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Abstract

Due to the absence of explicit word bound-
aries in the speech stream, the task of segment-
ing spoken sentences into word units without
text supervision is particularly challenging. In
this work, we leverage the most recent self-
supervised speech models that have proved to
quickly adapt to new tasks through fine-tuning,
even in low resource conditions. Taking inspi-
ration from semi-supervised learning, we fine-
tune an XLS-R model to predict word bound-
aries themselves produced by top-tier speech
segmentation systems: DPDP, VG-HuBERT,
GradSeg and DP-Parse. Once XLS-R is fine-
tuned, it is used to infer new word boundary
labels that are used in turn for another fine-
tuning step. Our method consistently improves
the performance of each system and sets a new
state-of-the-art that is, on average 130% higher
than the previous one as measured by the F1
score on correctly discovered word tokens on
five corpora featuring different languages. Fi-
nally, our system can segment speech from lan-
guages unseen during fine-tuning in a zero-shot
fashion1.

Introduction

In an attempt to model infant ability to segment
speech into words, researchers have aimed at un-
veiling word boundaries directly from the speech
signal without prior knowledge of the language and,
of course, without relying on textual annotations.
Even though the notion of ’word’ does not obey
a set of strict rules, the goal is to bridge the exist-
ing large performance gap between speech-based
and text-based segmentation systems (Dunbar et al.,
2022)2. Indeed, after a decade of work since the
first publications (Jansen and Van Durme, 2011;
Lee and Glass, 2012; Lee et al., 2015), it is only

1Code is available at https:// gitlab.cognitive-
ml.fr/ralgayres/wav2boundaries

2Text segmentation into words is the task of finding word
boundaries in a phonemicised text where spaces between
words have been removed

in the last couple of years that speech segmenta-
tion systems (Bhati et al., 2021; Peng and Harwath,
2022; Kamper, 2023; Algayres et al., 2022b) have
successfully done better than a uniform baseline.
These progress have enabled the use of discovered
spoken words as inputs to spoken language models
to learn high-level semantic and syntactic represen-
tations(Algayres et al., 2022b) as well as generate
intelligible and meaningful spoken sentences (Al-
gayres et al., 2023). The authors highlight that
the discovery of boundaries that are aligned with
real word boundaries strongly benefits downstream
spoken language models.

We present a speech segmentation method in-
spired by a phoneme segmentation model Strgar
and Harwath (2022) that leverages pseudo labelling
and recent progress in self-supervised learning
(SSL) speech models (Baevski et al., 2020; Hsu
et al., 2021; van den Oord et al., 2018; Chen et al.,
2021; Babu et al., 2021; Conneau et al., 2020).
SSL models are trained on large speech datasets
to predict masked parts of the input speech signal.
Such pre-training methods yield speech represen-
tations that can be quickly adapted through fine-
tuning to a variety of downstream tasks ranging
from ASR to speaker recognition, keyword spot-
ting, intent classification and emotion recognition
(Yang et al., 2021). We exploit the ability of SSL
models to learn new tasks quickly and fine-tune
a pre-trained XLS-R model (Babu et al., 2021) to
predict the word boundaries produced by an off-
the-shelf unsupervised speech segmentation sys-
tem. Our method is inspired by the semi-supervised
learning literature (Xie et al., 2019; Yalniz et al.,
2019; Scudder, 1965; Hinton et al., 2015; Grill
et al., 2020; Chen and He, 2020), that have ex-
plored how a model can bootstrap itself by provid-
ing its own labels. We applied our method on the
three state-of-the-art speech segmentation system:
VG-HuBERT, DPDP and DP-Parse (Kamper, 2023;
Peng and Harwath, 2022; Algayres et al., 2022b)
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and consistently improves their segmentation per-
formances. Our method works particularly well
with DP-Parse: on average, over five corpora fea-
turing different languages, an XLS-R fine-tuned on
DP-Parse boundaries increases by 130% the seg-
mentation performances compared to the previous
state-of-the-art. Finally, our method gets results
above the state-of-the-art even in a zero-shot set-
ting where XLS-R is not fine-tuned and sometimes
not even pre-trained on the target language.

