
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 11730–11743
December 6-10, 2023 ©2023 Association for Computational Linguistics

Error Detection for Text-to-SQL Semantic Parsing

Shijie Chen Ziru Chen Huan Sun Yu Su
The Ohio State University

{chen.10216, chen.8336, sun.397, su.809}@osu.edu

Abstract

Despite remarkable progress in text-to-SQL se-
mantic parsing in recent years, the performance
of existing parsers is still far from perfect.
Specifically, modern text-to-SQL parsers based
on deep learning are often over-confident, thus
casting doubt on their trustworthiness when de-
ployed for real use. In this paper, we propose
a parser-independent error detection model for
text-to-SQL semantic parsing. Using a lan-
guage model of code as its bedrock, we enhance
our error detection model with graph neural net-
works that learn structural features of both nat-
ural language questions and SQL queries. We
train our model on realistic parsing errors col-
lected from a cross-domain setting, which leads
to stronger generalization ability. Experiments
with three strong text-to-SQL parsers featur-
ing different decoding mechanisms show that
our approach outperforms parser-dependent un-
certainty metrics. Our model could also effec-
tively improve the performance and usability
of text-to-SQL semantic parsers regardless of
their architectures1.

1 Introduction

Recent years have witnessed a renewed interest in
text-to-SQL semantic parsing (Bogin et al., 2019;
Lin et al., 2020; Wang et al., 2020; Rubin and
Berant, 2021; Cao et al., 2021; Gan et al., 2021;
Scholak et al., 2021; Qi et al., 2022; Li et al., 2023),
which allows users with a limited technical back-
ground to access databases through a natural lan-
guage interface. Although state-of-the-art semantic
parsers have achieved remarkable performance on
Spider (Yu et al., 2018), a large-scale cross-domain
text-to-SQL benchmark, their performance is still
far from satisfactory for real use. While syntax er-
rors can be automatically caught by SQL execution
engines, detecting semantic errors in executable
SQL queries can be non-trivial and time-consuming

1Our implementation is available at https://github.
com/OSU-NLP-Group/Text2SQL-Error-Detection.

even for experts (Jorgensen and Shepperd, 2007;
Weiss et al., 2007). Therefore, an accurate error de-
tector that can flag parsing issues and accordingly
trigger error correction procedures (Chen et al.,
2023) can contribute to building better natural lan-
guage interfaces to databases.

Researchers have proposed multiple approaches
for error detection in text-to-SQL parsing. Yao et al.
(2019, 2020) detect errors by setting a threshold
on the prediction probability or dropout-based un-
certainty of the base parser. However, using these
parser-dependent metrics requires the base parser to
be calibrated, which limits their applicability. Sev-
eral interactive text-to-SQL systems detect parsing
errors based on uncertain span detection (Gur et al.,
2018; Li et al., 2020; Zeng et al., 2020). Despite
having high coverage for errors, this approach is re-
ported to be of low precision. Finally, text-to-SQL
re-rankers (Yin and Neubig, 2019; Kelkar et al.,
2020; Bogin et al., 2019; Arcadinho et al., 2022),
which estimate the plausibility of SQL predictions,
can be seen as on-the-fly error detectors. Neverthe-
less, existing re-rankers are trained on in-domain
parsing errors, limiting their generalization ability.

In this work, we propose a generalizable and
parser-independent error detection model for text-
to-SQL semantic parsing. Since syntax errors can
be easily detected by an execution engine, we fo-
cus on detecting semantic errors in executable SQL
predictions. We start developing our model with
CodeBERT (Feng et al., 2020), a language model
pre-trained on multiple programming languages.
On top of that, we use graph neural networks to cap-
ture compositional structures in natural language
questions and SQL queries to improve the perfor-
mance and generalizability of our model. We train
our model on parsing mistakes collected from a
realistic cross-domain setting, which is indispens-
able to the model’s strong generalization ability.
Furthermore, we show that our model is versatile
and can be used for multiple tasks, including er-

11730

https://github.com/OSU-NLP-Group/Text2SQL-Error-Detection
https://github.com/OSU-NLP-Group/Text2SQL-Error-Detection

ror detection, re-ranking, and interaction triggering.
To summarize, our contributions include:

• We propose the first generalizable and parser-
independent error detection model for text-to-
SQL parsing that is effective on multiple tasks
and different parser designs without any task-
specific adaptation. Our evaluations show that
the proposed error detection model outper-
forms parser-dependent uncertainty metrics
and could maintain its high performance un-
der cross-parser evaluation settings.

• Our work is the first comprehensive study on
error detection for text-to-SQL parsing. We
evaluate the performance of error detection
methods on both correct and incorrect SQL
predictions. In addition, we show through
simulated interactions that a more accurate
error detector could significantly improve the
efficiency and usefulness of interactive text-
to-SQL parsing systems.

2 Related Work

2.1 Text-to-SQL Semantic Parsing
Most existing neural text-to-SQL parsers adopt
three different decoding mechanisms. The first
one is sequence-to-sequence with constrained de-
coding, where a parser models query synthesis as
a sequence generation task and prunes syntacti-
cally invalid parses during beam search. Several
strong text-to-SQL parsers apply this simple idea,
including BRIDGE v2 (Lin et al., 2020), PICARD
(Scholak et al., 2021), and RESDSQL (Li et al.,
2023). Another popular decoding mechanism is
grammar-based decoding (Yin and Neubig, 2017),
where parsers first synthesize an abstract syntax
tree based on a pre-defined grammar and then con-
vert it into a SQL query. Parsers using intermediate
representations, such as IR-Net (Guo et al., 2019)
and NatSQL (Gan et al., 2021) also fall into this
category. Grammar-based decoding ensures syntac-
tic correctness but makes the task harder to learn
due to the introduction of non-terminal syntax tree
nodes. Different from the above autoregressive de-
coding strategies, SmBoP (Rubin and Berant, 2021)
applies bottom-up decoding where a SQL query is
synthesized by combining parse trees of different
depths using a ranking module. We evaluate our
model with semantic parsers using each of these
three decoding strategies and show that our model
is effective on all of them.

