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Abstract

Given the high-stakes nature of healthcare
decision-making, we aim to improve the ef-
ficiency of human annotators rather than re-
placing them with fully automated solutions.
We introduce a new comprehensive resource,
SYMPTOMIFY, a dataset of annotated vaccine
adverse reaction reports detailing individual
vaccine reactions. The dataset, consisting of
over 800k reports, surpasses previous datasets
in size. Notably, it features reasoning-based
explanations alongside background knowledge
obtained via language model knowledge har-
vesting. We assess data quality, and evaluate
performance across various methods and learn-
ing paradigms, paving the way for future com-
parisons and benchmarking.1

1 Introduction

Drug safety monitoring systems like Vigibase
(Lindquist, 2008) and VAERS2 are essential for
evaluating the safety of medications and vaccines.
These systems enable anyone to report drug reac-
tions, facilitating early detection of vaccine safety
issues. For example, if a mother observes vomiting
and fever in her two-year-old after the chickenpox
vaccine, she may be curious about the frequency
of similar reactions reported by others. VAERS’
online browser can provide the answer. Being able
to provide such answers involves normalizing the
raw patient reports in order to address variations
caused by polysemy, abbreviations, and other fac-
tors present in these informal and potentially noisy
reports.

VAERS employs trained staff to review and
"code" each submitted report, assigning formal
medical terms to the symptoms experienced by
the patient. VAERS terms come from the standard-
ized medical terminology known as the Medical

1The dataset and code are available at https://github.
com/bosung/SYMPTOMIFY.

2Vaccine Adverse Event Reporting System https://
vaers.hhs.gov/data.html
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Figure 1: A to C illustrate the stages of drug safety
monitoring systems like VAERS. We aim to improve the
efficiency of skilled human coders in step B by facilitat-
ing the development of systems that identify symptoms
and offer explanations to aid coders, as demonstrated by
the model-generated output in step D.

Dictionary for Regulatory Activities (MedDRA)
(Brown et al., 1999; Shimabukuro et al., 2015). To
illustrate the coding process, consider the report:
R1: "I had a 90% loss of smell/taste the next day.
Also felt irritable and nervous but manageable."
This report is annotated with these MedDRA terms:
Ageusia, Anosmia, Irritability, Nervousness.
Our aim is to support the decision-making of hu-
man coders during annotation, by supporting the
development of symptom recognition models that
can predict and explain identified symptoms (Fig-
ure 1). Given the high-stakes nature of this field,
where data interpretation can carry life-or-death
consequences, fully automated solutions are not
yet sufficiently accurate. Specifically, we present
a resource of annotated reports detailing people’s
reactions to vaccines, and enriched in several ways.
In summary, our contributions are as follows:
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1. SYMPTOMIFY Dataset: We present a symp-
tom recognition dataset derived from VAERS
informal medical reports with over 800k en-
tries. Beyond its scale, we enhance the
dataset by adding explanations and back-
ground knowledge substantially boosting its
utility for advancing systems that aid human
coders in annotation.

2. Annotation Explanations: We enrich SYMP-
TOMIFY with annotation explanations, care-
fully harvested from LLMs. We showcase
their usefulness on the newly released Falcon
language model.

3. Background Knowledge Augmentation:
We augment SYMPTOMIFY with background
knowledge about symptoms, improving per-
formance, particularly for rare symptoms.

4. Performance Evaluation: We implement
and evaluate various baselines across different
methods and learning paradigms, facilitating
future comparisons and benchmarking.

2 Related Work and Existing Datasets

Our work is related to the old task of Named Entity
Recognition (NER), which is the task of mapping
mentions of entities in text to standardized entity
names (Sutton and McCallum, 2004; Ratinov and
Roth, 2009; Ritter et al., 2011; Hoffart et al., 2011;
Cao et al., 2021). Our work goes beyond recogniz-
ing entities as we wish to support human decision
making. Additionally, our work is complemen-
tary to work on Explainable Artificial Intelligence
(XAI) (Doshi-Velez and Kim, 2017; Ribeiro et al.,
2016), and can be used to build more explainable
models. Furthermore, there are efforts to enhance
open-source LLMs by extracting instruction-output
pairs from massive, paid-API LLMs. The goal is to
gather valuable data that can be utilized for instruc-
tion tuning of open-source models. This method
is particularly beneficial for projects that lack the
financial resources to hire people for human feed-
back, thereby democratizing access to advanced
LLM capabilities (Peng et al., 2023).

Closer to our work are prior efforts on creating
datasets for medical entity recognition from diverse
sources, including death certificates (Goeuriot et al.,
2017), scientific publications (Verspoor et al., 2012;
Mohan and Li, 2019), and electronic health records
(EHRs) (Suominen et al., 2013). While these cor-
pora contribute to medical entity recognition, they

Dataset Source # Symptoms Size

SYMPTOMIFY (ours) VAERS 11,472 871,373
COMETA (Basaldella et al., 2020) Reddit 7,645 20,000
MedRed (Scepanovic et al., 2020) Reddit 18 2,000
RedMed (Lavertu and Altman, 2019) Reddit 2,978 n/a
Twitter TwiMed (Alvaro et al., 2017) Twitter 3,144 2,000
CADEC (Karimi et al., 2015) AskaPatient 6,754 1,253
Twitter ADR (Nikfarjam et al., 2015) Twitter 1,280 1,784

Table 1: SYMPTOMIFY surpasses the scale of previ-
ous related datasets for entity recognition in informal
health reports. Additionally, SYMPTOMIFY contains an-
notation explanations and background knowledge about
symptoms.

differ from the focus of our work, which centers
around user-generated text.

Table 1 summarizes datasets closely related to
ours, with many, like ours, targeting pharmacovig-
ilance, and unlike ours, originating from social
media platforms such as Twitter and Reddit. Like
our work, these efforts aimed to identify symp-
toms mentioned in unstructured and informal tex-
tual sources. SYMPTOMIFY surpasses previous
datasets in size, and notably, it incorporates annota-
tion explanations and provides background knowl-
edge about symptoms.

3 LM Knowledge Harvesting

Access to the most powerful LMs is often limited
to paid APIs with query restrictions. In dynamic
settings, such as continuous MedDRA report anno-
tation, rapid query response is crucial. Therefore,
we propose to extract a portion of LM knowledge
to enrich an existing dataset. This approach allows
greater control, transparency, and balance between
performance, cost-efficiency, and autonomy.

Enriching existing datasets meets a widespread
need as under-specified datasets are common. A
prominent example comes from Question Answer-
ing tasks where only few datasets are fully labeled
with question, answer, passage, and span.

In our work, key steps to upgrade a dataset via
LM knowledge harvesting include: (i) Identify-
ing Shortcomings: Assess the dataset to determine
missing elements and areas needing improvement.
(ii) Creating Good Prompts: Design prompts using
existing dataset examples to minimize potential am-
biguities. (iii) Checking Data Quality: Implement
strategies to assess LLM output quality, ensuring it
is accurate, useful, and safe. (iv) Maintaining De-
tailed Records: Document the harvesting process,
including prompts, LLM configurations, and dates,
for improved transparency and reproducibility.
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4 The SYMPTOMIFY Dataset

With VAERS3 as the starting dataset, we used LM
knowledge harvesting to create SYMPTOMIFY. The
dataset spans three years (2019-2021) and includes
839, 215 reports, incorporating symptom texts, rel-
evant MedDRA terms, and associated metadata like
age, sex, and vaccine type.