1 Related works

1.1 Speech Segmentation

A particularly successful approach that has been
applied to the problem of text segmentation is
non-parametric Bayesian models (Goldwater et al.,
2009; Johnson et al., 2007). This approach has
inspired two recent speech segmentation systems:
DP-Parse and DPDP (Algayres et al., 2022b; Kam-
per, 2023). These models segment a spoken sen-
tence by first assigning every speech fragment a
probability to be a word. Then, using dynamic
programming beam search, one of the most prob-
able segmentation for the whole spoken sentence
is sampled. DPDP assigns probability scores us-
ing the loss value of an RNN auto-encoder that
has been trained to reconstruct random speech se-
quences. DP-Parse computes probabilities by es-
timating the frequency of speech fragments using
density estimation on speech fragments encoded
into Speech Sequence Embeddings (SSE). SSE
models are trained with contrastive learning (Al-
gayres et al., 2022a; Settle and Livescu, 2016) or
auto-encoders (Kamper, 2018; Peng et al., 2020)
to embed variable-size speech segments into fixed-
size vectors. DP-Parse authors have shown that
using better SSEs (that can be obtained with weak
textual supervision) leads to higher segmentation
performances.

A second type of model has reached the state-
of-the-art in speech segmentation: VG-HuBERT
(Peng and Harwath, 2022; Peng et al., 2023). This
multimodal model fine-tunes the CLS tokens of
a pre-trained HuBERT (Peng and Harwath, 2022)
and a pre-trained ViT (Dosovitskiy et al., 2020) on
aligned pairs of Engish utterances and images.

Lastly, Fuchs and Hoshen (2023) also tackles
speech segmentation into words using pseudo label-
ing and SSL fine-tuning. Yet, our method finetunes
the full XLS-R model using various optimization
methods (iterative self-labelling, lr scheduler, data

augmentation and loss selection) whereas Fuchs
and Hoshen (2023) train a single fully connected
layer on top of a frozen Wav2vec2.0 (Baevski et al.,
2020) without iterative self-labelling. Also, our
method is tested across different languages whereas
their model only focuses on English speech.

1.2 Wav2vec2.0 and XLS-R
Speech Self-Supervised Learning (SSL) is a
paradigm that enables to train deep neural net-
works directly on the speech stream, typically by
predicting masked parts of the input speech sig-
nal. Wav2vec2.0 (Baevski et al., 2020) is a par-
ticularly performant SSL model that is composed
of a convolutional front-end and a stack of trans-
former layers. Even though other SSL models
have outperformed Wav2vec2.0 (Chen et al., 2021;
Hsu et al., 2021; Chung et al., 2021) on down-
stream tasks, Wav2vec2.0 has recently been trained
in multilingual settings with XLSR53 ((Conneau
et al., 2020), 53 languages), and XLS-R ((Babu
et al., 2021), 128 languages). These multilingual
SSL models are excellent candidates for our work
as we wish to perform speech segmentation into
words in different languages. We carry out experi-
ments with XLS-R, one of the latest multilingual
Wav2vec2.0 model3. We provide in Appendix our
experiments with other mono-lingual and multi-
lingual Wav2vec2.0 models to analyse the effect of
the amount of pre-training data.

2 Method

Let us use a speech dataset C, a pre-trained speech
SSL model W , and an off-the-shelf speech segmen-
tation system S. On top of W is added a random
feed-forward layer with one neuron and a sigmoid
activation. Here is our method to train W on bound-
aries produced by S.

First, S is used to infer word boundaries for
every spoken sentence in C. In addition, spoken
sentences are data-augmented with a random quan-
tity of reverb, pitch, time-stretch and time-drop and
then encoded into a series of frames by W . For
each output frame, we create a label that is either
1 if the frame aligns with a word boundary or 0
if not. Because word boundaries are, by nature,
not clearly defined in the time domain, we label
as 1 the left and right neighbouring frames of ev-
ery frame that has been already tagged as 1. W is

3A Wav2Vec2.0 model pre-trained on almost 4000 lan-
guages has recently been released but we did not have time to
include it in our analysis (Pratap et al., 2023)
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fine-tuned with back-propagation by minimizing
the negative cross entropy between W ’s output and
the labels. In a sentence, most of the frames are la-
belled as zeros (for ’not a boundary’), and the loss
is particularly low on those frames. To force the
model to focus on harder sections of the input, we
only backpropagate the loss on the top 50% frames
with the highest loss.

