
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 12186–12193
December 6-10, 2023 ©2023 Association for Computational Linguistics

One For All & All For One: Bypassing Hyperparameter Tuning with
Model Averaging For Cross-Lingual Transfer

Fabian David Schmidt1, Ivan Vulić2, Goran Glavaš1

1 Center For Artificial Intelligence and Data Science, University of Würzburg, Germany
2 Language Technology Lab, University of Cambridge, UK
{fabian.schmidt, goran.glavas}@uni-wuerzburg.de

iv250@cam.ac.uk

Abstract

Multilingual language models enable zero-shot
cross-lingual transfer (ZS-XLT): fine-tuned on
sizable source-language task data, they perform
the task in target languages without labeled in-
stances. The effectiveness of ZS-XLT hinges
on the linguistic proximity between languages
and the amount of pretraining data for a lan-
guage. Because of this, model selection based
on source-language validation is unreliable: it
picks model snapshots with suboptimal target-
language performance. As a remedy, some
work optimizes ZS-XLT by extensively tuning
hyperparameters: the follow-up work then rou-
tinely struggles to replicate the original results.
Other work searches over narrower hyperpa-
rameter grids, reporting substantially lower per-
formance. In this work, we therefore propose
an unsupervised evaluation protocol for ZS-XLT
that decouples performance maximization from
hyperparameter tuning. As a robust and more
transparent alternative to extensive hyperparam-
eter tuning, we propose to accumulatively aver-
age snapshots from different runs into a single
model. We run broad ZS-XLT experiments on
both higher-level semantic tasks (NLI, extrac-
tive QA) and a lower-level token classification
task (NER) and find that conventional model
selection based on source-language validation
quickly plateaus to suboptimal ZS-XLT perfor-
mance. On the other hand, our accumulative
run-by-run averaging of models trained with
different hyperparameters boosts ZS-XLT per-
formance and closely correlates with “oracle”
ZS-XLT, i.e., model selection based on target-
language validation performance.

1 Introduction and Motivation

Massively multilingual transformers (MMTs) like
XLM-{R,V} (Conneau et al., 2020; Liang et al.,
2023) or mT5 (Xue et al., 2021) are pretrained
via language modeling on vast corpora encompass-
ing 100+ languages. MMT fine-tuned on labeled
task data in a source language can transfer cross-

lingually zero-shot, i.e. without further annota-
tions, to target languages (Hu et al., 2020; Lauscher
et al., 2020). However, pretraining corpora size
and linguistic distance between the source and tar-
get language dictate the quality of XLT (Lauscher
et al., 2020). This is why model selection based on
source-language validation data unreliably corre-
lates with ZS-XLT and selects checkpoints that yield
suboptimal target-language performance (Keung
et al., 2020). Worse yet, there is no “best practice”
for replicating ZS-XLT results of prior work. Some
works, as our results suggest (cf. §4), (1) exhaust
extraordinarily large hyperparameter grids and (2)
monitor target-language performance for the best
transfer (i.e., violating “true” ZS-XLT) to outper-
form baselines (Conneau et al., 2020; Wei et al.,
2021). Other works rerun baselines with little to
no hyperparameter tuning (Hu et al., 2020; Wu and
Dredze, 2020): the re-evaluation then often trails
original results by non-negligible margins.1 As a
remedy, Keung et al. (2020) propose to evaluate ZS-
XLT on the snapshot that generalizes best to valida-
tion data in the target language (“oracle” ZS-XLT):
as such, oracle ZS-XLT stabilizes evaluation and
denotes ideal transfer performance. Nonetheless,
oracle ZS-XLT overstates the performance of true
ZS-XLT, for which no target-language instances are
available (Schmidt et al., 2023). If they are, target-
language annotations are always better levered for
training than for validation (Schmidt et al., 2022).

This calls for an evaluation protocol that (1) max-
imizes “true” ZS-XLT results and (2) makes them
easily reproducible, regardless of the extent of hy-
perparameter tuning. In this work, we find that
model averaging fulfills both criteria. Weights av-
eraging has proven effective in, e.g., MT (Vaswani
et al., 2017) and recently NLU (Wang et al., 2022;
Schmidt et al., 2023). Schmidt et al. (2023) enable

1For instance, when evaluating XLM-Vbase, Liang et al.
(2023) have been unable to reproduce the original results of
XLM-Rbase on the XNLI benchmark (Conneau et al., 2020).

12186

model averaging for sizable gains in XLT. They
first fine-tune an MMT on labeled source-language
data and then re-train models (i.e., more runs) by
copying and freezing the task head of the initially
fine-tuned model: this aligns snapshots and enables
weight averaging across runs.2

Contributions. In this work, we propose an evalu-
ation protocol that decouples maximizing ZS-XLT

performance from hyperparameter tuning. The key
idea is to accumulatively average snapshots of runs
with different hyperparameters: this improves per-
formance over model selection based on source-
language validation performance. We run exhaus-
tive experiments on higher-level (NLI, extractive
QA) and lower-level (NER) NLU tasks on a broad
grid of hyperparameters and show, examining the
cross-section of all runs, that model selection based
on source-language validation almost exclusively
picks snapshots suboptimal for ZS-XLT. We also
confirm that conventional hyperparameter tuning
on source-language validation prematurely settles
for models that maximize source-language perfor-
mance at the expense of ZS-XLT. Crucially, we
show that accumulative model averaging performs
on par or better than the best snapshot picked by
source-language validation already from the sec-
ond (i.e. first averaged-in) run and then consistently
improves ZS-XLT with more runs. We addition-
ally show that this accumulative model averaging
closely correlates with oracle ZS-XLT without re-
quiring any source- or target-language validation
data to maximize transfer performance.