4.1 Quantitative Analysis of MedDRA coders

VAERS uses certified MedDRA coders to assign
formal medical terms to symptoms. We evaluated
the quality of these annotations via crowdsourc-
ing on Amazon Mechanical Turk (AMT). We first
randomly selected 1, 000 symptoms and then se-
lected a corresponding patient report (symptom
text) mentioning that specific symptom. A symp-
tom was considered correctly annotated if two out
of three evaluators agreed.4 Based on this accuracy
metric, VAERS staff correctly labeled 93.4% of
the 1, 000 tested symptoms, highlighting the high
quality of their annotations. Still, this figure might
underestimate the true accuracy, as most challeng-
ing examples were medical test results not stated
in patient reports (such as C-reactive protein lev-
els or metabolic function tests). The agreement
rate among evaluators was moderately strong (0.55
Fleiss’ Kappa5), similar to related annotation tasks
reported in the literature which showed agreements
in the range: 0.55 − 0.62 (Wadhwa et al., 2022;
Nye et al., 2018; Deleger et al., 2012).

ChatGPT as the 4-th annotator. ChatGPT
(based on GPT-3.5) served as a fourth annotator
alongside three human coders, working on the same
1, 000 tasks. The provided prompt was: "Does the
following patient report mention ‘{SYMPTOM}’:

‘{REPORT}’?". ChatGPT agreed with MedDRA
in 86.7% of the cases. However, this figure might
overestimate ChatGPT’s symptom recognition ca-
pacity, as this binary task is significantly simpler
than unguided symptom identification. We further
probed ChatGPT’s abilities through tests more au-
thentically reflecting symptom recognition.

3VAERS is jointly managed by the U.S. Centers for Dis-
ease Control and Prevention (CDC) the U.S. Food and Drug
Administration (FDA)

4Details of the annotation task are provided in Appendix
A.1.

5Overall, the annotation process cost $723 (US dollars)
and involved 201 workers.
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Figure 2: Distribution of explanation lengths in number
of words.
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Figure 3: Visualizing the top 30 most frequent 4-grams
in explanations. These phrases often indicate that the
explanations quote spans from the patient reports.

4.2 Harvesting Annotation Explanations

We augment VAERS data by incorporating expla-
nations to compensate for the absence of span-level
annotations. Using GPT-3.5, we generated expla-
nations to add to the dataset. The prompt used was:
"Explain why the patient report mentions ‘{SYMP-
TOM}’, quoting report fragments where possible:
‘{REPORT}’." ChatGPT’s responses were then used
as explanations. These explanations offer extended
context beyond the report’s explicit content, like
identifying Hypoxia from a report referencing an
"oxygen saturation of 86%", correctly interpreting
it as low blood oxygen. By directly quoting from
the patient report, the explanations also provide
span-level information.

Qualitative Analysis of Explanations. Figures 2
and 3 illustrate the distribution of explanation
lengths and the 30 most recurrent 4-grams within
the explanations, respectively. Often, these fre-
quently appearing phrases refer to the symptom
mentions in patient reports, including phrases like
"is mentioned in the," "the report states that," "frag-
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Vaccine Symptom Explanation Fragment

FLU4 Dizziness postural This is evident from the following fragment of the report: "I became extremely dizzy when I tried to stand.
COVID19 Lymphadenopathy This is evident from the statement "My lymph nodes were swollen."
FLUA3 Throat tightness The following fragments from the report indicate the presence of the symptom: - "throat feeling like its about to close" - "swelling and lump

in throat on right side"
HEPA Thirst The following fragments from the report support this explanation: "He then began drinking large amounts of water throughout the day and

even waking at night to ask for a drink multiple times."
FLUA4 Arthralgia The report states "Shoulder pain" which is a common symptom of arthralgia.
FLUR4 Dyspnoea The symptom "Dyspnoea" is mentioned in the patient report because the patient is experiencing difficulty breathing, which is a common

symptom of dyspnoea.

Table 2: Example explanation fragments featuring some of the most common 4-grams, demonstrating direct
quotation of spans from the reports and the use of background knowledge about symptoms when necessary.

ments from the report," etc. Table 2 shows frag-
ments from example explanations that feature these
common 4-grams, illustrating the direct quotation
of spans from the reports and the use of background
symptom knowledge.

Quantitative Analysis of Explanations: Honesty
and Helpfulness. We evaluated the explanations
on two primary dimensions: 1) Honesty: Is the ex-
planation factually accurate, without fabrications
or distortions? and 2) Helpfulness: Is the explana-
tion correct and beneficial in clarifying why a symp-
tom is mentioned?. We randomly picked 1, 000
explanations and employed a three-choice task for
assessment: A) The explanation is both honest and
helpful; B) The explanation is honest but not de-
tailed enough to be helpful; and C) The explanation
is neither honest nor helpful (i.e., incorrect explana-
tion). Each task was evaluated by three annotators,
with a label deemed accurate if at least two anno-
tators agreed on it. Our findings show that 91.3%
of the explanations were honest and helpful, 7.5%
were honest but not helpful, and 1.2% were nei-
ther honest nor helpful. For this relatively complex
task, we hired three graduate students for annota-
tion. The agreement rate was moderately strong,
with a Fleiss’s Kappa of 0.60.

4.3 Harvesting Background Knowledge

Sometimes, recognizing symptoms in a report re-
quires understanding beyond what’s written. For
example, a report might state "BP is 173/109"
without mentioning hypertension directly. But,
given that hypertension is defined as blood pres-
sure above 140/90, the report implies this condi-
tion. This kind of understanding demands external
knowledge. Thus, we aimed to augment SYMP-
TOMIFY with background knowledge about symp-
toms.

As a basic form of background knowledge we
link each unique symptom in SYMPTOMIFY with

Symptom LLM Definition UMLS Definition

Melaena Blood in the stool, typically caused
by gastrointestinal bleeding.

The black, tarry, foul-smelling feces
that contain degraded blood.

Ischaemia Lack of blood flow to a tissue or or-
gan. This may be due to obstruction
or a problem with the blood vessels.

A decrease in blood supply caused
by blockage of blood vessel.

Table 3: Examples of symptom definitions derived from
both UMLS and a Language Model (LM). The com-
parison with UMLS definitions underscores the LM’s
capability to generate high-quality, medical term defini-
tions.

its definition. We harvested symptom definitions
using the LLM6. Here one could also use knowl-
edge graphs such as the Unified Medical Language
System (UMLS) (Bodenreider, 2004), but we
found coverage to be incomplete. In our exper-
iments, these definitions were used in zero-shot
learning baselines. But, there are many other poten-
tial applications that future research could explore.
Currently, SYMPTOMIFY’s symptom background
knowledge primarily consists of definitions. How-
ever, there are avenues to expand this knowledge
further. For example, more complex relational
structured data, such as known relationships be-
tween symptoms, could be extracted from large
LMs in future endeavors.

.

Qualitative Analysis of LLM Definitions. In
Table 3, we display two example definitions gen-
erated by the LM, comparing them with UMLS
definitions to highlight the LM’s proficiency in pro-
ducing high-quality explanations. Certain terms
used in drug safety monitoring systems may have
dual meanings, creating ambiguity both within and
outside the medical context. To bolster a medically-
focused comprehension, particularly regarding ad-
verse effects, we recommend integrating the phrase
"adverse effect" into the definition prompt, and sup-

6We used, from the GPT series, the text-davinci-001
version.
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plementing the prompt with example reports from
VAERS that mention the symptom in a few-shot
style. This method mitigates potential misunder-
standings from multiple interpretations of a term.