2.2 Re-ranking for Text-to-SQL Parsing

Noticing the sizable gap between the accuracy
and beam hit rate of semantic parsers, researchers
have explored building re-ranking models to bridge
this gap and improve parser performance. Global-
GNN (Bogin et al., 2019) re-ranks beam predic-
tions based on the database constants that appear
in the predicted SQL query. This re-ranker is
trained together with its base parser. More recently,
Bertrand-DR (Kelkar et al., 2020) and T5QL (Ar-
cadinho et al., 2022) fine-tune a pre-trained lan-
guage model for re-ranking. However, both report
directly re-ranking all beams using re-ranker scores
hurts performance. To get performance gain from
re-ranking, Bertrand-DR only raises the rank of
a prediction if its re-ranking score is higher than
the preceding one by a threshold. T5QL com-
bines re-ranking score and prediction score by a
weighted sum. Both approaches require tuning
hyper-parameters. In contrast, when directly using
the proposed parser-independent error detection
model as re-rankers, we observe performance im-
provement on BRIDGE v2 and NatSQL without
any constraint, showing that our approach is more
generalizable and robust.

2.3 Interactive Text-to-SQL Parsing Systems

Interactive text-to-SQL parsing systems improve
the usability of text-to-SQL semantic parsers by
correcting potential errors in the initial SQL predic-
tion through interactive user feedback. MISP (Yao
et al., 2019, 2020) initiates interactions by setting
a confidence threshold for the base parser’s predic-
tion probability. While this approach is intuitive,
it requires the base parser to be well-calibrated
when decoding, which does not hold for most mod-
ern parsers using deep neural networks. In addi-
tion, this design can hardly accommodate some
recent parsers, such as SmBoP (Rubin and Berant,
2021), whose bottom-up decoding mechanism does
not model the distribution over the output space.
Several other interactive frameworks (Gur et al.,
2018; Li et al., 2020; Zeng et al., 2020) trigger
interactions when an incorrect or uncertain span
is detected in the input question or predicted SQL
query. While these approaches have high coverage
for parsing errors, they tend to trigger unnecessary
interactions for correct initial predictions. For ex-
ample, PIIA (Li et al., 2020) triggers interactions
on 98% of the questions on Spider’s development
set when its base parser has an accuracy of 49%.

11731

Parser
Train Development Test

#Beam Hit Miss #Beam Hit Miss #Beam Hit Miss

SmBoP 5322 6062/1.4 12937/2.6 1416 1864/1.3 3159/2.5 989 1324/1.3 1498/1.5
BRIDGE v2 5482 3898/0.7 8932/1.6 1465 1116/0.8 2057/1.4 1031 852/0.8 1096/1.1
NatSQL 5398 7095/1.3 13443/2.5 1474 2207/1.5 3522/2.4 1030 1582/1.5 2584/2.5

Table 1: Statistics of the data collected from three base parsers. #Beam: number of beams that have executable
predictions. For beam hit and misses, we report total/average_per_beam.

Compared to these methods, the proposed method
strikes a better balance between performance and
efficiency, and thus could improve the user experi-
ence of interactive text-to-SQL parsing systems.

3 Parser-independent Error Detection

3.1 Problem Formulation

Given a question X = {x1, x2, · · · , xm} and a
SQL query ŷ = {ŷ1, ŷ2, · · · , ŷn} predicted by a
text-to-SQL parser, the error detection model esti-
mates the probability of ŷ being correct, denoted
by s:

s = p(ŷ = y∗|X, ŷ)

We perform error detection and action triggering by
setting a threshold for s. For re-ranking, we directly
use s as the ranking score without modification.

3.2 Cross-domain Error Collection

We consider two factors that could lead to text-to-
SQL parsing errors: insufficient training data and
the cross-domain generalization gap. To simulate
such errors, we collect data from weak versions
of base parsers in a cross-domain setting. More
specifically, we split the Spider training set into
two equal-sized subsets by databases and train the
base parser on each subset. Then we perform in-
ference on the complementary subset and collect
beam predictions as data for error detection. We
keep executable SQL queries and label them based
on execution accuracy. We use a fixed version
of Spider’s official evaluation script (Appendix A)
and keep up to five parser predictions for each ques-
tion after deduplication. The collected samples are
divided into training and development sets by an
80:20 ratio according to databases as well. In this
way, we get high-quality training data for our error
detection model in a setting that approximates the
real cross-domain testing environment. For testing,
we train each base parser on the full Spider training
set and collect executable beam predictions on the
Spider development set. Beams with un-executable

top predictions are skipped. We report the num-
ber of beams, total number of question-SQL pairs,
and average number of such pairs per beam for
each split in Table 1. Following existing litera-
ture (Kelkar et al., 2020), we refer to correct SQL
queries in the beam as beam hits, and incorrect
ones as beam misses.

We notice that BRIDGE v2 generates signifi-
cantly fewer executable SQL queries on all data
splits. This is due to its unconstrained decoder with
rule-based filtering. In addition to that, BRIDGE
v2 generates a default SQL query that counts the
number of entries in the first table when there are
no valid predictions in the beam. Although this
mechanism ensures the parser generates at least
one executable query, such negative samples do
not fit the overall error distribution and may harm
the error detection model. NatSQL and SmBoP
take into account grammatical constraints of SQL
during decoding and thus could generate more ex-
ecutable queries than BRIDGE v2. Table 1 also
shows that NatSQL and SmBoP produce a similar
amount of beam hits and beam misses on the train-
ing and development splits. However, the number
of executable beam misses generated by SmBoP on
the test split is noticeably lower, while the behavior
of NatSQL is more consistent.

3.3 Model Architecture
Figure 1 illustrates the architecture of the pro-
posed error detection models. We use Code-
BERT (Feng et al., 2020) as our base encoder
to jointly encode the input question and SQL
query. Following CodeBERT’s input construc-
tion during pre-training, we concatenate questions
and SQL queries with special tokens, namely
[CLS], x1, · · · , xm, [SEP], ŷ1, · · · , ŷn, [EOS] as
input and obtain their contextualized representa-
tions hX and hŷ. We only use question and SQL
as input since we found in preliminary experiments
that adding database schema information (table and
column names) in the input hurts performance.

In light of the compositional nature of questions

11732

SQL Query

Question

[CLS] How many singers do we have ? [SEP] SELECT count (*) FROM singer [EOS]

Base Encoder

GATGAT

Figure 1: Architecture of our error detection models.

and SQL queries, we propose to model their struc-
tural features via graph neural networks. For nat-
ural language questions, we obtain their depen-
dency parse trees and constituency parse trees from
Stanza (Qi et al., 2020) and merge them together.
This is possible since edges in dependency parse
trees are between two actual tokens, which corre-
sponds to leaf nodes in constituency parse trees.
For SQL queries, we extract their abstract syn-
tax trees via Antlr4.2 To make the input graphs
more compact and lower the risk of overfitting,
we further simplify the parse trees by removing
non-terminal nodes that only have one child in a
top-down order. Additionally, for SQL queries, we
remove the subtrees for join constraints which do
not carry much semantic information but are often
quite long. At last, we add sequential edges con-
necting the leaf nodes in the parse trees by their
order in the original questions and SQL queries
to preserve natural ordering features during graph
learning.