2 Accumulative Run Averaging

Prior work conducts model selection for ZS-
XLT by extensive hyperparameter tuning using
either source- or target-language validation data.
Whereas the latter violates true ZS-XLT (Schmidt
et al., 2022), the former overfits to source-language
performance (Keung et al., 2020). The recent suc-
cess of snapshot averaging in XLT (Schmidt et al.,
2023) motivates our research question: can (accu-
mulative) averaging of models trained during hyper-
parameter search outperform – with fewer overall
training runs – the ZS-XLT performance of the “op-
timal” model selected based on source-language
validation performance?

We benchmark model selection based on source-
2Fine-tuning models with different randomly initialized

task heads otherwise yields sets of incompatible weights, hin-
dering meaningful model averaging.

language validation against accumulative model
averaging as follows. We iteratively sample mod-
els (i.e., runs) {{θ1, . . . , θr} | 1 ≤ r ≤ 10}
with different hyperparameters (i.e., pairs of learn-
ing rates and batch sizes) from the pool of runs
containing N runs per hyperparameter configu-
ration (cf. Appendix §A.2). We repeat this pro-
cedure 10 times and report mean ZS-XLT perfor-
mance. Standard model selection picks the model
{argmaxi Val(θi) | 1 ≤ i ≤ r} at run r that max-
imizes source- (target-) language validation, cap-
turing the “true” (“oracle”) ZS-XLT performance.
“Accumulative averaging”, in contrast, naively av-
erages (i.e. without any supervision) all models of
r runs to a single model 1

r

∑r
j=1 θj = θ̄r.

3 Experimental Setup

Tasks and Languages. We select for our evalua-
tion two higher-level semantic tasks (NLI and and
extractive QA) and one lower-level structured pre-
diction task (NER). For each task, we fine-tune the
MMT on the provided English training splits.3

Natural Language Inference (NLI). We evaluate
NLI on XNLI (Conneau et al., 2018) and In-
dicXNLI (Aggarwal et al., 2022) which together
cover 25 typologically diverse languages.
Extractive QA (TyDiQA-GoldP). TyDiQA-GoldP
comprises questions that are answered by a span
of text in the provided gold passage and covers 9
diverse languages (Clark et al., 2020).
Named Entity Recognition (NER). We evaluate
NER on 25 languages from WikiANN (Pan et al.,
2017), 10 languages from MasakhaNER (Adelani
et al., 2021), and 9 languages from MasakhaNER
2.0 (Adelani et al., 2022).

Training Details. We train XLM-Rlarge
(Conneau et al., 2020) for 10 epochs with
AdamW (Loshchilov and Hutter, 2019), weight
decay of 0.01, gradient norm clipping to 1.0, and a
LR schedule of 10% linear warm-up and decay.4

We save 10 snapshots per model, one at every 10%
of total training steps. The maximum sequence
length is 128 tokens for NLI and NER and 384
with a stride of 128 for TyDiQA-GoldP.

Hyperparameter Grids. We simulate conven-
tional hyperparameter grid search over a broad set

3Train portion of MNLI (Williams et al., 2018), the en-
closed 3,696 English training instances of TyDiQA-GoldP for
QA, and the English training portion of WikiANN for NER.

4The training data of TyDiQA-GoldP consists of merely
3,696 instances; we thus fine-tune longer, for 40 epochs.

12187

of 21 configurations, pairing seven learning rates
l ∈ {0.1, 0.5, 1, 1.5, 2, 2.5, 3}e−5 with three batch
sizes b ∈ {16, 32, 64}. The grid is deliberately kept
wide and same for all tasks to not reflect any prior
knowledge on task-specific “good values”.5 We
retrain MMT for each pair (l, b) three times with
different random seeds to account for variances
over individual runs.

Model Variants. We evaluate four model vari-
ants: v ∈ {LAST, SRC-DEV, CA, TRG-DEV}.
LAST is simply the final snapshot of a training run.
SRC-DEV is the snapshot that maximizes source-
language validation performance (Hu et al., 2020).
CA averages all snapshots of a run to a single model
and, according to Schmidt et al. (2023), outper-
forms LAST and SRC-DEV. TRG-DEV breaches
“true” ZS-XLT and picks the snapshot that performs
best on the target-language validation data (Keung
et al., 2020): as such, it generally represents an
upper-bound of single-run ZS-XLT performance.6