Quantitative Analysis of LLM Definitions. To
quantitatively evaluate the definitions, we ran-
domly selected 1, 000 definitions and assigned
three crowd-sourced annotators to rate each def-
inition’s accuracy. A definition was deemed ac-
curate and useful if it gained agreement from at
least two annotators. The evaluation results indi-
cated that 96.4% of the definitions were accurate.
The inter-rater agreement, Fleiss’ Kappa, was 0.34,
which indicates a fair degree of consensus among
the raters.7

5 Experimental Study

Data. Our experiments use the following data
splits: Training set with 671, 373 instances, vali-
dation set with 83, 921 instances, and test set with
83, 921 instances. We further segment the test set
into three subsets for more granular analysis: i)
Full: The entire test set. ii) UMLS-mapped: Ex-
clusively contains symptoms that can be mapped
to UMLS, identified via exact string matching, for
fair comparison with previous UMLS-focused stud-
ies, specifically Metamap. iii) Rare: Only includes
’long-tail’ symptoms, those occurring in 50 or less
reports, representing over 80% of all symptoms.
More details of the experimental configuration can
be found in the appendix.

Task. To set the initial benchmarks on our dataset,
we started by focusing on the accuracy of symp-
tom recognition, without considering the added
information from explanations or symptom back-
ground knowledge. We represented each data point
as a pair (x,Si), where x is a patient report and
Si = {s1, ..., sn|si ∈ S} is the set of symptoms
mentioned in x. The goal is to predict the Med-
DRA names of symptoms mentioned in the input
report x. We explore a variety of baseline methods
across different learning paradigms:

1. String Matching: Involves matching symp-
tom names directly with the report text.

2. Symptom Embedding: Represents symptom
names and report texts as dense vectors for
matching.

7The annotation process engaged 1, 437 workers and
amounted to a cost of $522.

Model
Full test UMLS-mapped

Macro F1 Micro F1 Macro F1 Micro F1

Exact String Matching 8.87 30.38 10.41 32.98
MetaMap - - 3.74 10.65
Symptom Embedding 0.72 3.32 0.87 5.87

Table 4: Performance of string matching and symptom
embedding methods. These methods do not utilize the
training data.
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Figure 3: Illustration of some of the baseline methods whose performance on SYMPTOMIFY we report in our
experiments. Overall our baselines fall under three learning paradigms: pretrain-finetune(a, c, e) zero-shot learning
(b), and prompting (d).

particular symptom is mentioned by the patient.313

Therefore, we generate the target sequence as a314

comma separated list, i.e., the pair of source and315

target sequences is (“I have muscle pain and fever”,316

“Myalgia, Pyrexia”). Then the model is trained317

to minimize a negative log-likelihood loss as fol-318

lowing: Lgen = �P|t|
i=1 log p(ti|t0, ..., ti�1, x)319

where t = {t1, ..., tm} is a set of tokens in the320

target sentence, and t0 is a model specific start to-321

ken. We consider baselines using BART and T5 as322

the pretrained model.323

Joint Learning Model. To leverage both discrim-324

inative and generative approaches, we use a joint325

learning method. We train the model jointly by326

combining two objective functions Lcls and Lgen.327

Ljoint = Lgen+�jLcls, where �j is a hyperparam-328

eter. We use transformer based models for both ap-329

proaches, where the transformer layers are shared330

with separate output layers.331

4.1.1 Rare symptoms under pretrain-finetune332

As we show in our experiments, we found that rare333

symptoms present a challenge. Consequently, we334

sought to augment the pretrain-finetune paradigm335

on rare systems via data augmentation. One po-336

tential approach is using symptom definitions as337

synthetic reports (Kim and Nakashole, 2022). How-338

ever, the way in which the definition describe symp-339

toms significantly differs from real reports. Real340

reports tend to use simpler language and in a more341

casual manner, whereas dictionary definitions de-342

scribe symptoms using formal medical terminol-343

ogy. To reduce this discrepancy, we exploit the syn-344

thetic data generation method to create more data345

points for rare symptoms (see Figure 4). First, we346

train the GPT-2 model using prompts: “Symptom:347

{symptom name} , Definition: {symptom defini-348

tion} , Report: {symptom text}.” We then gener-349

Input

Symptom: Melaena
Symptom Back-
ground Knowledge:
Melaena refers to
the black, tarry, foul-
smelling feces that
contain degraded blood

LLM
(GPT-2)

Generated: Ŷ
Report: Lorem ip-
sum dolor sit amet,
consectet ...

Target: Y
Report: Had solid
black feces, indica-
tor for blood in the
feces ...

Loss= L
0
@Ŷ ,Y

1
A

A

B

C

Figure 4: The process of generating synthetic reports
for rare symptoms. The input to the LLM consists of
the symtom name, expanded to include background
knowledge about the symptom (A). Training involves
both target reports(B) and generated reports (C), while
at inference time, only the generated report is available.

ate synthetic reports by giving the context as fol- 350

lows: “Symptom: {symptom name} , Definition: 351

{symptom definition} , Report:” To obtain more 352

diverse synthetic sets, we use Top-k multinomial 353

sampling in generation. We generate 100 synthetic 354

reports per each symptom, and found that the best 355

performance was achieved when using 30 synthetic 356

reports for each symptom. In experiments, we 357

merge the training set with the augmented set and 358

perform fine-tuning on the combined dataset. 359

4.2 Prompting Baselines 360

Language Model (LM) Prompting. As LM 361

prompting has achieved remarkable success 362

(Brown et al., 2020a), many studies have been 363

explored to reframe the target task as a template- 364

based prompting (Obamuyide and Vlachos, 2018; 365

Puri and Catanzaro, 2019; Hu et al., 2022; Chen 366

et al., 2022) to leverage implicit knowledge stored 367

in LMs (Petroni et al., 2019). We reformulate the 368

task of symptom detection into prompt-based tasks 369

using the GPT-2 model. To create the input x of 370

the model, we concatenate the symptom text and 371

5

Figure 4: An illustration of symptom embedding base-
line. It is similar to span-based string matching, but per-
forms matches using continuous representations rather
than discrete symbols.

3. Pretrain-Finetune: Uses pre-trained lan-
guage models fine-tuned on our dataset.

4. Prompting: Leverages prompts to generate
responses from language models in zero-shot
and few-shot settings.

5.1 String Matching Baselines
Our initial baselines attempt to align symptom men-
tions with MedDRA terms without considering
context or utilizing training data. We employ two
methods: (i) MetaMap: A National Library of
Medicine-developed tool that maps text spans to
symptom names in the UMLS dictionary. For fair-
ness, we only evaluated MetaMap on the test set
subset that could be UMLS-mapped. (ii) Exact
String Matching: A stringent method that requires
precise string matches, offering a stricter compari-
son than MetaMap’s span matching.

The results in Table 4 demonstrate the task’s
complexity, as these string matching methods per-
form poorly. The findings underline the shortcom-
ings of simplistic approaches in effectively han-
dling this task.

5.2 Symptom Embedding Baseline
As shown in Figure 4, our symptom embedding
method uses dense retrieval from a frozen lan-
guage model. Symptom vector representations

11671



are created from symptom definitions in SYMP-
TOMIFY. For each symptom si, we construct
an embedding hsi using its name and definition.
Similarly, we generate n-gram span embeddings
for each n-gram in the patient report using Clin-
icalBERT (Alsentzer et al., 2019) and the span
embedding method by Ujiie et al. (2021). We
then compare each symptom embedding with all
n-gram embeddings using the scoring function
f(si, xi,i+(n−1)) = hsi · h[xi, xi+(n−1)]. We re-
call spans with scores exceeding a certain thresh-
old, determined by the best validation score. This
approach is similar to zero-shot entity linking by
Wu et al. (2019). In our experiments, with n = 2,
the embedding method did not surpass the string
matching method, suggesting that further training
of embeddings may be needed (see Table 4).