At inference, for a given sentence, W produces
at each frame the probability of discovering a
boundary. To decide which frames should be la-
belled as a boundary, we apply a peak-detection
method that finds local maxima by comparison of
neighbouring probability values. This function has
two hyperparameters: maximal height of peaks
and minimal distance between two peaks. We fit
these hyperparameters on the development set by
maximizing the F1 scores between the boundaries
produced by S and the new boundaries produced
by W .

At this stage, W can be used to infer on the
dataset C a set of new word boundary labels. W
is set back to its initial unfine-tuned state and is
fine-tuned again on the new word boundaries. This
process is iterated until segmentation performances
start to decrease.

3 Datasets, Evaluation and
Hyperparameters

The metric that we use to evaluate performance
is the token-F1 score which is the F1 score on
correctly discovered tokens. A token is correctly
discovered when both its boundaries correspond
to the boundaries of a word in the time-aligned
transcription. This metric was introduced by the
ZeroSpeech Challenge 2017 (Dunbar et al., 2017)
and is computed with the TDEv2 library.
The datasets used in this work are the five corpora
introduced in the ZeroSpeech Challenge 2017
(REF): Mandarin (2h), French (20h), English
(30h), German (19h30min), Wolof (2h43min).
The spoken sentences are split into voice activity
detections (VAD) (i.e. sequences that only contain
speech). The datasets are not split into train/test
because they are meant for unsupervised learning.
Yet, in order to fit hyper-parameters, the five
corpora are split into two sets: Mandarin, French
and English are development datasets where
hyper-parameters are tuned and German and
Wolof are test datasets where the model is tested
to show generalization to new languages. We

performed a grid-search on hyper-parameters
on the development datasets to maximise the
token-F1.

During our fine-tuning step, we use backpropa-
gation on batches that contain 12 spoken sentences
of a maximum of 20 seconds each. The XLS-R is
fine-tuned on a single 32Go GPU for a maximum
of 2000 updates, after which we keep the model
with the lowest loss on the development set. Op-
timization is done with Adam optimizer (Kingma
and Ba, 2017), the learning rate is warmed up from
0 to 10−4 and then decayed back to 0 with a co-
sine annealing (Loshchilov and Hutter, 2016) with
period 103. We freeze the convolutional front end
and use 10% dropout, 15% layer-drop, and 15%
masked frames. Data augmentation is done mainly
with the WavAugment library. We use the values
of parameters advised by the authors Kharitonov
et al. (2020): for reverb, we sampled the room scale
uniformly in [0,100] while keeping the other pa-
rameters unchanged and for pitch, we pick a value
uniformly in the range [-300,300]. Time-stretch co-
efficients are uniformly sampled between 0.8 and
1.

4 Results

4.1 F1 scores for different noisy boundaries
In Table 1, we show the comparison of token-F1
scores for different speech segmentation systems
and the token-F1 scores after iterative fine-tuning of
XLS-R initialised by these systems. Instead of fine-
tuning a different XLS-R model on each dataset,
we realised that we always get equal or higher per-
formances if we fine-tune only one XLS-R on the
boundaries of the five datasets at once4. We argue
that there is no overfitting possible as our method is
completely unsupervised, and no true word bound-
ary labels are used to train those models. In partic-
ular, Germand and Wolof datasets have never been
used to tweak hyper-parameters. In Appendix 5,
we provide the main scores obtained when XLS-R
is only fine-tuned on each dataset separately. Even
in this setting, our method produces an average to-
ken F1 score that is twice higher than the previous
state-of-the-art.

The first two segmentation systems are baselines
models. For the first, speech is segmented along the
VAD timestamps. For the second one, in addition to
the VAD timestamps, we added random boundaries

4we did not use language tags nor language-specific heads.
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Mandarin French English German Wolof average
init ft init ft init ft init ft init ft init ft

VADs 4.5 2.0 4.4 1.8 4.5 2.0 3.3 1.3 1.5 1.2 3.6 1.7
Random 12.1 3.1 7.7 2.0 8.1 2.5 6.7 1.8 11.4 2.5 9.2 2.4
VG-Hubert∨ (Puy22) 20.0 17.0 15.0 17.7 23.2 34.0 19.9 28.8 7.0 13.5 17.0 22.2
DPDP† (Kam22) 26.3 26.0 12.2 17.4 19.5 26.6 15.2 30.2 14.8 17.3 17.6 23.5
GradSeg‡ (Fush23) 12.2 27.5 18.2 31.3 19.4 30.2 12.5 21.4 11.8 24.9 14.8 27.1
DP-Parse× (Alg22) 16.0 32.0 15.3 41.8 21.9 42.5 13.4 49.5 17.5 37.8 16.8 40.7
weak-sup DP-Parse× 28.2 31.9 30.9 52.9 31.3 55.9 34.4 61.9 39.2 40.7 32.8 48.6
Gold 100.0 53.8 100.0 78.3 100.0 85.6 100.0 88.5 100.0 54.8 100.0 72.2
DP-Parse on text 50 n/a 68.1 n/a 78.5 n/a 67.4 n/a 69.1 n/a 66.6 n/a