4 Results and Discussion

Single-Run Performance. The full ZS-XLT re-
sults by hyperparameters are presented in Appendix
§A.2 (cf. Table 3). We observe that optimal ZS-XLT

of single runs depends on all axes of analysis: task,
hyperparameters, and model variant. While LAST

and SRC-DEV generally perform well, their ZS-XLT

performance fluctuates substantially across hyper-
parameter configurations, in line with (Keung et al.,
2020; Schmidt et al., 2023). CA is a strong and ro-
bust baseline that often outperforms LAST and SRC-
DEV by notable margins on TyDiQA and NER. In
the context of a single run, CA performs especially
well with suboptimal hyperparameters, even some-
times outperforming TRG-DEV. We also confirm
that CA remedies variation in ZS-XLT both within
and across hyperparameters (Schmidt et al., 2023).
Table 3 (cf. Appendix §A.2) further highlights
the notable gap in ZS-XLT performance between
the best-performing hyperparameter configurations
and those selected based on source-language vali-
dation. Only the “oracle” model selection based on
target-language validation reliably correlates with
the actual best (test) ZS-XLT performance.

Run-by-Run Analysis. Table 1 compares ZS-
5Our full results in Table 3 indicate that for each task we

obtain maximal (oracle) ZS-XLT performance with a different,
task-specific hyperparameter configurations.

6Irrespective of tasks and language, labeled instances in
the target-language bring larger gains if used for training rather
than for model selection (Schmidt et al., 2022).

XLT performance run-for-run of all variants for
model selection based on source-language valida-
tion (Max. SRC-DEV) against our accumulative av-
eraging of randomly sampled runs with different
hyperparameters (cf. §2). On NLI, picking a sin-
gle model on source-language validation only im-
proves ZS-XLT when moving from having one to
having two models (i.e., between first two rows of
Table 1) and stagnates when having more models
to choose from. With more runs, source-language
validation may even prefer models that are worse
at ZS-XLT on TyDiQA and NER. Conventional
model selection thus maximizes source-language
performance at the expense of ZS-XLT. Across
the board, accumulative averaging already matches
or surpasses Max. SRC-DEV (with any number of
models) using merely two or three runs. Moreover,
accumulative averaging consistently outperforms
the overall best single-run model chosen from 3+
runs (highlighted in green), irrespective of the task.
On all tasks, accumulative averaging stabilizes ZS-
XLT and reduces performance variance vis-a-vis
Max. SRC-DEV counterparts.

Accumulatively averaging within-run snapshots
(CA) outperforms LAST and SRC-DEV slightly on
NLI and materially on NER. For NER, ZS-XLT

from WikiANN to MasakhaNER (2.0) also repre-
sents a domain transfer (from Wiki to news), in
which CA yields tremendous gains. In-domain (i.e.,
test on WikiANN), CA generally performs on par
with LAST and SRC-DEV. The same is not true
for QA, where CA performs slightly worse: we as-
cribe this to averaging of “unconverged” snapshots,
owing to the small TyDiQA training set (merely
3,696 instances), especially from runs with smaller
learning rates and larger batches (cf. Table 3).

Further Analyses. Table 2 extends the run-
by-run analysis to TRG-DEV and “model soups”
(SOUP) to illustrate why accumulative model aver-
aging outperforms model selection based on source-
language validation. Rather than selecting a single
snapshot, SOUP averages the five snapshots (among
all available runs) with best source-language vali-
dation performance (Wortsman et al., 2022).

Compared to (oracle) TRG-DEV, accumulatively
averaging runs performs on par on NLI, slightly bet-
ter on TyDiQA, and somewhat worse on NER. TRG-
DEV selects language-specific snapshots, thereby
tailoring ZS-XLT to each target language and rem-
edying for the varying performance of Max. SRC-
DEV in ZS-XLT to many target languages. Such

12188

NLI TyDiQA-GoldP NER

Max. SRC-DEV Accumulative Averaging Max. SRC-DEV Accumulative Averaging Max. SRC-DEV Accumulative Averaging

r LAST S-DEV CA LAST S-DEV CA LAST S-DEV CA LAST S-DEV CA LAST S-DEV CA LAST S-DEV CA

1 76.50.6 76.50.8 77.30.4 76.50.6 76.50.8 77.30.4 71.90.4 71.90.7 73.61.9 71.90.4 71.90.7 73.61.9 40.82.7 41.13.1 44.62.1 40.82.7 41.13.0 44.62.1

2 77.20.3 77.50.4 77.60.2 77.60.3 77.80.4 78.00.2 71.90.6 71.60.6 73.32.0 73.41.2 73.31.1 72.92.8 39.32.1 39.32.1 43.51.1 43.22.2 43.22.2 45.61.5

3 77.20.3 77.50.4 77.60.2 77.80.3 77.90.4 78.10.2 72.10.8 71.80.8 74.11.0 74.10.7 74.20.7 73.81.2 39.31.2 39.51.7 44.01.1 45.01.7 45.11.8 47.31.3

4 77.20.4 77.50.4 77.50.2 77.70.3 77.90.4 78.10.3 72.50.8 72.00.9 73.90.6 74.50.6 74.10.4 74.10.9 40.22.0 40.82.2 44.51.5 45.01.7 45.31.8 47.21.4

