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Abstract
Visual question answering (VQA) is the task
of answering questions about an image. The
task assumes an understanding of both the im-
age and the question to provide a natural lan-
guage answer. VQA has gained popularity in
recent years due to its potential applications
in a wide range of fields, including robotics,
education, and healthcare. In this paper, we
focus on knowledge-augmented VQA, where
answering the question requires commonsense
knowledge, world knowledge, and reasoning
about ideas and concepts not present in the
image. We propose a multimodal framework
that uses language guidance (LG) in the form
of rationales, image captions, scene graphs,
etc to answer questions more accurately. We
benchmark our method on the multi-choice
question-answering task of the A-OKVQA,
Science-QA, VSR, and IconQA datasets using
CLIP and BLIP models. We show that the use
of language guidance is a simple but powerful
and effective strategy for visual question an-
swering. Our language guidance improves the
performance of CLIP by 7.6% and BLIP-2 by
4.8% in the challenging A-OKVQA dataset.
We also observe consistent improvement in
performance on the Science-QA, VSR, and
IconQA datasets when using the proposed
language guidances. The implementation of
LG-VQA is publicly available at https://
github.com/declare-lab/LG-VQA.

1 Introduction
Visual understanding is one of the most complex
tasks in artificial intelligence. Among the many
challenges associated with it, image question an-
swering has been formulated as a task that tests
the ability of a system to understand the elements
of an image in a way similar to how humans in-
teract with images. This task involves creating
models that can accurately answer questions based
on the content of an image. While significant
progress has been made in image question answer-
ing (Wang et al., 2022a; Chen et al., 2022), most

Figure 1: The above image and the question At what
time of day are the skateboarders probably skating on
the beach? are given. In our LG-VQA framework, we
generate the caption: a group of skate boarders in front
of palm trees at sunset and the question constrained ra-
tionale: the sun is just beginning to set behind the sand
to provide the answer: sunset.

of the existing approaches focus solely on analyz-
ing the visual features associated with the image or
the linguistic content or representation of the ques-
tion (and possibly candidate answers), without uti-
lizing additional sources of guidance. However,
incorporating external guidance into these models
has the potential to improve their performance and
enhance their understanding of visual content.

In this paper, we propose a multimodal frame-
work, LG-VQA that leverages language guid-
ance to improve the accuracy of image question-
answering systems. Language guidance is sourced
from elements such as image captions, scene
graphs, and rationales created in response to ques-
tions. These sources serve to enrich textual in-
structions with valuable knowledge. Our method
is evaluated on the multi-choice A-OKVQA
dataset (Schwenk et al., 2022). We choose A-
OKVQA specifically because the questions in this
dataset require a broad base of commonsense and
world knowledge to answer. We also evaluate our
method on the challenging ScienceQA (Lu et al.,
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2022), Visual Semantic Reasoning (VSR) (Liu
et al., 2023), and IconQA (Lu et al., 2021)
datasets. With the advent of large-scale multi-
modal pre-training (Wang et al., 2022a,b), the per-
formance in the commonly used VQA and VQA
v2 datasets (Antol et al., 2015; Goyal et al., 2017)
has saturated.

The datasets considered in this paper provide
a more challenging test bed for VQA where fac-
tual, commonsense, physical, scientific, and visual
knowledge are required, going beyond the usual
image recognition, attribute detection tasks that
are generally found in the VQA, VQA v2 datasets.
Previously Shah et al. (2019); Wu et al. (2017);
Zheng et al. (2021) have used concrete knowledge
bases such DBPedia, Freebase, or named entity
knowledge graphs in VQA. We instead show that
simple language guidance without using knowl-
edge graphs is also a powerful technique for im-
proving VQA performance in various challenging
datasets.

We benchmark our approach with the
CLIP (Radford et al., 2021) and BLIP-2 (Li et al.,
2023) models and show significant improvements
over those, demonstrating that incorporating
language guidance can be an effective strategy for
visual question answering.