Table 1: Token-F1 obtained by different segmentation systems (‘init’ in the table) and after iterative fine-tuning
of XLS-R on all datasets at once (‘ft’ in the table). weak-sup DP-Parse is a topline that uses weakly-supervised
SSEs instead of unsupervised SSEs. Gold is a supervised topline where XLS-R is fine-tuned with the true word
boundaries. DP-Parse on text is obtained by replacing the speech stream by text without spaces between words.
‡:Fuchs and Hoshen (2023), †:Kamper (2023)∨Peng and Harwath (2022)×:Algayres et al. (2022b)

average token-F1

full model 40.7
without loss selection 38.5
without data augmentation 37.7
without tuning the peak detection 37.4

Table 2: Ablation table: average token-F1 score of seg-
mentation over the five corpora. Each row is an ablation
compared to the row above itself.

so that token durations have the same mean and
standard deviation as the true word tokens. As each
VAD give two true word boundaries, we thought
that this information could be enough to kick-start
our self-training method. The results show that
it is not the case, our method leads to a drop in
segmentation scores.

Then, we evaluate the three speech segmentation
systems that were presented in the review 1. On
average, over the five datasets, our method consis-
tently improves their F1 scores with a clear advan-
tage for DP-Parse which gets an average token F1
score of 40.7.

Finally, we present topline models. For weak-
sup DP-Parse, we segmented speech with the help
of weakly-supervised SSEs instead of unsuper-
vised ones (as explained in Section 1). weaksup
DP-Parse present higher performances than DP-
Parse, which shows that our fine-tuning method
could yield even better results, providing better
SSE models. For Gold, we used the true word
boundaries, and XLS-R degrades the segmentation
performances on average from 100% to 72.2%5.

5As the datasets do not have a validation set, when we train
XLS-R to predict true word boundaries (and only in this case),
we keep a held-out development set to compute the F1 scores.

The last topline, DP-Parse on text6, gets 66.6%
token-F1. The scores on text data show that our
fine-tuning strategy has significantly narrowed the
performance gap between speech and text. The
scores on Gold being higher than DP-Parse on text
show that our strategy has the potential to bridge
the gap between speech and text segmentation com-
pletely. To complete our analysis, we provide in
Appendix Table 4 the Boundary-F1 scores, which
are the F1 scores on correctly discovered bound-
aries instead of correctly discovered tokens.

Overall, the results show great discrepancies be-
tween the initial F1 scores of a model and the per-
formances of a fine-tuned XLS-R. We are not yet
able to explain precisely why the fine-tuning of
XLS-R on DP-Parse works better than on DPDP
and VG-HuBERT. The main reason is certainly that
we initially chose hyperparameters to maximise
performances of XLS-R when it is fine-tuned on
DP-Parse. Then, we tried other hyper-parameters
to try to boost DPDP and VG-HuBERT scores (dif-
ferent learning rates and data augmentations) but
did not manage to improve over the scores reported
in Table 1. Figure 2 is a visual presentation of the
performances compared to the speech segmenta-
tion systems submitted to the Zerospeech challenge
(Dunbar et al., 2017) since 2017. The increase in
performance obtained by fine-tuning XLS-R appear
in deep blue.

To analyse the importance of each of the tricks
that we have used in our fine-tuning strategy, we
provide in Table 2 the average token-F1 scores
over the five datasets by successively ablating each
trick. Overall, this table shows that the main gain

6DP-Parse is applied on the transcriptions of the Ze-
roSpeech datasets instead of the speech signal
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Figure 1: A general view of the performances of speech
segmentation models so far. The figure shows the aver-
age token-F1 scores (Mandarin, French, English, Wolof,
German) obtained by different systems. In light blue
are the original scores and in deep blue the increase in
performances after XLS-R finetuning. The baseline is a
segmentation every 120ms and the topline is DP-Parse
applied on text data. In green is the performance ob-
tained by the weakly supervised DP-Parse model.

of our method is obtained by the simple finetuning
of XLS-R on noisy boundaries.