We initialize the representations of parse tree
leaf nodes with CodeBERT’s contextualized repre-
sentations and randomly initialize representations
of other nodes according to their types in the parse
tree. The two input graphs are encoded by two sep-
arate 3-layer graph attention networks (Brody et al.,
2022). Then we obtain the global representation
of each graph via average pooling and concatenate
them to get an aggregated global representation:

hglobal = [hglobalX ;hglobalŷ]

We denote models with graph encoders as Code-
BERT+GAT in Section 4. When simply fine-tuning
CodeBERT, hglobal = h[CLS].

2Antlr: https://www.antlr.org/, more details in Ap-
pendix D.

Finally, a 2-layer feed-forward neural network
with tanh activation is used to score the aggre-
gated representation v. The score s for each input
question-SQL pair is:

s = p(ŷ = y∗|X, ŷ) = σ(FFN(hglobal))

where y∗ is the gold SQL query and σ represents
the sigmoid function. We train our model by mini-
mizing a binary cross entropy loss:

L = 1ŷ=y∗ · log s+ (1− 1ŷ=y∗) · log(1− s)

During training, we supply the model with samples
from K beams at each step, where K is the batch
size.

4 Experiments

In this section, we first evaluate the performance
(Section 4.2.1) and generalization ability (Section
4.2.2) of our error detection model on the binary er-
ror detection task. Then we investigate our model’s
effectiveness when used for re-ranking (Section
4.2.3) and action triggering (Section 4.2.4).

4.1 Experiment Setup
Baseline Methods We compare our parser-
independent error detectors with parser-dependent
uncertainty metrics, including prediction probabil-
ity and dropout-based uncertainty. Since SmBoP
(Rubin and Berant, 2021) uses bottom-up decoding
which separately scores and ranks each candidate
prediction, we deduplicate SmBoP’s beam predic-
tions by keeping the maximum score and perform
softmax on the deduplicated beam to get a probabil-
ity distribution over candidate predictions, which
can be seen as a reasonable approximation to its
confidence. BRIDGE v2 (Lin et al., 2020) and Nat-
SQL (Gan et al., 2021) use autoregressive decoders,
and we directly use the log probability of its pre-
diction as its confidence score. Probability-based
methods are denoted by superscript p. In terms of
dropout-based uncertainty, we follow MISP (Yao
et al., 2019) and measure the standard deviation of
the scores (SmBoP) or log probability (BRIDGE
v2 and NatSQL) of the top-ranked prediction in 10
passes. Dropout-based uncertainty is denoted by
superscript s.

Evaluation Metrics We first evaluate our model
on the error detection task. After that, we test
performance when it is used for re-ranking and
action triggering.

11733

https://www.antlr.org/

Parser Model
Positive Negative

Acc AUC
Precision Recall F1 Precision Recall F1

SmBoP

SmBoPp 80.8 94.5 86.6 52.1 18.9 23.9 77.4 67.0
SmBoPs 81.5 91.9 85.7 56.6 25.3 29.4 76.9 79.2

CodeBERT 82.9 92.6 86.7 60.8 33.9 36.3 78.3 80.8
CodeBERT+GAT 85.0 90.6 87.2 56.7 44.4 46.4 79.8 81.7

BRIDGE v2

BRIDGE v2p 77.9 85.1 80.9 60.9 50.4 54.0 73.2 77.8
BRIDGE v2s 76.1 83.6 79.5 57.9 46.0 50.8 71.3 77.7

CodeBERT 78.6 87.6 82.4 69.1 51.1 57.0 75.3 81.3
CodeBERT+GAT 80.9 86.4 83.4 69.5 58.7 63.2 77.6 83.0

NatSQL

NatSQLp 78.1 93.2 84.6 67.3 36.1 45.4 76.3 79.2
NatSQLs 77.0 91.4 83.0 62.8 33.1 40.3 74.0 76.2

CodeBERT 84.6 90.8 87.3 72.3 60.5 64.6 81.8 86.5
CodeBERT+GAT 86.6 87.4 86.8 68.5 68.1 67.0 81.7 86.9

Table 2: Error detection performance with three base parsers on Spider’s development set. We highlight the best
performance with each parser in bold.

For error detection, we report precision, recall,
and F1 scores for each method on both positive and
negative samples. However, these metrics depend
on the threshold used. To more comprehensively
evaluate the overall discriminative ability of each
method, we present the area under the receiver
operating characteristic curve (AUC), which is not
affected by the choice of threshold. We apply 5-
fold cross-validation and report performance using
the threshold that maximizes the accuracy of each
method. Test samples are partitioned by databases.

For the re-ranking task, we evaluate on the final
beam predictions of fully trained base parsers on
Spider’s development set and report top-1 accuracy.

For action triggering, we evaluate system perfor-
mance under two settings: answer triggering and
interaction triggering. In answer triggering, we
measure system answer precision when answering
different numbers of questions. In interaction trig-
gering, we measure system accuracy using different
numbers of interactions.

Error detection and re-ranking results are aver-
age performance over 3 different random seeds.
For action triggering, we evaluate checkpoints with
the highest accuracy on the development split of
our collected data.

Implementation Our models are trained with a
batch size of 16 and are optimized by the AdamW
(Loshchilov and Hutter, 2019) optimizer with de-
fault parameters. Training lasts 20 epochs with
a learning rate of 3e-5 following a linear decay
schedule with 10% warm-up steps. All models are
trained on an NVIDIA RTX A6000 GPU.

4.2 Results

4.2.1 Error Detection

To evaluate error detection methods in a realistic
setting, we use final SQL predictions made by Sm-
BoP, BRIDGE v2, and NatSQL on Spider’s devel-
opment set that are executable as test datasets. As
shown in Table 2, the dropout-based uncertainty
measure significantly outperforms the approximate
confidence measure on negative samples (29.4 vs
23.9 in negative F1) with SmBoP. However, we
notice the opposite with BRIDGE v2 and NatSQL,
which is consistent with the observation of MISP
(Yao et al., 2019) that is based on a parser with
autoregressive decoder as well. Nonetheless, the
dropout-based uncertainty measure is still indica-
tive of these two parsers. We also notice that parser-
dependent metrics exhibit high recall and low pre-
cision on positive samples, showing that the three
parsers, despite using different decoding strategies,
are over-confident in their predictions.