2 Background

We use the following two strong multi-modal
models in our framework:

CLIP (Radford et al., 2021) is a model for
learning transferable visual representations from
natural language supervision. CLIP is trained on
400 million (image, text) pairs to learn a joint em-
bedding space where image representations and
their corresponding text representations are close
to each other. We use the CLIP model with the
ViT-L/14 image encoder (Dosovitskiy et al., 2020)
and the GPT-2 text encoder (Radford et al., 2019).
CLIP encodes the image and the text separately
through the corresponding encoders. Then, a nor-
malized dot product between the encoded vectors
provides the image-text matching score. We de-
note the image and text encoder as ICLIP and
TCLIP . Given an image img and text instance txt,
the matching score is computed as follows:

I = l2_normalize(ICLIP (img))

T = l2_normalize(TCLIP (txt))

score = et ∗ (I · T ) = et ∗
m∑

i=1

ImTm

(1)

where t is a learned temperature parameter for
scaling the dot product similarity. We use this for-
mulation of the (image, text) matching methodol-
ogy for CLIP models in our VQA framework.

BLIP-2 (Li et al., 2023) bootstraps joint pre-
training over image and language data with off-
the-shelf frozen image encoders and frozen large
language models (LLMs). A small transformer
network called Query Transformer or Q-Former is
trained to model the interaction between the frozen
image and language models.

In the first stage of BLIP-2 pre-training, the
Q-Former learns to extract visual representations
from the image that is most relevant to the text
using image-text contrastive learning, and image-
grounded text generation tasks. In the second
stage, the trained Q-Former is used to extract a set
of query embeddings about the image. The query
embeddings are converted into the input embed-
ding space of the LLMs through a linear projec-
tion. The projected vector functions as the soft vi-
sual prompts that condition the LLM to generate
the desired text. BLIP-2 uses paired (image, text)
data for both stages of pre-training.

We denote the image encoder and Q-Former
of BLIP2 as IBLIP and QBLIP . The image-text
matching score is computed as follows:

I = IBLIP (img)

features = QBLIP (I, txt, q)

score = Proj(features)

(2)

where q is the leaned embeddings during pre-
training and Proj is the projection head. Addi-
tionally, we use the FlanT5 (Chung et al., 2022)
model as the LLM for image-constrained text gen-
eration. Here, the Q-Former does not take any text
as input, but the LLM encoder may use a prefix
text prefix on which the output text is condi-
tioned:

vprompt = QBLIP (I, q)

encoded = FlanT5 Encoder(vprompt, prefix)

output = FlanT5 Decoder(encoded)

(3)

We use the image-text matching methodology
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and the (visual prompt, prefix) conditioned text
generation in various stages of our framework.

3 LG-VQA Framework

3.1 Zero-Shot Visual Question Answering

The CLIP and BLIP-2 models show impressive
zero-shot performance in various computer vision
tasks. For ImageNet type classification tasks, the
method generally works by creating sentence in-
stances from the labels: A photo of a dog, A photo
of a cat, A photo of a bird, etc. Then, similarity
scores are computed between the image and all the
sentence instances created from the labels. The la-
bel (e.g. bird) is then predicted from the sentence
(e.g. A photo of a bird) which provided the maxi-
mum similarity score.

We apply a similar method for the zero-
shot multi-choice visual question-answering task.
Given image img, question question, multiple
answer choices a1, a2, . . . , an, we create sen-
tences by concatenating the question and the an-
swer {question, ai}. The concatenated sentence
providing the highest image-text matching score
corresponds to the predicted answer:

txti = {question, ai} ∀i = 1, . . . , n

si = match(img, txti)

best = argmax([s1, . . . , sn])

answer = abest

(4)

3.2 Unguided Visual Question Answering

We use the term unguided to denote the con-
ventional visual question-answering task with full
fine-tuning without using any additional guidance.
Here, we train a model with the image img,
question question, and multiple answer choices
a1, . . . , an to predict the correct answer choice ak.