4.2 Zeroshot performances

We show in Table 3 that our method can be used to
segment languages that are unseen during the fine-
tuning stage and also unseen during the pre-training
stage of XLS-R (which is the case of Wolof). In
turn, we selected four out of the five datasets for
fine-tuning and used the remaining dataset for test-
ing. We did this experiment using DP-Parse bound-
aries and the true word boundaries. The results of
the zero-shot DP-Parse are sometimes as high as
when all datasets are included in the fine-tuning
stage. This result echoes the intuition from Peng
et al. (2023) that these models can learn universal
segmentation features, which appear in their study
to coincide with syllables.

5 Conclusion

In this work, we propose an unsupervised speech
segmentation system that fine-tunes XLS-R on
boundaries provided by an external off-the-shelf
speech segmentation system. Our method increases

Mandarin French English German Wolof average

DP-Parse 35.6 38.0 22.3 46.4 23.8 33.1
Gold 24.2 60.4 62.6 66.7 22.9 53.2

Table 3: Zeroshot performances: for each corpus, we
report the token-F1 scores after finetuning XLS-R to
predict the boundaries of all other corpora except itself.
Scores are presented for DP-Parse boundaries and true
word boundaries (Gold).

word segmentation performances by 130% com-
pared to the previous state-of-the-art. Our method
also shows high performances in the zero-shot set-
ting, which suggest that universal segmentation
features exist in the speech signal.Regarding inter-
pretation, our results are sometimes hard to explain.
Even though we proved that high initial F1 scores
(obtained with weak supervision) do lead to better
performances, more work is needed on the evalu-
ation of the speech segmentation model to under-
stand what characteristics are beneficial to XLS-R
finetuning but that are not captured by F1 scores.

Limitations

Our method has only been tested on the Ze-
roSpeech corpora, which come pre-segmented into
Voice Activity Detection (VAD). These VADs have
been obtained by first force-aligning audio and tran-
scriptions and then by excluding all audio sections
that were aligned to silences or noise. If our model
is used to segment other audio files, it is important
to properly remove beforehand silent sections as
well as any other non-speech sections (we advise
using Pyannote (Bredin et al., 2019) or Brouhaha
(Lavechin et al., 2023) if you cannot rely on force-
alignment). Also, the audio from the ZeroSpeech
corpora are studio recorded, which means the level
of noise is extremely low. The performances of our
model with noisier recording conditions would be
much lower than those reported in this paper.

Ethics Statement

Our model inherits from all the biases of audio
models pre-trained on a large amount of data. In
particular, languages and accentuations that were
not present in the original pre-training dataset may
be less well encoded by XLS-R, which could result
in impaired performances. The reader can refer
to the list of pre-training languages in Babu et al.
(2021).
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A Study on the types of pre-training

Wav2vec2.0 comes in several mono-lingual and
multi-lingual pre-trained versions. The monolin-
gual Wav2vec2.0 are W2V2-LS trained on Lib-
riSpeech (Panayotov et al., 2015) (960 hours of
English speech), and W2V2-LV trained on Libri-
Light (Kahn et al., 2019) (58k hours of English
speech). The multilingual versions are XLSR53
trained on 56k hours of speech from 53 languages,
with 82% of the total being English speech and
XLS-R, trained on 436k hours from 128 languages,
with 15% of the total being English speech. Thanks
to those pre-training variations we will be able to
study the impact of pre-training for the task of
speech segmentation into words. All models have
the same architecture (convolutions and 24 trans-
former layers), number of parameters (300M), and
training loss (NTXent), they only differ by their
pre-training dataset.