On all three parsers, our proposed error detector
significantly outperforms the two parser-dependent
uncertainty metrics, especially on negative sam-
ples. With the added structural features, Code-
BERT+GAT further improves overall error detec-
tion performance, especially in recall on incorrect
predictions (8.6% absolute improvement on av-
erage), which indicates structural features could
help the model learn more generalizable error pat-
terns. We also find that the advantage of Code-
BERT+GAT mainly comes from its higher perfor-
mance on hard and extra hard questions (Appendix
C). Compared to parser-dependent metrics, our

11734

Target Source Model
Positive Negative

Acc AUC
Precision Recall F1 Precision Recall F1

SmBoP

- SmBoPp 80.8 94.5 86.6 52.1 18.9 23.9 77.4 67.0
SmBoPs 81.5 91.9 85.7 56.6 25.3 29.4 76.9 79.2

BRIDGE v2 CodeBERT 80.3 94.8 86.4 52.9 16.3 20.3 77.2 75.9
CodeBERT+GAT 80.0 95.9 86.8 44.1 14.4 18.8 77.8 77.0

NatSQL CodeBERT 81.9 95.2 87.7 58.2 23.4 30.8 79.6 75.9
CodeBERT+GAT 83.1 93.3 87.6 56.0 31.5 38.1 79.9 78.2

BRIDGE v2

- BRIDGE v2p 77.9 85.1 80.9 60.9 50.4 54.0 73.2 77.8
BRIDGE v2s 76.1 83.6 79.5 57.9 46.0 50.8 71.3 77.7

SmBoP CodeBERT 78.4 88.2 82.4 70.1 50.1 55.6 75.0 82.4
CodeBERT+GAT 80.2 87.9 83.5 71.5 55.5 61.1 77.1 83.1

NatSQL CodeBERT 78.5 88.2 82.9 68.6 50.1 56.9 75.9 80.0
CodeBERT+GAT 78.9 87.2 82.5 68.2 51.7 56.9 75.5 81.7

NatSQL

- NatSQLp 78.1 93.2 84.6 67.3 36.1 45.4 76.3 79.2
NatSQLs 77.0 91.4 83.0 62.8 33.1 40.3 74.0 76.2

SmBoP CodeBERT 83.7 86.1 84.0 63.5 61.1 58.5 77.0 85.2
CodeBERT+GAT 83.5 87.2 84.7 65.1 59.5 59.9 78.2 85.7

BRIDGE v2 CodeBERT 79.7 89.7 84.2 65.3 43.3 51.1 76.9 79.6
CodeBERT+GAT 81.1 89.2 84.8 65.8 48.0 54.7 78.1 81.5

Table 3: Cross-parser generalization performance with three base parsers on Spider’s development set. We highlight
the best performance with each target parser in bold.

model yields the largest performance gain in both
accuracy and AUC with NatSQL and reasonable
gains with the other two parsers, possibly due to
the higher quality of its training data and better
behavior consistency on the test split.

4.2.2 Cross-parser Generalization

We evaluate our models’ cross-parser generaliza-
tion ability by training error detectors on data col-
lected from one parser and testing on the other two
following the same 5-fold cross-validation setting.
Table 3 summarizes cross-parser transfer perfor-
mance on each parser. Even in this setting, our error
detectors could still outperform parser-dependent
metrics except for SmBoP, where our models fall
short slightly in AUC.

On all parsers, we observe better performance
on models trained with stronger parsers. For ex-
ample, on SmBoP, the CodeBERT+GAT model
trained with NatSQL is better than the one trained
with BRIDGE v2 by 2.1% in accuracy and 1.2% in
AUC. Meanwhile, the models trained with SmBoP
perform the best on BRIDGE v2 and NatSQL in
negative F1, accuracy, and AUC. We hypothesize
errors made by stronger parsers are more diverse
and of higher quality and thus allow models trained
on them to generalize better to weaker parsers.
We found that the errors generated by BRIDGE

v2 and NatSQL, two autoregressive parsers, are
more likely to share prefixes and differ in simple
operations, such as the choice of columns, aggre-
gation functions, or logic operators (examples in
Appendix E). In contrast, the bottom-up decoder
of SmBoP generates more diverse errors with com-
plex structures, such as subqueries and set opera-
tions. The higher diversity of SmBoP’s predictions
increases the coverage of the data collected from
it, which contributes to the stronger generalization
ability of the corresponding error detectors.

4.2.3 Re-ranking

Re-ranker SmBoP BRIDGE v2 NatSQL

N/A 75.1 67.3 71.3

RR 72.2 69.7 72.5
ED + RR 73.7 68.9 73.9

Beam Hit 80.5 73.1 81.1

Table 4: Execution accuracy with re-ranking using the
CodeBERT + GAT model. RR: Re-ranking all beams;
ED+RR: Re-ranking beams after error detection.

We evaluate the re-ranking performance of our
error detection models in two settings. In re-
ranking-all (RR), we re-rank all beams based on
the score assigned by the error detector. In error de-
tection then re-ranking (ED+RR), we only re-rank

11735

0 200 400 600 800 1000
Questions Answered

0.7

0.8

0.9

1.0

An
sw

er
 Tr

ig
ge

rin
g

Pr
ec

isi
on

SmBoP

0 200 400 600 800 1000
Questions Answered

0.7

0.8

0.9

1.0
BRIDGE v2

0 250 500 750 1000
Questions Answered

0.7

0.8

0.9

1.0
NatSQL

0 200 400 600 800 1000
Number of Interactions

0.7

0.8

0.9

1.0

In
te

ra
ct

io
n

Tr
ig

ge
rin

g
Ac

cu
ra

cy

0 200 400 600 800 1000
Number of Interactions

0.7

0.8

0.9

1.0

0 250 500 750 1000
Number of Interactions

0.7

0.8

0.9

1.0

Probability Dropout CodeBert CodeBert+GAT

Figure 2: Performance in simulated interactive semantic parsing with three base parsers.

the beams whose top-ranked prediction has a score
below a given threshold. For simplicity, we use a
decision threshold of 0.5 for error detection.