5 77.30.377.60.3 77.50.2 77.90.2 78.00.2 78.10.1 72.60.8 72.00.9 73.80.8 74.70.774.40.6 74.20.8 40.32.0 41.22.3 43.91.9 45.31.7 45.51.7 47.51.4

6 77.30.3 77.60.1 77.50.2 77.90.1 78.00.2 78.10.1 72.60.8 72.00.9 74.20.5 74.70.7 74.40.5 74.20.7 40.32.0 41.22.3 43.91.9 45.71.4 45.91.4 47.91.2

7 77.30.3 77.60.1 77.50.2 77.90.2 78.10.2 78.20.2 72.30.9 71.70.7 74.30.3 74.60.7 74.30.6 74.20.5 40.02.1 40.62.3 44.12.0 46.01.3 46.11.3 48.11.1

8 77.30.3 77.60.2 77.50.2 78.00.278.20.1 78.30.2 72.10.9 71.70.7 74.20.5 74.60.7 74.30.5 74.30.5 40.02.1 40.62.3 44.61.7 46.01.1 46.11.2 48.21.0

9 77.40.2 77.60.2 77.60.2 78.00.1 78.10.1 78.30.2 72.01.1 71.70.7 74.20.5 74.60.5 74.40.4 74.20.4 39.62.3 39.92.4 44.31.8 46.00.6 46.10.7 48.30.7

10 77.30.2 77.60.2 77.60.2 78.00.1 78.20.1 78.30.1 72.01.1 71.70.7 74.20.5 74.60.6 74.40.4 74.20.6 39.62.3 39.92.4 44.41.7 46.10.546.20.6 48.40.5

Table 1: {{θ1, . . . , θr} | 1 ≤ r ≤ 10} models sampled for variants v ∈ {LAST, SRC-DEV, CA} from Table 3 (cf. §3).
“Max. SRC-DEV” picks the run {argmaxi SrcVal(θvi) | 1 ≤ i ≤ r}. “Accumulative averaging” simply averages all
runs 1

r

∑r
j=1 θ

v
j . Metrics: accuracy for NLI, span-F1 for TyDiQA and token-level F1 for NER. Subscripts denote

std. deviation. Colored averaging outperforms +0.2 or more or performs ±0.1 of the best Max. SRC-DEV model.

NLI TyDiQA-GoldP NER

Max. DEV Acc. Avg. Max. Dev Acc. Avg. Max. DEV Acc. Avg.

SRC TRG SRC TRG SRC TRG
r DEV DEV CA SOUP DEV DEV CA SOUP DEV DEV CA SOUP

1 77.3 77.0 77.3 76.8 71.9 72.8 73.6 73.7 41.1 46.5 44.6 42.3

3 77.5 77.7 78.1 77.6 71.8 73.5 73.8 73.8 39.5 49.2 47.3 42.1

5 77.6 77.9 78.1 77.6 72.0 73.4 74.2 74.3 41.2 49.7 47.5 42.8

7 77.6 78.2 78.2 77.8 71.7 73.7 74.2 73.9 40.6 49.9 48.1 42.8

10 77.6 78.4 78.3 77.7 71.7 73.9 74.2 73.8 39.9 49.9 48.4 42.8

Table 2: “Max. TRG-DEV” selects the run
{argmaxi

1
|T |ValT (θi) | 1 ≤ i ≤ r}, where T

is the set of target languages. SOUP averages
the five checkpoints (from all available runs) that
“Max. SRC-DEV”. For other details, see Table 1.

a variation has been shown to be particularly pro-
nounced in ZS-XLT on token-level tasks like NER
or POS (Schmidt et al., 2023). On TyDiQA, we
believe that accumulative averaging (slightly) bet-
ter stabilizes the transfer from a small training set
(3.7K instances). SOUPs however perform notably
worse than both TRG-DEV and accumulative aver-
aging on NLI and NER. SOUPs lack the beneficial
diversity of different runs, as the best snapshots
often come from the same “good” run.7 Anecdotal
evidence further exemplifies why source-language
validation is inapt for ZS-XLT. One of 63 SRC-DEV

models replicates XNLI results of Conneau et al.
(2020), vastly exceeding all other runs (c.∆+1.0).
This “miraculous” run though merely ranks 3rd
according to source-language validation perfor-
mance.

The above suggests that even the more so-
phisticated hyperparameter tuning strategies (e.g.,
Bayesian optimization) are unlikely to improve ZS-

7Extending SOUP to average the top-10 best snapshots
does not improve performance.

XLT without target-language validation. On the
other hand, accumulative averaging improves ZS-
XLT threefold: (1) Unlike model selection, it does
not plateau in ZS-XLT on suboptimal single runs
that maximize source-language performance; (2)
TRG-DEV showcases that accumulative averaging
ingests further runs with snapshots that perform
well on ZS-XLT; (3) Model averaging irons out
idiosyncratic noise of individual runs, leading to
better performance. This renders accumulative av-
eraging a robust (i.e., replicable results) and fair (i.e.
true zero-shot) evaluation protocol for ZS-XLT.