We obtain the image-text matching score si for
each (image, question, answer) triplet from CLIP
or BLIP-2. We then normalize the scores with a
softmax layer across the n choices:

txti = {q, ai} ∀i = 1, . . . , n

si = match(img, txti)

s̄i =
esi∑n
j=1 e

sj

(5)

Finally, we use the cross-entropy loss to train
the underlying CLIP or BLIP-2 model. Assuming
that ak is the correct answer, the loss is as follows:

L = −
n∑

i=1

pilog(s̄i) = −log(s̄k) (6)

where we denote pi to be the class label of the
answer choices. The value of pk is 1 as ak is the
correct answer, whereas the values of the other pi
are zero as they are the incorrect answers. The
loss thus simplifies to the −log(s̄k) as shown in
Eq. (6). The loss is equivalent to the cross-entropy
loss used in multi-class classification problems.

3.3 Constained Inference Generation

We use the BLIP-2 model with FLAN-T5 to gen-
erate inferences (such as rationales, explanations
and captions) constrained on the image img and
question question that could potentially be help-
ful for the VQA task. We follow the setting speci-
fied earlier in Eq. (3). We do not use any prefix,
and thus the FLAN-T5 model is constrained en-
tirely upon the visual prompt extracted from the
question and the image with the Q-Former.

We use the rationales in the A-OKVQA dataset
and the explanations for the VQA and VQA v2
provided in (Li et al., 2018; Park et al., 2018) to
fine-tune the BLIP-2 with FLAN-T5 model. We
also use COCO Captions (Chen et al., 2015) for
image captioning. We keep the visual encoder and
the FLAN-T5 frozen and only tune the Q-Former
network for the tasks of rationales or explanation
or caption generation. We use the generated ra-
tionales, explanations, and captions as language
guidance in our main model (§3.5).

3.4 Scene Graphs and Object Detection

We use the Relation Transformer (RelTR) network
network (Cong et al., 2023) for scene graph gener-
ation from the images. RelTR uses a transformer
model based on DETR (Carion et al., 2020) pre-
trained on the Visual Genome dataset (Krishna
et al., 2017) to predict the scene graph triplets
about an image. We use the RelTR model to pre-
dict scene graphs for the images. We concatenate
the triplets with [SEP] token to create the scene
graph guidance. We also use the UniDet (Zhou
et al., 2022) and DETR models for object detec-
tion in the images. After detection, we aggregate
the objects using their counts: two dogs, one girl,
three toys. The objects detected are potentially
helpful for questions that require counting or nu-
merical reasoning.
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3.5 Language Guided Visual Question
Answering

We use the notation guide to denote the various
guidance strategies or their combinations. Con-
cretely it could be either the rationales, explana-
tions, captions, scene graphs, objects, or any of
their combinations. The combination is achieved
by simply concatenating the various guidances.
We use the notation txt_guidei to denote the con-
catenation of {question, ai, guide}.

We follow two strategies for using the guide in
CLIP or BLIP-2. For CLIP, the strategy for com-
puting the matching score is similar to Eq. (5) with
text_guidei:

si = match(img, txt_guidei) (7)

Then, we use the softmax normalization with
cross-entropy loss specified in Eq. (6) for train-
ing. CLIP was originally trained on a maximum
length of 77 input tokens. We extend the maxi-
mum length to 512 tokens to incorporate guide as
part of the input and update these positional em-
beddings during training.

For BLIP-2, we found that passing txti and
txt_guidei through two forward passes followed
by feature merging to be the optimal strategy:

x1 = QBLIP (I, txti, q)

x2 = QBLIP (I, txt_guidei, q)

features = |x1, x2, x1 − x2, x1 ∗ x2|
si = Proj(features)

(8)

The model is trained with the cross-entropy
loss with softmax normalized scores over the
choices. We train the Q-Former of BLIP-2, the
projection layer Proj and keep the visual encoder
frozen. We found that fine-tuning the visual en-
coder is computationally expensive, with marginal
improvement in performance.

4 Experiments

Dataset Used We use the multi-choice ques-
tion answering setup of the A-OKVQA (Schwenk
et al., 2022) dataset for evaluating our VQA
framework. Each instance has four possible an-
swer choices, among which only one is correct.
We report the scores in the validation dataset as
the test set labels are not available. We also report
results for the easy and hard subset as specified
in the dataset. The dataset has a total of 25K in-
stances.