As shown in Table 4, our error detectors can im-
prove the performance of BRIDGE v2 and NatSQL
in both settings without training on any re-ranking
supervision. Compared with existing re-rankers,
our model does not need extra hyper-parameters
for performance gain, even in the re-ranking-all set-
ting. However, re-ranking hurts the performance of
SmBoP. We attribute this to the larger train-test dis-
crepancy due to the bottom-up nature of SmBoP’s
decoder. As discussed in Section 3.2 and Section
4.2.2, SmBoP produces more diverse beam predic-
tions, but its behavior is less consistent on the test
split. While the diversity benefits the quality of
data for training error detectors, the inconsistency
makes re-ranking on the test split harder. Although
SmBoP is the strongest parser among the three,
state-of-the-art text-to-SQL parsers predominantly
use autoregressive decoders. Therefore, we still
expect our approach to be generally applicable. We
further perform 0-shot re-ranking evaluation on the
more challenging KaggleDBQA (Lee et al., 2021)
dataset (Appendix B). CodeBERT+GAT improves
BRIDGE v2’s accuracy from 20.5% to 21.8%,
showing good generalization to unseen datasets.

4.2.4 Action Triggering in Interactive Systems

In this section, we evaluate the potential gain of
using our error detection model as an answer trig-

ger and interaction trigger in interactive semantic
parsing systems.

Answer triggering When using error detectors
for answer triggering, the interactive semantic pars-
ing system restrain from answering the user’s ques-
tion when an error is detected. The upper half
of Figure 2 demonstrates the change of precision
when varying the decision threshold. In general, a
high threshold p (or lower s) reduces the number
of questions answered for higher precision. Con-
versely, a lower p (or higher s) encourages the sys-
tem to answer more questions at the cost of making
more mistakes.

Because of the high precision on positive sam-
ples, the proposed error detectors outperform both
baseline methods and allow the system to answer
more questions at higher precision. As shown by
Table 5, when maintaining a precision of 95%,
our error detectors allow the system to answer
76% to 175% more questions compared to parser-
dependent metrics.

Model SmBoP BRIDGE v2 NatSQL

Probability 8 24 302
Dropout 295 104 213

CodeBERT 498 247 441
CodeBERT+GAT 520 286 395

Table 5: The number of questions each parser could
answer when maintaining a precision of 95%.

11736

Graph Data Source
NatSQL BRIDGE v2 SmBoP

Acc AUC RR Acc AUC Acc AUC

NatSQLp 76.3 79.2 71.3 - - - -

Simplified in-domain 79.0 83.8 71.2 73.3 76.8 78.5 71.3
Simplified cross-domain 81.7 86.9 72.5 75.5 81.7 79.9 78.2
Original cross-domain 81.7 87.2 71.9 75.0 79.9 79.5 76.0

Table 6: Ablation results using the CodeBERT + GAT model trained on data collected from NatSQL. We report
accuracy, AUC, re-ranking-all (RR) performance on NatSQL’s test split as in-domain evaluation and report accuracy
and AUC when tested on SmBoP and BRIDGE v2 as generalization evaluation. NatSQLp is included for reference.

Model SmBoP BRIDGE v2 NatSQL

Probability 535 557 573
Dropout 412 566 597

CodeBERT 370 555 421
CodeBERT+GAT 356 538 384

Table 7: The number of interactions each parser needs
with interaction triggering to reach an accuracy of 95%.

Interaction triggering We simulate the potential
gain of more accurate interaction triggers by assum-
ing oracle error correction interactions, where any
detected error would be fixed through interactions
with users. Ideally, we would want to get higher
system accuracy with fewer interactions. The lower
half of Figure 2 illustrates the change of accuracy
at different interaction budgets.

Our parser-independent models consistently im-
prove upon parser-dependent metrics, resulting in
more efficient interactive semantic parsing systems.
Due to higher precision and recall on erroneous
base predictions, systems using our models could
correct more errors and avoid unnecessary interac-
tions. As shown by Table 7, depending on the base
parser, our model brings a 3.4% to 33% reduction
to the number of interactions required for reaching
an accuracy of 95%.

4.3 Ablation

We perform ablation studies on the impact of cross-
domain error collection and graph learning using
the CodeBERT+GAT model. We report the models’
accuracy, AUC, and re-ranking performance in the
re-rank all setting (RR) on the test split of NatSQL.
We also test the models on BRIDGE v2 and SmBoP
to evaluate their generalization ability.

Cross-domain error collection We train a Nat-
SQL model using the full Spider training set and
perform inference on the same data set to get its
beam predictions. Then we create training data for

error detection following the procedure described
in Section 3.2. In this way, we collect in-domain
parsing errors in the same setting as Bertrand-DR
and T5QL. As shown by Table 6, the error detec-
tor trained on in-domain errors significantly under-
performs the one trained on cross-domain errors.
The performance of NatSQL deteriorates after re-
ranking, which is consistent with the findings of
previous re-rankers. Thus, we conclude that collect-
ing high-quality parsing errors in a realistic cross-
domain setting is critical to building an accurate
and generalizable error detector.

Simplified graph input In this setting, we do
not simplify constituency parse trees and SQL ab-
stract syntax trees when constructing input graphs
for graph neural networks. Table 6 shows that the
model without graph simplification slightly out-
performs the one using simplified graphs in AUC.
Despite that, its re-ranking and cross-parser gener-
alization performance are lower. We hypothesize
that graph simplification could maintain important
structural features of the input and improve the
model’s generalization ability by alleviating over-
fitting during training.

5 Conclusion

In this work, we propose the first generalizable
parser-independent error detection model for text-
to-SQL semantic parsing. Through learning com-
positional structures in natural language and SQL
queries, the proposed model significantly outper-
forms parser-dependent uncertainty metrics and
could generalize well to unseen parsers. We further
demonstrate the versatility of our approach in error
detection, re-ranking, and action triggering through
a case study with three state-of-the-art text-to-SQL
parsers featuring different decoding mechanisms.

Our experiments highlight the important role of
structural features and cross-domain training data
in building strong and generalizable error detec-

11737

tors for semantic parsing. Potential future work
includes (1) developing more advanced architec-
tures to better evaluate the semantic correctness of
synthesized SQL queries, (2) exploring data synthe-
sis strategies to automatically create high-quality
training data for error detection models.