5 Conclusion

Inconsistent hyperparameter tuning and model se-
lection protocols exacerbate replicating previous
results on ZS-XLT. In this focused study, we de-
vise a ZS-XLT evaluation protocol that addresses
previous shortcomings and feeds two birds with
one scone. We show that accumulatively averaging
snapshots – rather than selecting models based on
source-language validation performance – both im-
proves and stabilizes ZS-XLT. Conventional model
selection strategies prematurely settle for models
that maximize source-language validation perfor-
mance and discard runs that generalize better in
ZS-XLT. Accumulative model averaging both in-
corporates snapshots that transfer well and irons
out models that perform badly. We find that model
averaging correlates closely with “oracle” ZS-XLT,
which assumes models selection on target-language
validation instances. We hope future work adopts
model averaging to promote fair and reproducible
ZS-XLT that puts models on equal footing.

12189

Limitations

Additional factors must be taken into consideration,
even though we aspire to evaluate ZS-XLT on all
levels of transparency (i.e., variants and strategies)
across a varied set of downstream tasks on broad
hyperparameter grids. Neither model selection on
source-language validation data nor accumulative
averaging may benefit ZS-XLT on certain tasks, as
Schmidt et al. (2023), e.g., do not find that any
variant other than TRG-DEV yields gain over LAST

on part-of-speech tagging. The underlying cause
remains unclear. For instance, the gains on ZS-XLT

stemming from model selection or accumulative
averaging likely depend on the type of distribu-
tional shift from the source-language training data
and the target-language instances to transfer to (cf.
§4; e.g. dynamics of variants in ZS-XLT for NER).
accumulative averaging nevertheless remains a ro-
bust evaluation protocol, as ZS-XLT performance
is not expected to deteriorate via-à-vis other “fair”
strategies (e.g., max. SRC-DEV). In addition, there
may exist a subset of pairs of learning rates and
batch sizes that jointly maximize source- and target-
language performance. However, as our results sug-
gest (§4), runs on such hyperparameters likely are
indistinguishable from those that exclusively per-
form just as well on the source-language validation
set.

Acknowledgments

We thank the state of Baden-Württemberg for its
support through access to the bwHPC. Ivan Vulić
is supported by a personal Royal Society Univer-
sity Research Fellowship ‘Inclusive and Sustain-
able Language Technology for a Truly Multilingual
World’ (no 221137; 2022–).

References
David Adelani, Graham Neubig, Sebastian Ruder,

Shruti Rijhwani, Michael Beukman, Chester Palen-
Michel, Constantine Lignos, Jesujoba Alabi, Sham-
suddeen Muhammad, Peter Nabende, Cheikh
M. Bamba Dione, Andiswa Bukula, Rooweither
Mabuya, Bonaventure F. P. Dossou, Blessing Sibanda,
Happy Buzaaba, Jonathan Mukiibi, Godson Kalipe,
Derguene Mbaye, Amelia Taylor, Fatoumata Ka-
bore, Chris Chinenye Emezue, Anuoluwapo Aremu,
Perez Ogayo, Catherine Gitau, Edwin Munkoh-
Buabeng, Victoire Memdjokam Koagne, Allah-
sera Auguste Tapo, Tebogo Macucwa, Vukosi Mari-
vate, Mboning Tchiaze Elvis, Tajuddeen Gwad-
abe, Tosin Adewumi, Orevaoghene Ahia, Joyce

Nakatumba-Nabende, Neo Lerato Mokono, Ig-
natius Ezeani, Chiamaka Chukwuneke, Mofetoluwa
Oluwaseun Adeyemi, Gilles Quentin Hacheme,
Idris Abdulmumin, Odunayo Ogundepo, Oreen
Yousuf, Tatiana Moteu, and Dietrich Klakow. 2022.
MasakhaNER 2.0: Africa-centric transfer learning
for named entity recognition. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4488–4508, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

David Ifeoluwa Adelani, Jade Abbott, Graham Neu-
big, Daniel D’souza, Julia Kreutzer, Constantine Lig-
nos, Chester Palen-Michel, Happy Buzaaba, Shruti
Rijhwani, Sebastian Ruder, Stephen Mayhew, Is-
rael Abebe Azime, Shamsuddeen H. Muhammad,
Chris Chinenye Emezue, Joyce Nakatumba-Nabende,
Perez Ogayo, Aremu Anuoluwapo, Catherine Gitau,
Derguene Mbaye, Jesujoba Alabi, Seid Muhie Yi-
mam, Tajuddeen Rabiu Gwadabe, Ignatius Ezeani,
Rubungo Andre Niyongabo, Jonathan Mukiibi, Ver-
rah Otiende, Iroro Orife, Davis David, Samba Ngom,
Tosin Adewumi, Paul Rayson, Mofetoluwa Adeyemi,
Gerald Muriuki, Emmanuel Anebi, Chiamaka Chuk-
wuneke, Nkiruka Odu, Eric Peter Wairagala, Samuel
Oyerinde, Clemencia Siro, Tobius Saul Bateesa,
Temilola Oloyede, Yvonne Wambui, Victor Akin-
ode, Deborah Nabagereka, Maurice Katusiime, Ayo-
dele Awokoya, Mouhamadane MBOUP, Dibora Ge-
breyohannes, Henok Tilaye, Kelechi Nwaike, De-
gaga Wolde, Abdoulaye Faye, Blessing Sibanda, Ore-
vaoghene Ahia, Bonaventure F. P. Dossou, Kelechi
Ogueji, Thierno Ibrahima DIOP, Abdoulaye Diallo,
Adewale Akinfaderin, Tendai Marengereke, and Sa-
lomey Osei. 2021. MasakhaNER: Named entity
recognition for African languages. Transactions
of the Association for Computational Linguistics,
9:1116–1131.