5.3 Pretrain-Finetune Baselines
Given the substantial data available in SYMP-
TOMIFY, we investigated fine-tuning baselines.

Classification Approach. In a multi-label clas-
sification context, we experimented with various
pre-trained language models including BERT (De-
vlin et al., 2019), BART (Lewis et al., 2020), and
ClinicalBERT (Alsentzer et al., 2019). We used
BERT’s classification paradigm, using the [CLS]
vector for the sentence representation and a classi-
fier layer. Additionally, we implemented a Convo-
lutional Neural Network (CNN) on top of BERT’s
last hidden states (BERT + CNN) to capture more
granular features from the contextualized repre-
sentations, following the approach by Safaya et al.
(2020).

Generative Approach. In the context of symp-
tom generation, we adopt the generative entity re-
trieval approach of GENRE, utilizing a transformer-
based encoder and decoder (Cao et al., 2021; Lewis
et al., 2020). In this framework, the model gener-
ates a sequence of symptom names as the target
output, rather than individual entity classification.
To retrieve multiple symptoms, GENRE needs an-
notated spans referring to each symptom. However,
as mentioned, VAERS annotations lack symptom
mention spans; we only know if a symptom was
mentioned or not. Thus, we generate a target se-
quence as a comma-separated list, e.g., given the
input report: "I have muscle pain and fever", the tar-
get sequence is: "Myalgia, Pyrexia". We consider
baselines using BART and T5 as the pretrained
models.
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Oropharyngeal discomfort
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N-gram vector representation
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Figure 3: Illustration of some of the baseline methods whose performance on SYMPTOMIFY we report in our
experiments. Overall our baselines fall other three different learning paradigms: pretrain-finetune(a, c, e) zero-shot
learning (b), and prompting (d).

NN: Can we reorder this figure so that (a, c, e) come first, followed by (b), then finally d?

2019), BART (Lewis et al., 2020), and BioBERT490

(Lee et al., 2019).491

The default setting uses BERT’s classification492

setting with an aggregate sentence representation493

using the [CLS] vector and a classifier layer (De-494

vlin et al., 2019). We also considered another set-495

ting that uses a Convolutional Neural Networks496

(CNN) model on top of BERT’s last hidden states497

(BERT + CNN). By applying a CNN architecture498

on the top of BERT’s hidden states, we can poten-499

tially extract more fine-grained features from the500

contextualized representations rather than using a501

single aggregate vector (Safaya et al., 2020).502

Generative Entity Retrieval (GER). We adopt503

GENRE’s (Cao et al., 2021) generative retrieval504

approach with a transformer-based encoder and505

decoder (Lewis et al., 2020). In the GER, the506

model generates a sequence of symptom names507

as a target sentence instead of classifying each508

entity class. However, to retrieve multiple symp-509

toms, GENRE requires annotated spans that refer510

to each symptom. For example, the source and511

target sequences should be (“I have muscle pain512

and fever”, “I have [muscle pain] (Myalgia) and513

[fever] (Pyrexia)”). In our setting, a limitation of514

VAERS annotation is that mention spans of symp-515

toms are missing, we only see whether or not a516

particular symptom is mentioned by the patient.517

Therefore, we generate the target sequence as a518

comma separated list, i.e., the pair of source and519

target sequences is (“I have muscle pain and fever”,520

“Myalgia, Pyrexia”). Then the model is trained521

to minimize a negative log-likelihood loss as fol-522

lowing: Lgen = �P|t|
i=1 log p(ti|t0, ..., ti�1, x)523

where t = {t1, ..., tm} is a set of tokens in the524

target sentence, and t0 is a model specific start to-525

ken. We consider baselines using BART and T5 as526

the pretrained model. 527

Joint Learning Model. To leverage both discrim- 528

inative and generative approaches, we use a joint 529

learning method. We train the model jointly by 530

combining two objective functions Lcls and Lgen. 531

Ljoint = Lgen+�jLcls, where �j is a hyperparam- 532

eter. We use transformer based models for both ap- 533

proaches, where the transformer layers are shared 534

with separate output layers. 535

8.2 Prompting Baselines 536

Language Model (LM) Prompting. As LM 537

prompting has achieved remarkable success 538

(Brown et al., 2020a), many studies have been 539

explored to reframe the target task as a template- 540

based prompting (Obamuyide and Vlachos, 2018; 541

Puri and Catanzaro, 2019; Hu et al., 2022; Chen 542

et al., 2022) to leverage implicit knowledge stored 543

in LMs (Petroni et al., 2019). We reformulate the 544

task of symptom detection into prompt-based tasks 545

using the GPT-2 model. To create the input x of 546

the model, we concatenate the symptom text and a 547

symptom list with the prompts as follows: 548

x = {symptom text} <sep> What 549

symptoms does the patient have? 550

{symptoms} <eos>. 551

This was the best performing prompt after experi- 552

menting with various prompts, ranging from simple 553

ones like "Symptoms: " to more elaborate prompts 554

such as "List the symptoms reported by the patient: 555

". NN: how is answer engineering performed? Is it 556

based on exact match to the symptom names, then 557

we should say so because then the prompt results 558

are under-estimates. 559

NN: Also, should we report results on GPT-2 560

promoting with in-context learning instead of the 561

purely zero-shot prompting? 562

7

Figure 5: The joint learning method combines discrimi-
native and generative approaches in the pretrain-finetune
paradigm. The classifier head (yellow) and the genera-
tion head (blue) are illustrated.

Model Full test UMLS-mapped
Macro F1 Micro F1 Macro F1 Micro F1

BERT-base ‡ 1.34 15.81 1.45 18.80
BART-base ‡ 1.37 15.96 1.55 18.98
ClinicalBERT ‡ 1.53 16.32 1.76 19.46
ClinicalBERT + CNN ‡ 7.29 62.68 8.12 65.79
GEN w/ BART 31.15 78.90 31.22 81.27
GEN w/ T5-base 32.01 79.88 32.19 82.25
Joint C + GEN 32.89 79.93 32.70 82.97

Table 5: Pretrain-finetune performance. ‡ denotes clas-
sification methods. Models without symbols are genera-
tive. Joint C + GEN refers to both a classification and
generative method (T5 + ClinicalBERT).

Joint Classification & Generation. To bring
together the strengths of both discriminative and
generative approaches within the pretrain-finetune
framework, we implement a joint learning strat-
egy. We use transformer-based models for both
approaches, with shared transformer layers but dis-
tinct output layers for each task. This joint model
structure is depicted in Figure 5.
Results. The generative techniques substantially
outperformed the most effective string-matching
method, demonstrating the power of such mod-
els. Leveraging T5 as the base model, the gener-
ative model achieved impressive micro F1 scores
of 79.88% and 82.25% on the Full and UMLS-
mapped test sets respectively. Interestingly, the
multi-label classification didn’t surpass the string
matching approach, potentially due to the large
class count (over 11K) and the bottleneck caused by
the [CLS] token. However, incorporating a CNN
on top of ClinicalBERT enhanced classification
performance, reaching 62.68% on the full set and
65.79% on the UMLS-mapped set, but still lagging
behind the generative model.

The joint learning model showed modest per-
formance improvements, confirming the benefit of
combined strategies.

The variance between micro and macro F1
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Model Full test UMLS-mapped
Macro F1 Micro F1 Macro F1 Micro F1

GPT-2 (Supervised) 13.93 59.41 14.27 61.90
ChatGPT (Zero-shot) 24.69 39.75 22.23 38.10
ChatGPT (One-shot) 29.17 42.74 27.97 41.51

Table 6: Performance of prompting methods. While
these methods fall short of the pretrain-finetune tech-
niques, it is notable that the pretrain-finetune approach
leverages the extensive SYMPTOMIFY dataset, underlin-
ing the considerable benefits of fine-tuning for improved
results in settings with massive amounts of data such as
in SYMPTOMIFY.