Limitations

This work is the first attempt towards building a
versatile error detector for text-to-SQL semantic
parsing. Although our model is parser-independent,
the current data collection process depends on the
choice of base parsers. As a result, the collected
data may inherit certain biases in the base parsers.
Our experiments show that data collected from
stronger base parsers helps the model to general-
ize to weaker parsers. However, how to collect
high-quality training data for error detection with
stronger base parsers like SmBoP remains an open
problem. A promising future direction may be de-
veloping a comprehensive data synthesis approach
to improve the quality of training data. Grappa
(Yu et al., 2021) uses context-free grammar to syn-
thesize SQL queries for pre-training Transformer
encoders for text-to-SQL parsing. This approach
could be adapted to generate syntactically correct
but semantically incorrect SQL queries in a con-
trollable way.

Another major limitation is that our current
model does not consider database schema informa-
tion. Since SQL queries are grounded in databases,
in principle database schema (tables, columns, and
foreign-key relationships) should be an important
part of error detection. The common practice in
text-to-SQL semantic parsing is to linearize the
database schema and concatenate all table and col-
umn names to the input to the Transformer encoder.
However, our preliminary experiments show that
this operation actually hurts the error detection per-
formance. A similar observation is also reported
by Kelkar et al. (2020). Nevertheless, our approach
performs strongly for error detection as it can still
effectively capture semantic errors that are free
from schema linking mistakes. This can be ex-
plained by the high column mention rate in Spider
(Pi et al., 2022). Future work could develop more
effective entity linking mechanisms to extend our
model to more challenging testing environments
where schema linking errors are more common.

Acknowledgements

We would like to thank colleagues from the OSU
NLP group for their thoughtful comments. This
research was sponsored in part by a sponsored re-
search award by Cisco Research, NSF IIS-1815674,
NSF CAREER #1942980, NSF OAC-2112606,
and Ohio Supercomputer Center (Center, 1987).
The views and conclusions contained herein are
those of the authors and should not be interpreted as
representing the official policies, either expressed
or implied, of the U.S. government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Government purposes notwithstanding
any copyright notice herein.

References
Samuel Arcadinho, David Aparício, Hugo Veiga, and

António Alegria. 2022. T5QL: Taming language
models for SQL generation.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019.
Global Reasoning over Database Structures for Text-
to-SQL Parsing. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 3659–3664, Hong Kong, China. Association
for Computational Linguistics.

Shaked Brody, Uri Alon, and Eran Yahav. 2022. How
attentive are graph attention networks? In Interna-
tional Conference on Learning Representations.

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,
Su Zhu, and Kai Yu. 2021. LGESQL: Line Graph
Enhanced Text-to-SQL Model with Mixed Local and
Non-Local Relations. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 2541–2555, Online. Association
for Computational Linguistics.

Ohio Supercomputer Center. 1987. Ohio supercomputer
center.

Ziru Chen, Shijie Chen, Michael White, Raymond
Mooney, Ali Payani, Jayanth Srinivasa, Yu Su, and
Huan Sun. 2023. Text-to-SQL error correction with
language models of code. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
1359–1372, Toronto, Canada. Association for Com-
putational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A Pre-Trained Model for Programming and

11738

http://arxiv.org/abs/2209.10254
http://arxiv.org/abs/2209.10254
https://doi.org/10.18653/v1/D19-1378
https://doi.org/10.18653/v1/D19-1378
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73
https://doi.org/10.18653/v1/2023.acl-short.117
https://doi.org/10.18653/v1/2023.acl-short.117
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139

Natural Languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R. Woodward, John Drake, and Qiaofu Zhang.
2021. Natural SQL: Making SQL Easier to Infer
from Natural Language Specifications. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 2030–2042, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-SQL in cross-domain database
with intermediate representation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4524–4535, Florence,
Italy. Association for Computational Linguistics.

Izzeddin Gur, Semih Yavuz, Yu Su, and Xifeng Yan.
2018. DialSQL: Dialogue Based Structured Query
Generation. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1339–1349, Mel-
bourne, Australia. Association for Computational
Linguistics.

Magne Jorgensen and Martin Shepperd. 2007. A sys-
tematic review of software development cost estima-
tion studies. IEEE Transactions on Software Engi-
neering, 33(1):33–53.

Amol Kelkar, Rohan Relan, Vaishali Bhardwaj, Saurabh
Vaichal, Chandra Khatri, and Peter Relan. 2020.
Bertrand-dr: Improving text-to-sql using a discrimi-
native re-ranker.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. KaggleDBQA: Realistic evalu-
ation of text-to-SQL parsers. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2261–2273, Online. As-
sociation for Computational Linguistics.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In AAAI.

Yuntao Li, Bei Chen, Qian Liu, Yan Gao, Jian-Guang
Lou, Yan Zhang, and Dongmei Zhang. 2020. “What
Do You Mean by That?” A Parser-Independent In-
teractive Approach for Enhancing Text-to-SQL. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6913–6922, Online. Association for Computa-
tional Linguistics.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging Textual and Tabular Data for Cross-
Domain Text-to-SQL Semantic Parsing. In Findings

of the Association for Computational Linguistics:
EMNLP 2020, pages 4870–4888, Online. Association
for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Xinyu Pi, Bing Wang, Yan Gao, Jiaqi Guo, Zhoujun
Li, and Jian-Guang Lou. 2022. Towards robustness
of text-to-SQL models against natural and realistic
adversarial table perturbation. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2007–2022, Dublin, Ireland. Association for Compu-
tational Linguistics.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi
Zhang, and Zhouhan Lin. 2022. RASAT: Integrating
relational structures into pretrained Seq2Seq model
for text-to-SQL. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3215–3229, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
Natural Language Processing Toolkit for Many Hu-
man Languages. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 101–108,
Online. Association for Computational Linguistics.

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-
autoregressive Bottom-up Semantic Parsing. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
311–324, Online. Association for Computational Lin-
guistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7567–7578, Online. Association
for Computational Linguistics.

