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Abstract
Scientific literature understanding tasks have
gained significant attention due to their po-
tential to accelerate scientific discovery. Pre-
trained language models (LMs) have shown
effectiveness in these tasks, especially when
tuned via contrastive learning. However, jointly
utilizing pre-training data across multiple het-
erogeneous tasks (e.g., extreme multi-label pa-
per classification, citation prediction, and liter-
ature search) remains largely unexplored. To
bridge this gap, we propose a multi-task con-
trastive learning framework, SciMult, with a
focus on facilitating common knowledge shar-
ing across different scientific literature under-
standing tasks while preventing task-specific
skills from interfering with each other. To be
specific, we explore two techniques – task-
aware specialization and instruction tuning.
The former adopts a Mixture-of-Experts Trans-
former architecture with task-aware sub-layers;
the latter prepends task-specific instructions
to the input text so as to produce task-aware
outputs. Extensive experiments on a compre-
hensive collection of benchmark datasets ver-
ify the effectiveness of our task-aware special-
ization strategy, where we outperform state-
of-the-art scientific pre-trained LMs. Code,
datasets, and pre-trained models can be found
at https://scimult.github.io/.

1 Introduction

Scientific literature understanding tasks, such as
paper classification (Zhang et al., 2023b), citation
prediction (Bhagavatula et al., 2018), scientific lit-
erature search (Voorhees et al., 2021), and recom-
mendation (Kanakia et al., 2019), have received
increasing attention because they can be broadly
applied to academic service platforms (Tang et al.,
2008; Sinha et al., 2015; Ammar et al., 2018), and
more importantly, uncover knowledge structures to
accelerate scientific discovery (Naik et al., 2022;
Chandak et al., 2023). Recent studies have demon-
strated the effectiveness of pre-trained language
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models (LMs) (Beltagy et al., 2019; Gu et al., 2021;
Liu et al., 2022) in these tasks as they generate high-
quality scientific text representations, especially
when the LMs are further tuned via contrastive
learning. For example, MICoL (Zhang et al., 2022)
proposes a metadata-induced contrastive learning
that can perform extreme multi-label paper classifi-
cation with more than 10,000 classes; SPECTER
(Cohan et al., 2020) and SciNCL (Ostendorff et al.,
2022) leverage citation information to create train-
ing pairs and achieve remarkable performance in
predicting various types of links between papers.

Nevertheless, jointly using data across different
scientific literature understanding tasks for LM pre-
training remains largely unexplored. Intuitively,
there are some common knowledge and skills that
can be shared across related tasks. For example,
accurately identifying fine-grained topic classes
of a paper not only helps classification but also
provides hints to link prediction and search. There-
fore, a multi-task learning framework is expected
to be beneficial with improved parameter efficiency.
However, if all parameters of the backbone LM are
shared across tasks (Liu et al., 2019), the model is
observed to suffer from the undesirable task inter-
ference (Ma et al., 2023), that is, the model sacri-
fices the performance on some tasks to boost the
others when jointly trained to a certain extent. This
is because specialized skills are still required in
different tasks competing for the limited shared
parameter space. For instance, the encoder for
extreme multi-label paper classification should fo-
cus more on fine-grained fields-of-study entities
in each paper, while the encoder for citation pre-
diction should put more effort into understanding
citation intents. Mixing these two skills may result
in a negative transfer across the two tasks.

In this paper, to mitigate task interference in
multi-task scientific literature understanding, we
propose to consider two techniques: task-aware
specialization and instruction tuning. Task-aware
specialization, inspired by the Mixture-of-Experts
(MoE) Transformer architecture (Fedus et al., 2022;
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Du et al., 2022; Zhou et al., 2022; Cheng et al.,
2023), modifies the Transformer block in the LM
to have multiple parallel sub-layers, each of which
is dedicated for one task. When performing differ-
ent tasks, the input will be routed to different sub-
layers based on task types. In this way, the encoder
contains both shared parameters and task-specific
parameters, making it capable of producing task-
aware outputs when tapping into shared knowledge.
In contrast, instruction tuning adopts one encoder
for all tasks, but it prepends task-specific instruc-
tions (Wei et al., 2022; Sanh et al., 2022; Ouyang
et al., 2022; Wang et al., 2022; Chung et al., 2022;
Asai et al., 2023) to the input text during training
so that the encoder can learn to produce task-aware
representations. These two ideas are different from
the techniques (e.g., adapters (Houlsby et al., 2019)
and control codes (Keskar et al., 2019)) explored
in previous studies (Singh et al., 2022) for multi-
task scientific text representation learning. Indeed,
as far as we know, this is a pioneering study that
explores the effect of the MoE Transformer archi-
tecture and instruction tuning in scientific NLP.