Model Rare symptoms test set
Macro F1 Micro F1

String match † 6.91 7.79
GEN (T5-base) 21.78 24.98
GEN w/ definitions 21.72 25.16
GEN w/ synthetic reports 23.31 25.73
GPT-2 Prompting 6.63 7.87
ChatGPT Prompting (zero-shot) 11.75 8.56
ChatGPT Prompting (one-shot) 16.06 10.49

Table 7: Macro F1 and Micro F1 of the symptom detec-
tion task on the rare symptoms test set.

scores in all configurations is due to the dataset’s
imbalance: 80% of symptoms are rare with 50
or fewer reports mentioning them, thus making
it harder for the model to learn to accurately detect
these infrequent symptoms.

5.4 Prompting Baselines

Given the widespread success of LM promoting,
we also experimented with prompting baselines.

Language Model Prompting. We prompted
ChatGPT using the following prompt: x = Extract
a comma-separated list of symptoms from the fol-
lowing report: “{REPORT}". In addition to zero-
shot prompting, we explored the few-shot setting,
specifically the one-shot setting with a single test
set example added to the prompt.

Discriminative models assign mentions to spe-
cific class labels, while generative language models
have a vocabulary that may differ from the formal
symptom names in MedDRA. For instance, when
generating the symptom "Pyrexia," ChatGPT often
produces "Fever" instead. This necessitates answer
engineering. We employ embedding-based meth-
ods using SBERT (Reimers and Gurevych, 2019).
The prediction with the highest cosine similarity
score between the predefined symptom set and the
generated output is selected.

Results. Table 6 contains the results of the

Input

Symptom: Melaena
Symptom Back-
ground Knowledge:
Melaena refers to
the black, tarry, foul-
smelling feces that
contain degraded blood

LLM
(GPT-2)

Generated: Ŷ
Report: Lorem ip-
sum dolor sit amet,
consectet ...

Target: Y
Report: Had solid
black feces, indica-
tor for blood in the
feces ...

Loss= L

Ŷ ,Y




A

B

C

Figure 6: Synthetic Report Generation: the LM takes
symptom names as input, and to encourage semantically
faithful reports, also takes background knowledge as
input (A), During training, target (B) and generated
reports (C) are used to compute the loss.

prompting methods, and shows that they are unable
to surpass the performance of the pretrain-finetune
methods. This is expected since the pretrain-
finetune models are trained on a large training data
set of over 600K reports, whereas the zero-shot and
one-shot prompting methods have access to zero or
only one report, respectively. It is worth noting that
the large-scale nature of SYMPTOMIFY highlights
the significant benefits of fine-tuning for improved
results in settings with massive amounts of data
such as in SYMPTOMIFY.

5.5 Semantically Faithful Synthetic Data for
Rare Symptoms

In our experiments, all methods struggled to iden-
tify rare symptoms. To address the rare symptoms
problem, we used data augmentation techniques
to generate more data points for these symptoms.
We tried using symptom definitions as synthetic
reports but found a stark discrepancy between the
language in real reports and definitions. We instead
used a simple synthetic data generation method to
create more realistic data points for rare symptoms,
illustrated in Figure 6. We trained a GPT-2 model
on prompts comprising symptom name and defi-
nition. The definition is there to ensure that the
report is semantically faithful to the meaning of
the symptom, also reducing ambiguity in compar-
ison to conditioning on the symptom name alone.
Using Top-k multinomial sampling, we generated
100 synthetic reports per symptom, with optimal
performance using 30 reports each. We then inte-
grated this augmented data into our training set to
improve the model’s handling of rare symptoms.

Results. Table 7 illustrates the low performance
achieved on the rare symptoms dataset, as indicated
by both the macro and micro F1 scores across all
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(C1) Symptom (C2) Report (C3) Zero-shot Falcon (C4) Falcon with SYMPTOMIFY
Explanation Explanation

(R1) Arthralgia Patient having shoulder pain. Made appoint-
ment with doctor. MRI completed. Possible
SIRVA.

Arthralgia is mentioned in the patient report
as it is a common symptom associated with
SIRVA (Shoulder Impingement Syndrome with
Radial Neuropathy)

The symptom "Arthralgia" is mentioned in
the patient report because the patient reported
shoulder pain. This is evident from the state-
ment "Patient having shoulder pain".

(R2) Pyrexia all over body rash and fever Pyrexia is mentioned in the patient report as it
is a common symptom of fever

The symptom "Pyrexia" is mentioned in the pa-
tient report because the patient is experiencing
a fever.

(R3) Muscle spasms Patient stated he was getting muscle spasms in
the neck and back after the flu shot.

Muscle spasms are a common side effect of the
flu shot. The patient may have received the flu
vaccine and experienced muscle spasms as a
result.

The symptom "Muscle spasms" is mentioned
in the patient report because the patient is ex-
periencing muscle spasms in the neck and back
after receiving a flu shot.

(R4) Mood altered Fever, cold chills, restless sleep, redness at site
of injection, right leg soreness-unable to stand
on that leg, loss of appetite, moodiness/crying.
After 12 hours of injection

The patient reported mood altered as a result of
the injection. This is mentioned in the patient
report as it is a potential side effect of the med-
ication.

The symptom "Mood altered" is mentioned in
the patient report because the patient reported
experiencing a change in their mood. This is
evident from the statement "I was moody/cry-
ing."

Table 8: Falcon LM struggles to generate quality explanations (column C3) compared to ChatGPT. Yet, supple-
menting it with SYMPTOMIFY explanations improves its performance (column C4). Blue indicates accurate report
fragments; red signifies paraphrased, non-exact matches, or hallucinations.

methods. Furthermore, we observe a modest im-
provement when incorporating synthetic reports
into the training data. While the improvement is
small, it demonstrates the (perhaps small) potential
benefits of leveraging synthetic data to enhance the
model’s ability to handle rare symptoms.

5.6 Leveraging SYMPTOMIFY’s Explanations
in Falcon

We carried out an experiment to study the effec-
tiveness of the explanations in SYMPTOMIFY using
a prompting approach. For this, we used Falcon-
7B-Instruct8, a new, instruction-tuned iteration of
the open-source Falcon renowned for its superior
performance on key NLP benchmarks. The experi-
ment had two configurations:
1) Zero-shot Falcon Explanations: We executed
standard zero-shot in-context learning with Falcon.
2) Falcon with SYMPTOMIFY Explanations: We
introduced few-shot learning in this setup, using
selected SYMPTOMIFY explanations as our few-
shots.

Table 8 provides a comparative analysis of Fal-
con’s explanation generation under the two scenar-
ios. Initially, Falcon struggled to produce benefi-
cial explanations in the zero-shot learning context.
However, its performance significantly improved
in terms of specificity and context quoting when
it was supplemented with few-shot learning, us-
ing a handful of SYMPTOMIFY explanations as a
guide (contrast columns C3 and C4, specifically
(R1,C4)). Nonetheless, false quoting of halluci-
nated segments, as illustrated in (R4,C4) is a prob-
lem. To tackle this, one possible solution is to

8https://huggingface.co/tiiuae/
falcon-7b-instruct

expose Falcon to a larger volume of SYMPTOMIFY

explanations, thus improving its ability to gener-
ate high-quality explanations. However, due to the
context size limitations in the prompting, the ideal
solution to leverage these explanations effectively
would be to implement the pretrain-finetune ap-
proach to use the massive SYMPTOMIFY dataset
more productively as training data.

