tagging and NER using the EWT and CoNLLpp
datasets, respectively. The reported results are
in terms of accuracy. In the POS tagging exper-
iment, the consonants-only representation exhibits
a significant decrease in performance by more than
4% compared to the standard text representation.
However, the masked-vowels representation main-
tains a comparable performance to the standard text.
To investigate the reasons behind the performance
drop, a manual analysis was conducted using the
confusion matrix. The analysis revealed that the
consonants-only representation lacks words like ’a’
and ’I’, which constitutes a significant number of
tokens. These words are easy to predict for POS
tagging as determiner and pronoun, respectively.
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Task
BLEU

S C M
English-to-German 30.56 29.70 28.19
German-to-English 29.70 25.19 29.80

Table 7: Translation results in BLEU score

This constitutes the main reason for the drop in per-
formance for the consonants-only representation.

NER, on the other hand, shows competitive per-
formance compared to the standard English text.
In fact, the masked-vowels representation outper-
forms the standard text representation by reducing
the absolute error by over 0.5%, while consonants-
only representation provides a comparable perfor-
mance.

Table 7 presents the translation results from En-
glish to German (en-de) and vise-versa. Based on
the results from the table, we can see that all the
representations are giving us comparable results
on the (en-de) translation task. For the (de-en)
translation task, we can notice that the consonant-
only approach witnesses a noticeable drop. This
can be attributed mainly to the missing determi-
nant "a" as discussed in Section 4.1. Interestingly,
masked-vowels representation yields even better
results than the standard English representation. It
should be noted that the current model is optimally
calibrated on the standard English representation.
Tuning it on the proposed representations might
lead to even better performances.

4.4 Retrieval of standard English
representation from the proposed
representations

In this section, we focus on the task of retrieving
vowel information from the two vowel-free rep-
resentations introduced in this study. We utilize
the AGnews dataset for training and evaluating the
models. Table 6 presents the results of standard text
retrieval from the proposed representations, mea-
sured in terms of word-error-rate (WER), character-
error-rate (CER), and vowels-error-rate (VER).

The table indicates that retrieving standard text
from the masked-vowels representation yields su-
perior results compared to the consonants-only rep-
resentation. It is worth noting that part of the errors
encountered during the retrieval from consonants-
only representation can be attributed to the omis-
sion of words containing only vowels. However,
we believe that such errors can be mitigated by im-

WER CER VER
Consonants 8.99 4.06 5.60
Masked-Vowels 2.87 1.78 1.87

Table 8: Standard text retrieval results. WER is the
word-error-rate, CER is the character-error-rate, and
VER is the vowel-error-rate.

plementing a post-processing step, such as spelling
and grammar correction, to refine the output.

To evaluate the model performance while dis-
regarding words that consist solely of vowels, we
calculate the aforementioned metrics after remov-
ing these tokens from both the predicted output
and the original text. The resulting metrics are
as follows: 6.4% for word-error-rate, 3.15% for
character-error-rate, and 3.85% for vowels-error-
rate. The approximately 3% difference in word-
error-rate aligns with the reported ratio of conso-
nant tokens to standard text tokens presented in
Table 1 for the AGNews dataset.

To further investigate the errors in vowel retrieval
from both the representations, we manually ana-
lyzed a subset of the first 100 samples from the
test set. Our observations revealed the following
insights:

• Masked-vowels representation: Some errors
occurred due to the presence of unknown
words—words in the test set that were not
present in the training set. Since the model
was not exposed to these words during train-
ing, it struggled to accurately retrieve the vow-
els. Additionally, we noticed that a signifi-
cant portion of the errors stemmed from nouns.
These nouns might have been relatively rare
in the training set, resulting in lower model fa-
miliarity and increased difficulty in predicting
the correct vowels for these words.

• Consonants-only representation: In the
consonants-only representation, we observed
additional sources of errors in vowel retrieval.
These include errors relate to abbreviations
and cases of letters, as well as challenges in
capturing vowel positions within words.

4.5 Further comparisons
This section presents further comparisons of the
proposed representations compared to the standard
English text. Table 9 shows the model sizes of
each dataset represented with our proposed repre-
sentations compared to the standard English text.
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Dataset
Number of parameters (M)

S C M
Wikitext 25.5 21.5 23.8
IMDB 32.5 25.2 29.3
AGNews 32.8 25.4 29.5
EWT 16.4 14.3 15.6
ConLLpp 18.4 16.4 17.7
Multi30K 16.2 15.0 15.7

Table 9: Models sizes for differed text representations
in terms in the number of parameters (in Millions). For
Multi30K, the reported results are for de-en experiment.

The table illustrates that the model size is closely
related to the vocabulary size, as the embedding
layers have a dominant effect on the model size.
For example, the language models have sizes of
101 MB, 86 MB, and 95 MB respectively for the
standard English, consonants-only, and masked-
vowels representations. Additionally, the model
size on storage devices is also influenced by its
total number of parameters.

Moreover, a lower model size indicates a lower
training time per epoch. In the language model ex-
periment, for example, the training time per epoch
is 82.14 seconds for the standard text, 67.55 sec-
onds for the consonants-only representation, and
77.07 seconds for the masked-vowels representa-
tion. Thus, the reduced model size contributes to
faster training.

Another aspect of comparison is the Out-Of-
Vocabulary (OOV) rate and unknown tokens. In
some tasks, it is common to remove words with a
single occurrence to reduce model size and avoid
overfitting. In the AGNews dataset, the number
of single-occurrence vocabularies is 27,348 out of
79,037 for the standard text representation. For
the consonants-only representation, the number of
these vocabularies is 17,283 out of 54,596, and for
the masked-vowels representation, it is 22,660 out
of 67,982. Accordingly, the ratio of these unknown
vocabularies are 34.60%, 31.66%, and 33.33% for
the standard text, consonants-only representation,
and masked-vowels representation, respectively.

5 Conclusion and future work

In this paper, we introduced two novel text repre-
sentations based on English consonants. The first
representation completely removes vowels from
the input sequence, while the second representation
masks vowels to a unique symbol. We conducted

a comprehensive analysis of these representations
by comparing their corpus statistics, including vo-
cabulary and token sizes, text entropy, as well as
the language model perplexity. Additionally, we
evaluated the performance of these representations
on various NLP tasks and compared the results
with those obtained using the standard English text
representation.

The experimental results demonstrated that the
proposed representations achieved competitive per-
formance without significant sacrifices. Notably,
the models based on these representations exhib-
ited smaller model sizes and a reduced number of
parameters. This indicates the potential for more
efficient training and deployment of models using
these representations.

In future work, our focus will be on optimiz-
ing the architectures specifically for the proposed
representations to achieve superior performances
compared to the standard English text. We aim to
evaluate the representations on a broader range of
NLP tasks, such as text summarization and ques-
tion answering, to assess their generalization abil-
ities. Further investigation will be conducted to
improve vowel retrieval.

6 Limitations

It is crucial to conduct additional experiments to
evaluate the generalization capabilities of the pro-
posed representations, particularly in important
NLP tasks such as question answering and text sum-
marization. Moreover, the present work would ben-
efit from exploring larger and more diverse datasets
to validate the effectiveness of the representations
across different domains. Additionally, to improve
the accuracy of retrieving the standard text from the
consonants-only representation, it is recommended
to investigate the use of an encoder-decoder ar-
chitecture that can deal with missing vowels-only
words, as the presented architecture was unable
to deal with these missing words. This will con-
tribute to enhancing the overall performance and
applicability of the proposed representations.
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