Cathrin Weiss, Rahul Premraj, Thomas Zimmermann,
and Andreas Zeller. 2007. How long will it take to fix
this bug? In Fourth International Workshop on Min-
ing Software Repositories (MSR’07:ICSE Workshops
2007), pages 1–1.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019.
Model-based Interactive Semantic Parsing: A Uni-
fied Framework and A Text-to-SQL Case Study. In

11739

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P18-1124
https://doi.org/10.18653/v1/P18-1124
https://doi.org/10.1109/TSE.2007.256943
https://doi.org/10.1109/TSE.2007.256943
https://doi.org/10.1109/TSE.2007.256943
https://doi.org/10.48550/ARXIV.2002.00557
https://doi.org/10.48550/ARXIV.2002.00557
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2020.emnlp-main.561
https://doi.org/10.18653/v1/2020.emnlp-main.561
https://doi.org/10.18653/v1/2020.emnlp-main.561
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://aclanthology.org/2022.emnlp-main.211
https://aclanthology.org/2022.emnlp-main.211
https://aclanthology.org/2022.emnlp-main.211
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.48550/ARXIV.2109.05093
https://doi.org/10.48550/ARXIV.2109.05093
https://doi.org/10.48550/ARXIV.2109.05093
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.1109/MSR.2007.13
https://doi.org/10.1109/MSR.2007.13
https://doi.org/10.18653/v1/D19-1547
https://doi.org/10.18653/v1/D19-1547

Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5447–
5458, Hong Kong, China. Association for Computa-
tional Linguistics.

Ziyu Yao, Yiqi Tang, Wen-tau Yih, Huan Sun, and Yu Su.
2020. An Imitation Game for Learning Semantic
Parsers from User Interaction. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6883–6902,
Online. Association for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2017. A Syntactic
Neural Model for General-Purpose Code Generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440–450. Association for
Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2019. Reranking
for neural semantic parsing. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4553–4559, Florence, Italy.
Association for Computational Linguistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2021. Grappa:
Grammar-augmented pre-training for table semantic
parsing. In International Conference on Learning
Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A Large-Scale Human-Labeled
Dataset for Complex and Cross-Domain Semantic
Parsing and Text-to-SQL Task. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 3911–3921, Brussels,
Belgium. Association for Computational Linguistics.

Jichuan Zeng, Xi Victoria Lin, Steven C.H. Hoi, Richard
Socher, Caiming Xiong, Michael Lyu, and Irwin
King. 2020. Photon: A Robust Cross-Domain Text-
to-SQL System. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 204–214,
Online. Association for Computational Linguistics.

Appendices

We provide additional details as follows:

1. Appendix A: Fixed Spider Evaluation Script

2. Appendix D: Modified SQLite Grammar

3. Appendix E: Qualitative Beam Examples

A Fixed Spider Evaluation Script

We fix the following problems in the official evalu-
ation process of the Spider dataset.

1. Incorrect handling of UTF-8 encoded
databases. We fix this issue in the Python
implementation of the evaluation script.

2. Certain examples have gold queries that ex-
ecute to an empty result, resulting in false
positive labels. For these samples, we use
exact set match score instead.

3. Considering the order of returned results when
unnecessary. We fix this issue by sorting each
column in the execution result in alphabetical
order when there is no ’Order By’ clause at
the top level.

4. Duplicated values for queries with ’limit’
clause. This results in false negatives for ques-
tions querying the maximum or minimum val-
ues of a column or aggregation. We fix this
issue by removing the limit clause in the
gold and predicted SQL when their argument
is the same.

We show the accuracy of each parser on Spi-
der’s development set based on the official and our
version of evaluation in Table A.1. Although the
differences in accuracy are within 1%, the disagree-
ments impact 3.3% to 4% of the examples. We
use the fixed evaluation script to reduce false posi-
tive and false negative labels both for training data
collection and evaluation of our model.

Parser Acc∗ Acc Disagreement

SmBoP 75.0 75.3 41
BRIDGE v2 67.3 68.3 34

NatSQL 71.3 71.9 40

Table A.1: Execution accuracy of the three parsers
on Spider’s development set using official evaluation
script (Acc) and our fixed evaluation script (Acc∗). Dis-
agreement counts the number of samples with different
labels.

11740

https://doi.org/10.18653/v1/2020.emnlp-main.559
https://doi.org/10.18653/v1/2020.emnlp-main.559
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P19-1447
https://doi.org/10.18653/v1/P19-1447
https://arxiv.org/abs/2009.13845
https://arxiv.org/abs/2009.13845
https://arxiv.org/abs/2009.13845
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/2020.acl-demos.24
https://doi.org/10.18653/v1/2020.acl-demos.24

Parser Model Easy (24.0%) Medium (43.1%) Hard (16.8%) Extra Hard (16.1%)

SmBoP CodeBERT 85.0/84.9 81.0/80.5 75.6/81.8 63.3/76.4
CodeBERT+GAT 87.1/86.9 80.5/78.8 80.6/82.7 65.1/76.6

BRIDGE v2 CodeBERT 82.9/81.7 74.6/76.8 75.7/85.7 64.4/75.1
CodeBERT+GAT 82.7/82.4 76.4/80.8 79.0/86.3 70.0/76.7

NatSQL CodeBERT 89.0/91.9 82.6/84.6 78.5/84.6 72.1/78.5
CodeBERT+GAT 88.7/91.6 81.4/84.0 78.9/87.3 74.1/80.1

Table A.2: Error detection performance Acc/AUC break down by difficulty on the Spider dev set. Difficulty is
decided by the official Spider evaluation script. The proportion of each difficulty type is in the parenthesis.

B KaggleDBQA Results

Re-ranker CodeBERT+GAT

N/A 20.5

RR 21.8
ED + RR 21.4

Beam Hit 25.9

Table B.3: Execution accuracy of BRIDGE v2 and re-
ranking using the CodeBERT + GAT model (left) and
CodeBERT (right) on KaggleDBQA. RR: Re-ranking
all beams; ED+RR: Re-ranking beams after error detec-
tion.

To test the generalization abilities of the pro-
posed error detecor, we perform 0-shot evaluations
on the 370 test examples3 in KaggleDBQA(Lee
et al., 2021). KaggleDBQA features more realistic
database naming and makes entity linking signif-
icantly more challenging than Spider. We only
experiment with BRIDGE v2 for the following rea-
sons: (1) Under the 0-shot testing, SmBoP trained
on Spider got an accuracy of 1.6% both for top-
1 and beam hit, making re-ranking meaningless.
This is partly due to the failure of its entity linking
modules based on span extraction from questions.
(2) At the time of writing, the SQL-to-NatSQL part
of NatSQL’s preprocessing code has not been re-
leased and its current codebase does not support
KaggleDBQA.

We present the 0-shot re-ranking results with
BRIDGE v2 using CodeBERT+GAT in Table B.3.
Without any training data, CodeBERT+GAT im-
proves BRIDGE v2’s accuracy by 1.3%.