Divyanshu Aggarwal, Vivek Gupta, and Anoop
Kunchukuttan. 2022. Indicxnli: Evaluating multi-
lingual inference for indian languages.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. TyDi QA: A benchmark
for information-seeking question answering in typo-
logically diverse languages. Transactions of the As-
sociation for Computational Linguistics, 8:454–470.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of

12190

https://aclanthology.org/2022.emnlp-main.298
https://aclanthology.org/2022.emnlp-main.298
https://doi.org/10.1162/tacl_a_00416
https://doi.org/10.1162/tacl_a_00416
https://doi.org/10.48550/ARXIV.2204.08776
https://doi.org/10.48550/ARXIV.2204.08776
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://www.aclweb.org/anthology/2020.acl-main.747
https://www.aclweb.org/anthology/2020.acl-main.747

the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generalisa-
tion. In International Conference on Machine Learn-
ing, pages 4411–4421. PMLR.

Phillip Keung, Yichao Lu, Julian Salazar, and Vikas
Bhardwaj. 2020. Don’t use English dev: On the
zero-shot cross-lingual evaluation of contextual em-
beddings. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 549–554, Online. Association for
Computational Linguistics.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and
Goran Glavaš. 2020. From zero to hero: On the
limitations of zero-shot language transfer with mul-
tilingual Transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4483–4499, On-
line. Association for Computational Linguistics.

Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Na-
man Goyal, Marjan Ghazvininejad, Luke Zettle-
moyer, and Madian Khabsa. 2023. XLM-V: Over-
coming the Vocabulary Bottleneck in Multilingual
Masked Language Models. arXiv e-prints, page
arXiv:2301.10472.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Noth-
man, Kevin Knight, and Heng Ji. 2017. Cross-lingual
name tagging and linking for 282 languages. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1946–1958, Vancouver, Canada. As-
sociation for Computational Linguistics.

Fabian David Schmidt, Ivan Vulić, and Goran Glavaš.
2022. Don’t stop fine-tuning: On training regimes
for few-shot cross-lingual transfer with multilingual
language models. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 10725–10742, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Fabian David Schmidt, Ivan Vulić, and Goran Glavaš.
2023. Free lunch: Robust cross-lingual transfer via
model checkpoint averaging.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee,
Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal-
lah, and Jianfeng Gao. 2022. AdaMix: Mixture-
of-adaptations for parameter-efficient model tuning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5744–5760, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Xiangpeng Wei, Rongxiang Weng, Yue Hu, Luxi Xing,
Heng Yu, and Weihua Luo. 2021. On learning univer-
sal representations across languages. In International
Conference on Learning Representations.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Car-
mon, Simon Kornblith, and Ludwig Schmidt. 2022.
Model soups: averaging weights of multiple fine-
tuned models improves accuracy without increasing
inference time. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
23965–23998. PMLR.

Shijie Wu and Mark Dredze. 2020. Do explicit align-
ments robustly improve multilingual encoders? In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4471–4482, Online. Association for Computa-
tional Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

12191

https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.48550/arXiv.2301.10472
https://doi.org/10.48550/arXiv.2301.10472
https://doi.org/10.48550/arXiv.2301.10472
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://aclanthology.org/2022.emnlp-main.736
https://aclanthology.org/2022.emnlp-main.736
https://aclanthology.org/2022.emnlp-main.736
http://arxiv.org/abs/2305.16834
http://arxiv.org/abs/2305.16834
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2022.emnlp-main.388
https://aclanthology.org/2022.emnlp-main.388
https://openreview.net/forum?id=Uu1Nw-eeTxJ
https://openreview.net/forum?id=Uu1Nw-eeTxJ
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://doi.org/10.18653/v1/2020.emnlp-main.362
https://doi.org/10.18653/v1/2020.emnlp-main.362
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41

A Appendix

A.1 Reproduction Details
Code. Our code is available at: https://github.
com/fdschmidt93/ofa-xlt
Model architectures. All models use the
AutoModelFor{SequenceClassification,
TokenClassification, QuestionAnswering}
of xlm-roberta-large for the corresponding task
from the transformers library (Wolf et al., 2020).

Compute Requirements. We execute all experi-
ments on a single V100 with 32GB VRAM. We es-
timate that we require total compute time of c.1,050
hours over all fine-tuning iterations and evaluations.
We arrive at this budget as follows. We on aver-
age train models on NLI for about 11.5 hours, on
TyDiQA-GoldP for roughly 1.5 hours, and on NER
for an estimated 3 hours. We therefore execute
63 training runs (21 hyperparameter configurations
ran on for 3 seeds, cf. §3) for 16 hours for a total of
c.1K GPU hours. We loosely estimate that accumu-
lative averaging adds another 50 hours of runtime
for evaluation.