Mode CLIP BLIP-2
Overall Easy Hard Overall Easy Hard

Zero-Shot 58.52 58.98 51.43 64.98 65.95 50.00
No Guidance 68.30 68.74 61.43 75.02 76.09 58.57

LG-VQA
Rationale 74.11 74.72 64.71 76.77 77.77 61.43
Explanation 68.21 68.93 57.14 76.16 77.02 62.86
Captions 69.08 69.67 60.00 76.68 77.77 60.00
Scene Graph 68.03 66.23 65.71 76.61 77.51 62.86
Objects 67.77 68.56 55.71 75.94 77.07 58.57
All 75.98 76.65 65.71 79.83 80.47 70.00

Table 1: Results on the A-OKVQA validation set. We report
VQA accuracy scores for zero-shot, unguided, and various
kinds of guidance for the overall, easy, and hard sets. Scores
are average of three runs.

We also experiment with the ScienceQA (Lu
et al., 2022), Visual Semantic Reasoning
(VSR) (Liu et al., 2023), and IconQA (Lu et al.,
2021) datasets. ScienceQA is collected from
elementary and high school science curricula
containing 10k questions with image context.
The number of answer choices varies between 2
and 5, among which only one is correct. Visual
Spatial Reasoning (VSR) is a corpus of caption-
image pairs with true/false labels. Each caption
describes the spatial relation of two individual
objects in the image. The task is to determine if
the caption correctly describes the image. We use
the true/false labels as the two answer choices for
multi-choice question answering. IconQA is a
dataset for diagram understanding and cognitive
reasoning in real-world diagram word problems.
We use the multi-text-choice subtask which has a
total of 31k instances.

Results for A-OKVQA We report the results
for the overall set and the easy, hard subsets for
A-OKVQA in Table 1. In the first two rows of the
Table 1, we report the results in the baseline set-
tings: i) zero-shot performance using the image-
text matching scores without any training (§3.1),
and ii) training the models in the conventional
VQA setting without any guidance (§3.2). We ob-
tain a zero-shot overall accuracy of 58.52% which
improves to 68.30% when trained without guid-
ance for the CLIP model. In comparison the BLIP-
2 model shows a zero-shot accuracy of 64.98%
and without guidance accuracy of 75.02%.

The lower part of Table 1 shows the results with
various kind of guidances. Most of the guidances
improve performance when used individually on
their own. For individual guidance, we obtain the
highest performance with rationales for both CLIP
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Mode ScienceQA VSR IconQA
CLIP BLIP-2 CLIP BLIP-2 CLIP BLIP-2

No Guidance 85.32 84.28 63.99 76.76 82.36 86.21

LG-VQA
Captions 86.22 84.88 64.10 76.68 83.98 86.47
Scene Graph 86.91 86.32 63.75 77.00 82.54 86.18
Objects 87.22 85.28 63.95 77.40 83.25 86.52
CSO 86.02 86.27 64.24 78.15 84.44 86.72
Lecture 86.92 86.27 - - - -
CSOL 86.37 86.56 - - - -

Table 2: Results on the ScienceQA, VSR, and IconQA test
sets. CSO denotes captions, scene graphs, and objects guid-
ance. The L in CSOL denotes additional lecture guidance.
The lecture guidance is available only for the ScienceQA
dataset. Scores are average of three runs.

and BLIP-2. In particular, the improvement over
no guidance is close to 6% for CLIP, which is
also somewhat expected as the rationale generator
BLIP-2 model is trained on the A-OKVQA train-
ing set itself. The performance with all the guid-
ances is significantly better compared to no guid-
ance for both models, with 7.6% improvement in
CLIP and 4.8% improvement in BLIP-2 in the
overall set. We also report the scores for the easy
and hard subsets in A-OKVQA. We note that the
improvement in all guidance setting comes from
improvement in both the easy and hard subsets.
Notably, BLIP-2 achieves a hard set accuracy of
70% with all guidance compared to 58.57% with
no guidance.