C Performance by Difficulty

In Table A.2, we break down the error detection
performance in Table 2 by question difficulty and

3We use all examples in examples/*_test.json in
https://github.com/chiahsuan156/KaggleDBQA

compare the performance of CodeBERT and Code-
BERT+GAT. While CodeBERT can perform better
on easy and medium questions for some parsers,
CodeBERT+GAT consistently wins on hard and
extra hard questions, showing the effectiveness of
introducing structural features for harder questions.
Since 63.1% of the questions are of easy or medium
difficulty, the overall evaluation in Table 2 favors
CodeBERT.

D Modified SQLite Grammar

we use a modified version based on a publicly
available context-free grammar for SQLite
https://github.com/antlr/grammars-v4/
tree/master/sql/sqlite, We slightly modify
the publicly available SQLite grammar for Antlr44

to introduce more hierarchical structures of SQL
queries at the top level.

Terminals We represent SQL keyword ’GROUP
BY’ by a single terminal GROUP_BY_ and ’ORDER
BY’ by ORDER_BY_. The original grammar reuses
BY_ for ’BY’, which we think breaks the entirety
of these two keywords.

Non-terminals We first remove values_clause
and rules related to window functions, as they
are not used by SQL queries in the Spider
dataset. Then we break the select_core non-
terminal, which represents a SQL query starting
with SELECT, into a composition of multiple non-
terminals, one for each SQL clause.

Our new SQLite grammar is listed as follows:
select_core:

(
SELECT_ (DISTINCT_ | ALL_)?
result_clause
(from_clause)?
(where_clause)?
(group_by_clause)?

)

4https://github.com/antlr/grammars-v4/tree/
master/sql/sqlite

11741

https://github.com/chiahsuan156/KaggleDBQA
https://github.com/antlr/grammars-v4/tree/master/sql/sqlite
https://github.com/antlr/grammars-v4/tree/master/sql/sqlite
https://github.com/antlr/grammars-v4/tree/master/sql/sqlite
https://github.com/antlr/grammars-v4/tree/master/sql/sqlite

;

result_clause:
result_column (COMMA result_column)*

;

from_clause:
FROM_ table_or_subquery
(COMMA table_or_subquery)*
| FROM_ join_clause

;

where_clause:
WHERE_ expr

;

group_by_clause:
GROUP_ BY_ expr
(COMMA expr)*
(HAVING_ expr)?

;

The original grammar for select_core:
select_core:

(
SELECT_ (DISTINCT_ | ALL_)?
result_column
(COMMA result_column)*
(FROM_

(table_or_subquery
(COMMA table_or_subquery)*
| join_clause

)
)?
(WHERE_ whereExpr=expr)?
(GROUP_ BY_ groupByExpr +=expr

(COMMA groupByExpr +=expr)*
(HAVING_ havingExpr=expr)?

)?
)

;

Notice the excessive use of * in the original
grammar that fails to represent the hierarchical rela-
tionship between the SELECT statement and each
clause.

E Qualitative Beam Examples

As mentioned in Section 3.2, the three text-to-
SQL parsers behave differently. We present their
beam predictions on two samples in our training
split in Table E.4. We can observe that SmBoP
and NatSQL could generate more executable SQL
queries than BRIDGE v2. Both SmBoP and Nat-
SQL are capable of generating diverse errors, but
NatSQL’s beam predictions are more likely to share
prefixes. As an example, SmBoP generates diverse
SELECT clauses on both samples, while the SELECT
clauses predicted by BRIDGE v2 and NatSQL do
not change.

11742

Question: How many heads of the departments are older than 56?
Gold SQL: SELECT COUNT(*) FROM head WHERE head.age > 56

SmBoP

SELECT COUNT(*) FROM head WHERE head.age > 56
SELECT head.name FROM head WHERE head.age > 56
SELECT MAX(head.age) FROM head WHERE head.age > 56
SELECT head.age FROM head WHERE head.age > 56
SELECT * FROM head WHERE head.age > 56

BRIDGE v2 SELECT COUNT(*) FROM head WHERE head.age > 56

NatSQL

SELECT COUNT(*) FROM head WHERE head.age > 56
SELECT COUNT(*) FROM department WHERE department.department_id in (SELECT
management.department_ID FROM management, head WHERE head.age = 56)
SELECT COUNT(*) FROM head WHERE head.age = 56
SELECT COUNT(*) FROM head WHERE head.age < 56
SELECT COUNT(*) FROM head WHERE head.age >= 56

Question: Show the names of the three most recent festivals.
Gold SQL: SELECT festival_detail.festival_name FROM festival_detail ORDER BY festival_detail.year

DESC LIMIT 3

SmBoP

SELECT festival_detail.festival_name FROM festival_detail ORDER BY festival_detail.year
DESC LIMIT 3
SELECT festival_detail.festival_name FROM festival_detail WHERE festival_detail.year =
(SELECT MAX(festival_detail.year) FROM festival_detail)
SELECT 3 FROM festival_detail WHERE festival_detail.year = (SELECT MAX(
festival_detail.year) FROM festival_detail)
SELECT MAX(festival_detail.year) FROM festival_detail ORDER BY festival_detail.year
DESC LIMIT 3
SELECT MAX(festival_detail.year) FROM festival_detail ORDER BY festival_detail.year
DESC

BRIDGE v2

SELECT festival_detail.Festival_Name FROM festival_detail ORDER BY festival_detail.Year
ASC LIMIT 3
SELECT festival_detail.Festival_Name FROM festival_detail ORDER BY festival_detail.Year
LIMIT 3
SELECT festival_detail.Festival_Name FROM festival_detail ORDER BY festival_detail.Year
DESC LIMIT 3

NatSQL

SELECT festival_detail.festival_name FROM festival_detail ORDER BY festival_detail.year
DESC LIMIT 3
SELECT festival_detail.festival_name FROM festival_detail ORDER BY festival_detail.year
ASC LIMIT 3
SELECT festival_detail.festival_name , festival_detail.year FROM festival_detail ORDER
BY festival_detail.year DESC LIMIT 3
SELECT festival_detail.festival_name FROM festival_detail
SELECT festival_detail.festival_name FROM festival_detail GROUP BY
festival_detail.festival_name ORDER BY festival_detail.year DESC LIMIT 3

Table E.4: Example beam predictions collected from three base parsers in our training dataset.

11743