Model Averaging. We follow Schmidt et al. (2023)
to enabling accumulative averaging of checkpoints
for NLI and TyDiQA-GoldP. For these tasks, we
initially fine-tune XLM-Rlarge with a batch size of
32 and a learning rate of 2e−5. For NER, we find
that merely randomly initializing the tasks heads
across all runs with the same head slightly improves
performance (∆+1.0) of all variants in single-run
and accumulative averaging. We suspect that the
original language modelling weights better align
with NER as a token-level classification task and
do not diverge to incompatible sets of parameters
in fine-tuning (cf. §3 of Schmidt et al. (2023)).

A.2 Full Results By Hyperparameter
Configuration

12192

https://github.com/fdschmidt93/ofa-xlt
https://github.com/fdschmidt93/ofa-xlt

ZS-XLT Performance

Hyperparameters NLI TyDiQA-GoldP NER

Learning Rate Batch Size LAST SRC-DEV CA TRG-DEV LAST SRC-DEV CA TRG-DEV LAST SRC-DEV CA TRG-DEV
16 77.20.1 77.50.3 77.60.2 77.90.5 71.30.3 71.30.1 68.40.8 71.40.3 45.90.3 45.90.3 46.50.3 47.80.1

1e−6 32 77.40.1 77.50.2 77.70.2 78.10.1 71.20.2 71.30.4 63.20.3 71.60.2 45.30.2 45.30.2 44.70.3 45.80.3
64 77.60.1 77.60.3 77.40.1 77.80.1 70.90.4 70.90.4 49.80.2 70.90.1 45.30.2 45.30.2 42.60.3 45.50.2
16 76.70.2 76.90.2 77.50.3 77.71.1 71.60.2 71.90.7 72.20.1 72.00.4 44.00.9 44.90.9 47.40.3 49.80.3

5e−6 32 76.80.0 77.60.4 77.60.1 78.30.5 71.60.1 71.50.1 71.60.1 72.30.4 42.80.3 42.90.2 45.80.6 47.71.0
64 77.00.2 78.10.6 77.80.2 78.30.3 71.00.9 70.90.6 69.00.7 71.70.1 43.81.6 43.81.6 46.21.3 49.00.4
16 76.60.2 76.60.2 77.50.2 77.10.2 73.00.4 72.50.4 73.50.5 73.70.6 40.60.1 40.71.8 43.91.4 48.02.5

1e−5 32 76.80.2 77.10.4 77.60.1 77.20.2 72.10.4 72.60.5 73.00.3 73.20.3 40.11.8 40.11.8 42.81.5 46.03.1
64 76.80.3 77.20.5 77.50.2 77.70.2 72.00.8 71.70.8 71.70.2 73.00.3 43.11.9 43.42.3 46.61.2 49.70.7
16 75.60.1 75.60.2 76.80.3 76.50.4 73.70.5 73.30.3 74.40.6 74.10.4 41.03.1 42.02.6 45.32.0 50.01.1

1.5e−5 32 76.60.1 76.50.1 77.40.2 77.00.1 73.00.7 73.10.9 74.00.1 73.70.6 39.91.1 40.61.3 43.30.2 46.21.9
64 76.80.1 77.10.5 77.60.3 77.70.6 72.90.5 72.60.7 73.30.4 73.50.3 40.62.1 41.12.0 42.81.5 46.01.1
16 74.10.3 74.10.3 76.10.2 74.80.2 72.90.5 72.70.2 74.10.2 73.50.2 38.61.2 38.61.2 43.81.4 46.23.0

2e−5 32 75.90.3 76.10.4 77.10.1 76.40.5 73.10.1 72.30.9 74.10.2 73.30.4 39.30.7 39.01.1 42.31.5 44.32.5
64 76.60.5 77.00.4 77.40.1 77.70.2 71.90.4 71.71.1 73.30.5 72.80.4 39.51.2 39.71.3 42.31.1 46.20.4
16 71.50.2 71.30.4 75.00.2 73.10.1 73.20.4 72.40.9 74.70.1 73.40.5 39.31.0 39.31.0 44.31.7 47.10.6

2.5e−5 32 74.80.2 74.80.2 76.30.1 76.10.6 72.30.2 71.71.0 74.80.3 73.40.3 39.41.5 39.41.5 42.50.6 44.50.7
64 76.70.2 76.70.2 77.50.1 77.30.5 72.60.6 72.30.7 74.20.1 73.31.0 39.91.0 39.91.0 43.51.5 47.72.3
16 67.90.6 67.70.2 73.00.3 70.80.9 72.30.2 71.70.4 74.40.4 72.40.5 37.41.5 37.31.1 43.00.8 46.32.5

3e−5 32 73.30.1 73.30.4 75.80.2 74.40.1 71.70.4 71.60.7 75.10.1 73.60.8 37.91.6 38.01.8 43.71.6 47.22.7
64 75.60.1 75.40.3 76.80.3 76.30.7 72.00.2 71.80.4 74.10.5 73.20.4 39.01.9 39.41.4 42.11.2 44.01.2
∆ 0.0 0.6 0.3 0.0 2.0 2.0 1.0 0.0 4.9 5.2 2.6 0.2

Table 3: ZS-XLT averaged over all target languages by task, model variant, and hyperparameters (cf. §3). For each
column, best ZS-XLT emphasized in bold and max. validation performance (cf. Table 4) shaded in green . ∆ is

the difference of best ZS-XLT and ZS-XLT on models that maximize validation performance. Metrics: accuracy
for NLI, span-F1 for TyDiQA and token-level F1 for NER. Subscripts denote std. deviation.