Results for other datasets We report results for
the other three datasets in Table 2. For ScienceQA
without guidance the CLIP model achieves an ac-
curacy of 85.32%, which is a percent higher than
the BLIP-2 accuracy of 84.28%. We observe 1-2
% increase in accuracy with the guidances for both
models. The objects guidance in CLIP provides
the maximum accuracy of 87.22%.

In VSR, the BLIP-2 models heavily outperform
the CLIP models. We observe a minor improve-
ment in performance for CLIP with the various
guidances. For BLIP-2, the improvement is close
to 1.5%, when we use the captions, scene graphs,
and objects (CSO) guidance together.

We observe a similar trend in performance for
IconQA. The use of various guidances helps in im-
proving the accuracy of both models. However,
the margin of increase is not as high in BLIP-2 as
it is in CLIP. We observed 2% increase in accu-
racy for CLIP and 0.5% in increase in accuracy
for BLIP-2.

Model Mode What Which Why How Where

CLIP

Zero-Shot 60.14 53.33 55.74 45.00 66.0
No Guidance 68.96 56.00 77.05 58.33 86.0
Rationale 75.60 64.00 90.16 63.33 86.0
All 76.40 68.00 88.52 66.67 86.0

BLIP-2

Zero-Shot 66.67 49.33 72.13 50.00 74.0
No Guidance 75.49 60.00 88.52 65.00 90.0
Rationale 77.32 65.33 86.89 63.33 90.0
All 80.53 66.67 90.16 70.00 94.0

Table 3: Results of CLIP and BLIP-2 with different guid-
ance across question types. Scores are average of three runs.

Analysis For A-OKVQA, we analyze the per-
formance of our models across various wh-
question types in Table 3. In A-OKVQA, ‘What’
type questions are the most prevalent type. The
incorporation of all guidance helps both CLIP and
BLIP-2 to improve on the ‘What’ question types in
addition to all the other question types. For CLIP,
the rationale-based guidance outperforms the no
guidance across all the question types. Notably,
the ‘Why’ accuracy jumps to 90% from 77%.

Error Analysis We found some common error
patterns from our analysis: (i) questions about
very small or tiny objects present in the image
are erroneously predicted as the visual encoders
of CLIP or BLIP-2 are not sensitive enough to de-
tect those objects; (ii) questions about optical char-
acters embedded in the image are often wrongly
predicted (which number birthday is being cele-
brated? for a cake with the number 10 drawn with
cream); (iii) questions about abduction (Given the
position of the bat and ball the batter most likely
did what?) or visual occlusions (What is likely in
front of the rug?) are also incorrectly predicted
because of insufficient world knowledge.

5 Conclusion

In this work, we presented a simple method for vi-
sual question answering with language guidance.
Our language guidance consists of rationale and
explanations constrained upon the image and the
question, image captions, scene graphs, and de-
scription of the objects present in the image. We
propose an effective strategy of fusing the lan-
guage guidance with the pre-trained multi-modal
CLIP and BLIP-2 models. Our language guidance
improves the performance of CLIP by 7.6% and
BLIP-2 by 4.8% in the challenging A-OKVQA
dataset. We also observe consistent improvement
in performance with guidance on the ScienceQA,
VSR, and IconQA datasets.
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6 Limitations

As mentioned before, our proposed model under-
performs for specific categories of questions
where tiny object recognition or optical charac-
ter recognition on the images is necessary for an-
swering the questions. We also found that the
baseline models CLIP and BLIP-2, and our sub-
sequently developed models with guidance can-
not adequately model complex world knowledge
and commonsense knowledge for answering dif-
ficult questions about the image. In the future,
we would like to incorporate explicit world and
commonsense knowledge as part of the guidance
to improve the VQA models.
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A Experimental Details and Resources

We train our models with the AdamW opti-
mizer (Loshchilov and Hutter, 2017) with a batch
size of 8 and 8 epochs. We used a learning rate be-
tween {1e-6, 3e-6, 5e-6}. We train our models on
a single RTX A6000 GPU. The main task training
on A-OKVQA takes around 4 hours for CLIP and
8 hours for BLIP-2 with 8 epochs.
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