6 Conclusion

We introduced SYMPTOMIFY, a large-scale dataset
of annotated reports, reflecting reactions to medica-
tions and vaccines. It includes MedDRA symp-
toms, annotation explanations, and background
knowledge about symptoms, designed to facilitate
development of systems that can aid human anno-
tators operating in the critically important public
health domain. Despite current performance on
rare symptoms being low across all baselines, the
continual evolution in language models and strides
in few-shot learning offer promise for improve-
ment.

There are several avenues for improving SYMP-
TOMIFY and expanding its utility. Integrating the
explanations into a wider range of models may lead
to the better generation of explained predictions
with open source models such as Falcon. Expand-
ing background knowledge to include relational
knowledge, such as inter-symptom relationships,
could yield performance gains. Further, focusing
on laypeople’s perspectives and acquiring more
layman medical terms could facilitate a broader,
more inclusive understanding of symptoms. Look-
ing further ahead, as patient reports can sometimes
contain not only textual descriptions but also ref-
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erences to medical images, pictures submitted by
patients, and lab test results, the incorporation of
these non-textual elements using multi-modal lan-
guage models, could be useful.

Limitations

Our work, while it made useful contributions, has a
number of significant limitations. First, the VAERS
database, our primary data source, may not be rep-
resentative of the larger population due to potential
sampling biases. It also limits language diversity
as it contains only English-language reports.

The symptom distribution in the reports presents
a distinct challenge, with a strong skew towards
certain symptoms that hinders model performance,
including that of our most successful methods, like
pretrain-finetune. While our attempts to rectify
this through data augmentation techniques have
yielded some improvement, the performance still
falls short. This indicates the need for innovative
methods that go beyond synthetic data expansion
for addressing this challenge effectively.

The explanations present in SYMPTOMIFY are
a rich resource that, as of now, we’ve only begun
to explore. The explanations coupled with the pub-
lic availability of the dataset offer a valuable base
for other researchers to integrate into their work.
Nevertheless, more exhaustive studies are needed
to fully harness the potential of these explanations.

The potential biases of language models like
ChatGPT, known to mirror the biases in the data
they’re trained on, is another limitation. Although
we have not observed any explicit biases in our
current study, no thorough testing for bias was con-
ducted, and it remains a concern.

Finally, the use of non-medical experts from
Amazon Mechanical Turk, as well as Computer
Science graduate students for the annotation pro-
cess introduces the possibility of inaccuracies into
our assessment. Although we attempted to mitigate
this by implementing a rigorous review process
and utilizing multiple annotators, this factor may
still have influenced the accuracy of our human
evaluations. Future work may benefit from the
involvement of medical experts in the annotation
process, to increase the validity of our findings, and
by extension the dataset.

Ethics Statement

Models for symptom recognition have the potential
to provide valuable insights for monitoring and as-

sessing the safety of medicines and vaccines. They
can aid in the timely identification of potential
risks and contribute to individual and public health.
However, the availability of data to train such mod-
els, which is the main contribution of this work,
raises concerns about individual privacy. Releas-
ing the data, which includes free text reports and
metadata from VAERS, may risk the exposure of
personal information or identities. We rely on the
privacy monitoring efforts of the CDC and FDA,
the co-managers of VAERS. Furthermore, Follow-
ing prior work on automated health systems, our
goal is to be clear and transparent about the con-
tent of SYMPTOMIFY and the capabilities of the
methods developed in this work.

References
Emily Alsentzer, John R. Murphy, Willie Boag, Wei-

Hung Weng, Di Jin, Tristan Naumann, and Matthew
B. A. McDermott. 2019. Publicly available clinical
bert embeddings.

Nestor Alvaro, Yusuke Miyao, Nigel Collier, et al. 2017.
Twimed: Twitter and pubmed comparable corpus of
drugs, diseases, symptoms, and their relations. JMIR
public health and surveillance, 3(2):e6396.

Marco Basaldella, Fangyu Liu, Ehsan Shareghi, and
Nigel Collier. 2020. Cometa: A corpus for medical
entity linking in the social media. arXiv preprint
arXiv:2010.03295.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic acids research, 32(suppl_1):D267–
D270.

Elliot G Brown, Louise Wood, and Sue Wood. 1999.
The medical dictionary for regulatory activities (med-
dra). Drug safety, 20(2):109–117.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In International Conference on Learning Representa-
tions.

Louise Deleger, Qi Li, Todd Lingren, Megan Kaiser,
Katalin Molnar, Laura Stoutenborough, Michal
Kouril, Keith Marsolo, Imre Solti, et al. 2012. Build-
ing gold standard corpora for medical natural lan-
guage processing tasks. In AMIA Annual Symposium
Proceedings, volume 2012, page 144. American Med-
ical Informatics Association.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

11675

http://arxiv.org/abs/1904.03323
http://arxiv.org/abs/1904.03323
https://openreview.net/forum?id=5k8F6UU39V


Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608.

Lorraine Goeuriot, Liadh Kelly, Hanna Suominen, Au-
rélie Névéol, Aude Robert, Evangelos Kanoulas,
Rene Spijker, Joao Palotti, and Guido Zuccon. 2017.
Clef 2017 ehealth evaluation lab overview. In Ex-
perimental IR Meets Multilinguality, Multimodal-
ity, and Interaction: 8th International Conference
of the CLEF Association, CLEF 2017, Dublin, Ire-
land, September 11–14, 2017, Proceedings 8, pages
291–303. Springer.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in
text. In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing,
pages 782–792.

Sarvnaz Karimi, Alejandro Metke-Jimenez, Madonna
Kemp, and Chen Wang. 2015. Cadec: A corpus of ad-
verse drug event annotations. Journal of biomedical
informatics, 55:73–81.

Adam Lavertu and Russ B Altman. 2019. Redmed: Ex-
tending drug lexicons for social media applications.
Journal of biomedical informatics, 99:103307.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Marie Lindquist. 2008. Vigibase, the who global icsr
database system: basic facts. Drug Information Jour-
nal, 42(5):409–419.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.

Sunil Mohan and Donghui Li. 2019. Medmentions: A
large biomedical corpus annotated with umls con-
cepts. arXiv preprint arXiv:1902.09476.

Azadeh Nikfarjam, Abeed Sarker, Karen O’connor,
Rachel Ginn, and Graciela Gonzalez. 2015. Pharma-
covigilance from social media: mining adverse drug
reaction mentions using sequence labeling with word
embedding cluster features. Journal of the American
Medical Informatics Association, 22(3):671–681.

Benjamin Nye, Junyi Jessy Li, Roma Patel, Yinfei Yang,
Iain J Marshall, Ani Nenkova, and Byron C Wal-
lace. 2018. A corpus with multi-level annotations
of patients, interventions and outcomes to support
language processing for medical literature. In Pro-
ceedings of the conference. Association for Computa-
tional Linguistics. Meeting, volume 2018, page 197.
NIH Public Access.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning (CoNLL-2009),
pages 147–155.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you? explain-
ing the predictions of any classifier. Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1135–1144.

Alan Ritter, Sam Clark, Oren Etzioni, et al. 2011.
Named entity recognition in tweets: an experimen-
tal study. In Proceedings of the 2011 conference on
empirical methods in natural language processing,
pages 1524–1534.

Ali Safaya, Moutasem Abdullatif, and Deniz Yuret.
2020. KUISAIL at SemEval-2020 task 12: BERT-
CNN for offensive speech identification in social me-
dia. In Proceedings of the Fourteenth Workshop on
Semantic Evaluation, pages 2054–2059, Barcelona
(online). International Committee for Computational
Linguistics.

Sanja Scepanovic, Enrique Martin-Lopez, Daniele Quer-
cia, and Khan Baykaner. 2020. Extracting medical
entities from social media. In Proceedings of the
ACM Conference on Health, Inference, and Learning,
pages 170–181.