Table 6 presents our analysis of the amount of
pre-training data required to reach the XLS-R high
segmentation performances. We provide the F1
scores after fine-tuning either on DP-Parse or on
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Mandarin French English German Wolof average
init ft init ft init ft init ft init ft init ft

VADs 47.8 45.4 47.7 37.8 46.5 39.7 47.6 37.4 48.4 45.9 47.6 41.24
Random 54.3 48.1 47.0 41.0 46.3 42.2 43.3 39.5 52.9 49.4 48.9 44.0
VG-Hubert∨ 63.9 63.2 55.3 57.7 59.4 65.6 58.1 64.6 51.9 54.6 57.7 61.4
DPDP† 68.3 70.2 53.5 58.6 57.5 63.7 55.6 68.5 59.6 59.2 58.9 64.1
DP-Parse× 59.9 75.5 55.9 75.4 60.0 74.1 51.5 79.8 59.0 74.1 57.3 75.8
zero-shot DP-Parse 59.9 62,9 55.9 71,3 60.0 69,7 51.5 75,6 59.0 72,9 57.3 70,48
weak-sup DP-Parse× 69.9 75.4 70.0 77.6 68.4 80.8 64.4 85.2 75.5 79.4 69.6 79.7
Gold 100 84.4 100 90.2 100 93.1 100 95.2 100 82.3 100 89.0
DP-Parse (text) 76 n/a 84,3 n/a 89,8 n/a 83,5 n/a 84,1 n/a 83,5 n/a

Table 4: Boundary-F1 obtained by different segmentation systems (‘init’ in the table) and after iterative fine-tuning
of XLS-R on all datasets at once(‘ft’ in the table). weak-sup DP-Parse is a topline that uses weakly-supervised
SSEs instead of unsupervised SSEs. Finally, Gold is a supervised topline where XLS-R is fine-tuned with the true
word boundaries. †:Kamper (2023)∨Peng and Harwath (2022)×:Algayres et al. (2022b)

Mandarin French English German Wolof average
init ft init ft init ft init ft init ft init ft

Token-F1
VG-Hubert∨ 20.0 15.3 15.0 16.7 23.2 34.3 19.9 27.6 7.0 1.2 17.0 19.1
DPDP† 26.3 30.2 12.2 16.1 19.5 27.0 15.2 28.9 14.8 19.1 17.6 24.2
DP-Parse× 16.0 30.4 15.3 28.8 21.9 47.3 13.4 38.2 17.5 30.2 16.8 35.1
Boundary-F1
VG-Hubert∨ 63.9 64.1 55.3 57.5 59.4 67.1 58.1 63.2 51.9 35.9 57.7 55.9
DPDP† 68.3 73.1 53.5 57.3 57.5 63.8 55.6 68.3 59.6 59.9 58.9 62.3
DP-Parse× 59.9 73.7 55.9 68.2 60.0 76.6 51.5 73.3 59.0 70.8 57.3 72.5

Table 5: Token-F1 and Boundary-F1 obtained by different segmentation systems (‘init’ in the table) and after
iterative fine-tuning of XLS-R on each dataset separately (‘ft’ in the table). †:Kamper (2023)∨Peng and Harwath
(2022)×:Algayres et al. (2022b)
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true boundaries. For visualization of these results,
Figure 2 shows the average token-F1 per model. As
expected, pre-training Wav2vec2.0 is strongly bene-
ficial for learning word boundaries. Yet, the amount
of speech data available for pre-training does not
correlate well with segmentation performances. In
spite of being trained on much fewer data than
W2V2-LV and XLSR53, W2V2-LS reaches high
segmentation performances. These Preliminary re-
sults on other SSL models have not been included
in this section for lack of time. In particular, Hu-
BERT (Hsu et al., 2021) has slightly lower perfor-
mances than Wav2vec2.0 models. Also, a recent
Wav2vec2.0 model came to our attention (Pratap
et al., 2023), pretrained on nearly 4000 different
languages but we did not have time to include this
model in our work.

B Study on the type of input boundaries

We are not yet able to explain precisely why the
fine-tuning of XLS-R on DP-Parse works better
than on DPDP and VG-HuBERT. As said in the
main paper, the main reason is certainly that the
optimisation hyperparameters have been tuned to
maximise performances when XLS-R is being fine-
tuned on DP-Parse. Yet, we think there could be
another reason: the difference in tokens per type
ratios. This ratio is obtained by first transcribing
the discovered speech tokens and then by dividing
the number of discovered tokens by the number of
different types of transcriptions. Indeed, as XLS-R
needs to (at least partially) memorise the differ-
ent word types that it is trained to segment, XLS-R
will more easily learn to segment a small number of
types than a large number of types. In Table 7, we
show that DP-Parse has a higher tokens per type ra-
tio (i.e. fewer types ) than DPDP and VG-HuBERT.
For that reason, we think that, compared to its com-
petitors, DP-Parse provides a better kind of input
for XLS-R finetuning. This higher tokens per type
could come from DP-Parse higher tokens per sec-
ond, as shown in Table 7. More work is needed
to know if XLS-R simply favours segmentation
systems that tend to oversegment (and therefore
have higher tokens per second and higher tokens
per type).