Validation Set Performance

Hyperparameters NLI TyDiQA-GoldP NER

Learning Rate Batch Size LAST SRC-DEV CA TRG-DEV LAST SRC-DEV CA TRG-DEV LAST SRC-DEV CA TRG-DEV
16 90.20.2 90.50.2 90.10.2 79.20.3 76.40.2 76.70.5 75.10.3 67.00.2 81.90.1 81.90.1 79.50.2 49.90.1

1e−6 32 90.20.2 90.30.1 90.00.0 79.20.1 77.00.5 77.90.8 73.50.4 66.90.1 80.40.1 80.40.1 76.50.3 48.30.3
64 90.10.1 90.20.1 89.60.1 78.90.0 76.00.6 76.30.4 64.40.2 66.50.2 78.00.1 78.00.1 71.40.4 47.70.2
16 89.30.4 89.70.2 90.10.2 78.90.6 73.80.9 76.00.5 75.90.8 68.70.1 85.10.3 85.30.4 84.80.1 52.10.4

5e−6 32 89.50.4 89.90.2 90.10.2 79.40.4 74.50.5 75.80.7 76.20.8 68.20.2 84.70.1 84.70.1 84.00.2 50.01.2
64 89.60.1 90.20.3 90.00.1 79.40.3 75.10.7 76.20.5 75.50.4 67.80.2 84.20.2 84.20.2 83.00.3 51.20.4
16 88.90.3 89.10.2 89.60.1 78.20.1 74.50.4 75.70.1 75.80.6 69.40.3 85.60.1 85.70.1 85.80.2 50.32.2

1e−5 32 89.10.1 89.30.2 89.60.1 78.60.3 74.40.6 75.90.6 75.71.0 69.20.1 85.40.1 85.50.2 85.30.2 48.43.1
64 89.70.4 89.90.0 90.10.1 79.10.3 74.81.2 76.10.0 76.70.4 69.00.2 85.00.1 85.00.1 84.50.1 52.00.8
16 88.40.3 88.50.2 89.10.2 77.50.2 74.80.7 76.30.3 76.50.7 69.70.2 86.00.1 86.10.1 86.20.1 52.01.3

1.5e−5 32 89.00.5 89.00.5 89.60.1 78.20.2 75.10.7 76.50.4 76.50.3 69.50.4 85.40.2 85.50.2 85.80.1 48.31.6
64 89.00.3 89.40.3 89.50.2 78.70.3 75.50.9 76.20.3 76.30.8 69.30.2 85.10.2 85.20.1 85.20.3 48.31.1
16 87.70.6 87.90.3 88.90.4 75.80.2 74.60.7 76.50.8 76.80.7 69.30.1 85.90.2 85.90.2 86.00.2 48.23.1

2e−5 32 88.70.2 88.80.1 89.30.4 77.60.3 76.51.5 77.11.0 78.10.5 69.40.5 85.40.2 85.40.2 85.70.2 46.82.5
64 89.30.2 89.40.1 89.80.1 78.70.2 73.90.7 76.30.3 76.90.5 69.20.1 85.20.2 85.40.3 85.60.3 48.40.6
16 87.50.3 87.70.1 88.60.3 74.00.3 75.80.9 76.40.2 77.20.5 69.30.3 85.50.2 85.50.2 86.00.3 49.50.5

2.5e−5 32 88.60.1 88.60.1 89.00.2 76.90.4 74.70.6 76.00.3 77.00.6 69.10.1 85.70.2 85.70.2 86.00.1 46.90.6
64 88.80.3 88.90.2 89.40.2 78.40.4 75.11.8 76.10.7 76.90.8 69.20.4 85.40.0 85.40.0 85.70.3 49.82.3
16 86.70.2 86.80.2 87.70.1 71.70.7 74.10.6 75.61.5 76.10.8 68.50.2 85.50.1 85.60.1 86.20.0 48.52.4

3e−5 32 87.80.3 88.00.5 89.00.3 75.30.3 73.81.3 76.21.0 76.50.8 69.10.2 85.40.1 85.40.1 86.00.1 49.43.0
64 88.40.2 88.50.1 89.40.2 77.40.7 74.80.6 76.30.2 77.70.4 69.10.2 85.40.1 85.40.1 85.80.1 46.21.5

Table 4: Validation performance by task, model variant, and hyperparameters (cf. §3). LAST, SRC-DEV, and CA
validate on source-language validation splits; TRG-DEV denotes performance averaged over individual snapshots of
a run that perform best by target-language validation set. For each column, best validation performance in bold.
Metrics: accuracy for NLI, span-F1 for TyDiQA and token-level F1 for NER. Subscripts denote std. deviation.

12193