Tom T. Shimabukuro, Michael Nguyen, David Martin,
and Frank DeStefano. 2015. Safety monitoring in
the vaccine adverse event reporting system (vaers).
Vaccine, 33(36):4398–4405.

11676

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2020.semeval-1.271
https://doi.org/10.18653/v1/2020.semeval-1.271
https://doi.org/10.18653/v1/2020.semeval-1.271


Hanna Suominen, Sanna Salanterä, Sumithra Velupil-
lai, Wendy W Chapman, Guergana Savova, Noemie
Elhadad, Sameer Pradhan, Brett R South, Danielle L
Mowery, Gareth JF Jones, et al. 2013. Overview
of the share/clef ehealth evaluation lab 2013. In
Information Access Evaluation. Multilinguality, Mul-
timodality, and Visualization: 4th International Con-
ference of the CLEF Initiative, CLEF 2013, Valencia,
Spain, September 23-26, 2013. Proceedings 4, pages
212–231. Springer.

Charles Sutton and Andrew McCallum. 2004. Col-
lective segmentation and labeling of distant entities
in information extraction. Technical report, MAS-
SACHUSETTS UNIV AMHERST DEPT OF COM-
PUTER SCIENCE.

Shogo Ujiie, Hayate Iso, Shuntaro Yada, Shoko
Wakamiya, and Eiji Aramaki. 2021. End-to-end
biomedical entity linking with span-based dictionary
matching. In Proceedings of the 20th Workshop on
Biomedical Language Processing, pages 162–167,
Online. Association for Computational Linguistics.

Karin Verspoor, Kevin Bretonnel Cohen, Arrick Lan-
franchi, Colin Warner, Helen L Johnson, Christophe
Roeder, Jinho D Choi, Christopher Funk, Yuriy
Malenkiy, Miriam Eckert, et al. 2012. A corpus of
full-text journal articles is a robust evaluation tool for
revealing differences in performance of biomedical
natural language processing tools. BMC bioinformat-
ics, 13(1):1–26.

Somin Wadhwa, Vivek Khetan, Silvio Amir, and By-
ron Wallace. 2022. Redhot: A corpus of annotated
medical questions, experiences, and claims on social
media. arXiv preprint arXiv:2210.06331.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2019. Scalable zero-
shot entity linking with dense entity retrieval. arXiv
preprint arXiv:1911.03814.

11677

https://doi.org/https://doi.org/10.1016/j.vaccine.2015.07.035
https://doi.org/https://doi.org/10.1016/j.vaccine.2015.07.035
https://doi.org/10.18653/v1/2021.bionlp-1.18
https://doi.org/10.18653/v1/2021.bionlp-1.18
https://doi.org/10.18653/v1/2021.bionlp-1.18


A Appendix

A.1 Annotation Instructions for Mechanical
Turk

We conducted three assessments via the Amazon
Mechanical Turk (AMT) system and our annota-
tion process. In this section, we describe detailed
instructions and web interface screenshots used in
the assessments.

Figure A.1: The AMT web interface used to evaluate
the quality of MedDRA annotation in VAERS.

1) VAERS MedDRA Annotation Quality Assess-
ment As described in section 4.1, we evaluate
the annotation quality of MedDRA annotations in
VAERS. The instruction given to workers is “Given
a patient’s report describes their medical condi-
tions. The goal of this task is to check whether the
given symptom is included in the report or not.” For
the detailed instruction, we provided the examples
as below:

Symptom/Diagnosis : Anosmia
Patient report : 90% loss of smell/taste
next day. Also feel irritable and nervous but
manageable.
→ The answer should be Included since the
report mentions “90% loss of smell” in the
report.
—————————————————–
Symptom/Diagnosis : Headache
Patient report : 90% loss of smell/taste
next day. Also feel irritable and nervous but
manageable.
→ The answer should be Not included

We also added the definition of the symptom in case
that the workers are not familiar with the symptom
(see Figure A.1).

2) Explanation Quality Assessment The instruc-
tion given to workers is “Given a patient report and
the symptom, the explanation is describing why the

Figure A.2: The web interface used to evaluate the
quality of explanations in SYMPTOMIFY.

symptom is mentioned in the report. Choose A if
the explanation is correct, and helpful in describ-
ing why the symptom is mentioned. Choose B if the
explanation is correct, but lacks details, thus not
helpful to explain why the symptom is mentioned.
Otherwise choose C.” Below are the examples we
have provided for detailed instructions.

Report : Flu-like symptoms, extreme chills
( shivering ), sweats for 2 days
Symptom : Chill
—————————————————–
Explanation : The patient report mentions
"extreme chills (shivering)" as a symptom,
referring to the presence of extreme chills
or shivering experienced by the patient for 2
days.
→ The answer should be A, since the ex-
planation is correctly describing as “The
report mentions extreme chills (shivering)
as a symptom” with a reason based on the
report.
—————————————————–
Explanation : This report mentions pres-
ence of Chill.
→The answer should be B even the explana-
tion is correct, since the explanation is NOT
helpful and too short to conjecture why the
symptom is mentioned.
—————————————————–
Explanation : This report mentions pres-
ence of Chill. It states the patient experi-
enced dizziness and shivering for 2 days.
→ The answer should be C since the patient
did NOT experience ’dizziness’, i.e., the ex-
planation is not correct.

3) GPT-3 Definition Quality Assessment The
instruction given to workers is “Given a term and
definition, answer Yes or No whether the definition
is correct for the term or not.” We have provided
the examples below for detailed instructions.
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Figure A.3: The AMT web interface used to evaluate
the quality of GPT-3 Definitions.

Term : Anosmia
Definition : Anosmia is a condition that
results in a loss of the sense of smell.
→ The answer should be Yes
—————————————————–
Term : Headache
Definition : A reaction that occurs immedi-
ately following an injection.
→ The answer should be No

We also added guidance to encourage annotators to
Google search if they are unaware of the symptoms.

A.2 Metadata Analysis
VAERS contains over 20 pieces of metadata, for
example patient’s basic information (e.g., age and
sex), medical background (e.g., allergies, and medi-
cations), and vaccination information (e.g., vaccine
type, and vaccine provider). We analyze this meta-
data. First, we observed that some symptoms occur
more frequently in certain age groups, as shown in
Figure A.4. The age group 0-9 is more likely to die
after taking a vaccine than other groups. On the
one hand, teenagers (age group 10-19) are more
likely to get Syncope, Loss of Consciousness, and
Pallor. Second, symptoms such as Paraesthesia
Oral, and Migraine, are more likely to be observed
in females than males. Syncope, Death, and Pallor
are more common in males as shown in Figure A.5.
Third, symptoms vary depending on the vaccine
type. Headache and Pyrexia are the most common
side-effects of COVID 19 vaccines, however, Diar-
rhoea and Haematochezia mostly occur after RV5
vaccination (see Table A.1).

A.3 Experimental Setup Details
Table A.2 describes hyperparameters and search
spaces we considered in experiments. For training
transformer-based models, we used AdamW opti-
mizer (Loshchilov and Hutter, 2017) for training
all transformer-based models, and hyperparameters
are set on the best validation performance. We ran
experiments 3 times with different seeds, the re-
ported scores are average of them. The results with

Figure A.4: Symptoms by patient age. Age group 0-9 is
more likely to die after taking a vaccine.