For completeness, we also provide in Table 7 the
tokens per second and tokens per type after fine-
tuning XLS-R on unsupervised boundaries. As
expected from the token-F1 and boundary F1 anal-
ysis, fine-tuning XLS-R pushes token per second
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Figure 2: Average token-F1 scores (Mandarin,
French, English, Wolof, German) obtained by differ-
ent Wav2vec2.0 models pre-trained on different amount
of speech and fine-tuned on either DP-Parse boundaries
or Gold (i.e. true word boundaries). The average token-
F1 score of DP-Parse on the five datasets is represented
by a black line.

and tokens per type ratios closer to the ratios ob-
tained with true segmentation.
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Mandarin French English German Wolof avg
W2V2 (no pre-training)
pre-training hours 0 0 0 0 0
ft on DP-Parse 1.2 0.7 7.8 1.3 1.7 2.5
ft on Gold 27.6 6.2 12.5 13.2 22.6 16.3
W2V2-LS
pre-training hours 0 0 960 0 0
ft on DP-Parse 21.8 24.3 44.2 18.1 24.2 26.5
ft on Gold 57.8 52.0 85.5 63.67 51.2 62.0
W2V2-LV
pre-training hours 0 0 57700 0 0
ft on DP-Parse 18.5 20.2 35.2 16.8 23.4 19.7
ft on Gold 51.1 49.5 76.0 57.2 52.3 57.2
XLSR53
pre-training hours 32 1424 46009 1966 0
ft on DP-Parse 28.9 24.4 37.7 20.3 24.0 27.1
ft on Gold 49.1 70.1 85.5 86.3 58.9 70.0
XLS-R
pre-training hours 90 23900 69500 25300 0
ft on DP-Parse 32.0 41.8 42.4 49.7 37.8 40.7
ft on Gold 53.8 78.3 85.6 88.5 54.8 72.2

Table 6: Token-F1 scores obtained by different Wav2vec2.0 models pre-trained on different amounts of speech and
fine-tuned on either DP-Parse boundaries or Gold (i.e. true word boundaries)

Mandarin French English German Wolof average
init ft init ft init ft init ft init ft init ft

Tokens per type
VG-HuBERT∨ 2.08 2.43 4.40 7.38 4.03 6.56 4.05 6.62 1.51 1.08 3.21 4.81
DPDP† 1.52 2.38 3.21 4.36 4.54 6.52 2.83 4.20 1.93 2.62 2.81 4.02
DP-Parse× 2.97 4.41 5.18 3.95 3.95 5.00 3.63 4.11 3.32 6.61 3.81 4.82
weak-sup DP-Parse× 2.38 5.51 6.20 6.30 6.08 6.21 5.91 6.45 5.26 4.70 5.20 5.80
Gold 2.50 2.91 14.02 7.89 17.8 8.35 8.04 6.09 14.86 5.40 11.44 6.13
Token per seconds
VG-HuBERT∨ 3.75 5.42 3.57 3.90 3.34 3.56 3.51 3.80 2.04 0.51 3.24 3.44
DPDP† 2.64 2.92 3.22 3.18 3.70 3.73 3.24 3.09 2.96 3.27 3.15 3.24
DP-Parse× 4.44 4.03 3.74 2.68 3.23 2.97 3.47 2.91 3.88 4.39 3.75 3.40
weak-sup DP-Parse× 3.38 4.10 3.29 3.30 3.31 3.01 3.37 3.09 3.92 3.69 3.50 3.40
Gold 2.78 3.19 3.10 3.07 3.34 3.33 2.73 2.79 3.67 3.88 3.12 3.25

Table 7: Token per type and token per seconds obtained by different segmentation systems (‘init’ in the table) and
after iterative fine-tuning of XLS-R on all datasets at once(‘ft’ in the table). weak-sup DP-Parse is a topline that
uses weakly-supervised SSEs instead of unsupervised SSEs. Finally, Gold is a supervised topline where XLS-R is
fine-tuned with the true word boundaries. †:Kamper (2023)∨Peng and Harwath (2022)×:Algayres et al. (2022b)
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