Figure A.5: Symptoms by patient sex. The dashed
line denotes an average ratio of male to female, and
shows that females report more. Symptoms such as
Paraesthesia oral, and Migraine, are more likely to be
observed in females than males.

standard deviations are presented in Table A.4.
For generative models, we adopted GENRE’s

(Cao et al., 2021) experimental settings with 256
of maximum input length, 128 of maximum output
length, 64 of batch size, and 4 of beam search
size. We used the pre-trained BART-base (Lewis
et al., 2020) with 3e-5 of learning rate and T5-
base (Raffel et al., 2019) with 1e-4 of learning rate
following the original papers. We fine-tuned each
model 5 epochs on our training set.

Evaluation of Generative Models While dis-
criminative models can identify exact classes, gen-
erative models cannot predict discrete classes. In
our work, we form the target text as a sequence of
symptoms separated by “,”. We split the generated
text by “,” and match each chunk with symptom
names by exact string match. For those symptoms
that are not exactly matched within our symptom
set, we post-processed answer engineering as de-
scribed in Section 5.4.

Evaluation of MetaMap We use Metamap for
one of zero-shot baseline models. Given the input
text, MetaMap outputs UMLS entities with con-
fidence scores. We experimented with thresholds

11679



COVID-19 FLU4 HPV9 TDAP RV5

1 Headache Pain Syncope Injection site pain Diarrhoea
2 Pyrexia Injection site pain Dizziness Pain Haematochezia
3 Fatigue Pain in extremity Headache Pain in extremity Vomiting
4 Chills Injection site erythema Injection site pain Injection site swelling Intussusception
5 Pain Pyrexia Nausea Injection site erythema Pyrexia

Table A.1: Top 5 most frequent symptoms by vaccine type.

Metamap
threshold 0.1

{0.05, 0.1, 0.15, 0.2, 0.25}

Multi-label Classification
Learning rate 5e-5 {2e-5, 3e-5, 5e-5}

max input length 256 {128, 256}
batch size 32
threshold 0.1

{0.05, 0.1, 0.15, 0.2, 0.25}

Generative Models
Learning rate (BART-base) 3e-5 {2e-5, 3e-5, 5e-5}

Learning rate (T5-base) 1e-4 {3e-5, 5e-5, 1e-4, 2e-4}
max input length 256 {128, 256}

max output length (decoder) 128 {64, 128, 256}
beam search size 4

batch size 64 {32, 64}

Joint Learning (C + GEN)
Learning rate 3e-5 {2e-5, 3e-5, 5e-5}

max input length 256 {128, 256}
max output length (decoder) 128

batch size 64 {32, 64}
λj 0.1 {0.05, 0.1, 0.2, 0.5}

LM Prompting (GPT-2)
Learning rate 5e-5 {2e-5, 3e-5, 5e-5}

max input length 512
batch size 64 {32, 64}

Table A.2: Best-performing hyperparameters and search
space. Values in parentheses denote search space.

{0.05, 0.1, 0.15, 0.2, 0.25, 0.3} and regarded enti-
ties as positives over the threshold. The threshold
of 0.1 was determined on the best validation score.

Computing Infrastructure We ran all experi-
ments on a single NVIDIA GTX 108 (12GB) with
CUDA 10.1 version.

A.4 More Analysis

Generation vs Classification We can observe
the significant gap in performance between classi-
fication and generation models. Figure A.6 shows
the difference of attention patterns in each ap-

Symptom

1 Headache
2 Pyrexia
3 Fatigue
4 Chills
5 Pain
6 Nausea
7 Pain in extremity
8 Dizziness
9 Injection site pain
10 Myalgia

Table A.3: Top 10 symptoms in SYMPTOMIFY

Input sentence: 90% loss of smell/taste next day. Also feel irritable and nervous but manageable
target sentence: ageusia, anosmia, irritability, nervousness

step Generated 
tokens

1 <s>

4 <s> ageusia,

7 <s> ageusia, anosmia,

11 <s> ageusia, anosmia, 
irritability,

(a) Attention map according to the decoding step of the generative model

(b) Attention map of the classification model

Figure A.6: Generation vs Classification: Attention
patterns in each approach.

proach. In the generative model, the decoder at-
tends input tokens that are related to symptoms at
each decoding step. On the other hand, the classifi-
cation model uses one aggregated vector to predict
all symptom classes. We can conclude that con-
sidering most examples have multiple symptoms,
predicting at once is not sufficient to recall multiple
entities.

Negation Performance Due to the prevalence of
complex negation in our dataset, we analyzed how
the model performs in the presence of negation.
We sampled 103 examples of those patterns from
the development set and tested them with different
training sizes. Figure A.7 presents performance

11680



Model Full test UMLS-mapped
Macro F1 Micro F1 Macro F1 Micro F1

Exact String Matching 8.87 30.38 10.41 32.98
MetaMap - - 3.74 10.65
Symptom Embeddings 0.72 3.32 0.87 5.87

Pr
et

ra
in

-F
in

et
un

e BERT-base ‡ 1.34 (±0.13) 15.81 (±0.14) 1.45 (±0.09) 18.80 (±0.08)
BART-base ‡ 1.37 (±0.18) 15.96 (±0.17) 1.55 (±0.12) 18.98 (±0.13)
ClinicalBERT ‡ 1.53 (±0.12) 16.32 (±0.12) 1.76 (±0.11) 19.46 (±0.11)
ClinicalBERT + CNN ‡ 7.29 (±0.35) 62.68 (±0.25) 8.12 (±0.47) 65.79 (±0.25)
GEN w/ BART † 31.15 (±0.37) 78.90 (±0.24) 31.22 (±0.19) 81.27 (±0.25)
GEN w/ T5-base † 32.01 (±0.31) 79.88 (±0.27) 32.19 (±0.22) 82.25 (±0.25)
Joint C + GEN 32.89 (±0.21) 79.93 (±0.19) 32.70 (±0.43) 82.97 (±0.31)

Pr
om

pt GPT-2 (Supervised) 13.93 59.41 14.27 61.90
ChatGPT (Zero-shot) 24.69 39.75 22.23 38.10
ChatGPT (One-shot) 29.17 42.74 27.97 41.51

Table A.4: Performance summary. ‡ denotes classification methods and † denotes generative methods. Joint C +
GEN refers to both a classification and generative method (T5 + ClinicalBERT).

Type Example

no [symptom name] I feel cold, but do not have a fever, am not having chills, nausea, etc.
Fever of 101, 102 for 2 Days; Chills; Nausea with no Vomiting.
no visible signs of rash or irritation.

Medical history
(not current symptom)

Medical history included Ankylosing, spondylitis/psoriasis, cardiac ablation from Jan2017
Family medical history included her dad had rheumatic fever and high blood pressure.
Past medical history included no adverse event. concurrent medical conditions
included Ulcer and Hypothyroidism.

Other negation expressions Patient didn’t experience fever and rash, but feel muscle pain
All but the pain and soreness at the injection site subsided by the next day
Denies any further fevers or chills. Denies any nausea vomiting. Denies loss stasis smell.

Table A.5: Examples of negation patterns in SYMPTOMIFY

on 103 negation samples as we varied the num-
ber of train examples. As the size of the training
set increases, the model performs better on nega-
tion expressions and the performance saturates at
200k. Through this result, we can conclude that
our dataset contains sufficient negation data points
and effectively learns to deal with a large number
of them.

We observed that the simple negation expression
“no [symptom name]” is indeed an easy form of
negation, the model performs well on it, even with
a small amount of train set around 50k examples.
A more thorough analysis of which negation ex-
pressions the model still fails on after saturation, is
left as future work. Table A.5 shows examples of
negation expressions in SYMPTOMIFY.

Figure A.7: Micro F1 of the generative model with T5-
base on data points involving negation as the size of
the training data is varied. As the size of the training
set increases, the model performs better on negation
expressions and the performance saturates around 200k.
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