To validate the efficacy of our proposed tech-
niques, we conduct a comprehensive empiri-
cal study using datasets from multiple sources
(Kanakia et al., 2019; Cohan et al., 2020; Thakur
et al., 2021; Zhao et al., 2022; Singh et al., 2022;
Zhang et al., 2023b) for evaluating various scien-
tific literature understanding tasks. For each task,
models will be tested on not only in-domain but
also cross-domain evaluation datasets. Specifically,
for extreme multi-label text classification, mod-
els trained on computer science and biomedicine
papers will be tested in the geography and psychol-
ogy fields (Zhang et al., 2023b); for link prediction,
models trained on citation signals (Cohan et al.,
2020) need to be evaluated on patient summary
retrieval (Zhao et al., 2022) and paper recommen-
dation (Kanakia et al., 2019); for search, models
will be tested on datasets specific to COVID-19
(Voorhees et al., 2021) or related to claim verifi-
cation (Wadden et al., 2020) which are not seen
during pre-training. Experimental results show
that SciMult-MHAExpert outperforms competi-
tive scientific pre-trained LMs (Cohan et al., 2020;
Ostendorff et al., 2022; Singh et al., 2022) on
most datasets and achieves the new state-of-the-art
performance on the leaderboard of PMC-Patients
(Zhao et al., 2022). Ablation studies further prove
that task-aware specialization can effectively mit-
igate task interference, while the improvement
brought by instruction tuning is not consistent
across all tasks.

2 Background

We consider three widely studied tasks in scien-
tific literature understanding: classification, link
prediction, and search.
(Extreme Multi-Label) Classification. Classi-
fying academic papers to their relevant label(s)
is a fundamental task in scientific text mining.
It can help organize papers according to their
fields/themes and benefit downstream applications
such as trend analysis of scientific topics (Prab-
hakaran et al., 2016; Jin et al., 2021). The label
space L can be either coarse-grained (Cohan et al.
2020; e.g., predicting whether a paper belongs
to “Computer Science” or “Biology”) or fine-
grained (Peng et al. 2016; Xun et al. 2019; Ye et al.
2021; Zhang et al. 2021, 2023b; e.g., predicting
whether a paper is relevant to “Alphacoronavirus”
or “Betacoronavirus” or both). When L is large
and fine-grained (e.g., with more than 10,000 la-
bels), it is natural to assume that each paper p can
be relevant to more than one label. This task is
called extreme multi-label classification (Liu et al.,
2017; Prabhu et al., 2018; Chang et al., 2020),
which aims to rank all labels l ∈ L according to
how likely p is relevant to l.
Link Prediction. Link prediction aims to predict
if a certain type of link exists between a query
paper pQ and a candidate paper pC . Narrowly,
“links” refer to citation links (Bhagavatula et al.
2018; Wright and Augenstein 2021; i.e., pQ cites
pC). Broadly, “links” can be defined as relations
that pQ and pC are co-viewed frequently by users,
co-cited frequently by other papers, and so on (Co-
han et al., 2020; Zhao et al., 2022). An accurate
link prediction model can benefit tasks like paper
recommendation (Kanakia et al., 2019) and help
identify the potential use of scientific literature (Yin
et al., 2022; Lin et al., 2023).
Search. Scientific literature search helps re-
searchers track their interested fields-of-study and
prevents them from drowning in the whole litera-
ture. Given a search query q and a pool of papers
P , the task is to find papers p ∈ P that are relevant
to q. Search also serves as the initial step of more
complex scientific text mining tasks, such as claim
verification (Wadden et al., 2020) and open-domain
question answering (Jin et al., 2019).

3 Models

3.1 Multi-task Contrastive Learning
One can observe that the three tasks bear a common
feature – a “query” q and a pool of “candidates”
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C = {c1, c2, ..., c|C|} are given. To be specific, q
is the paper p to be classified in classification, the
query paper pQ in link prediction, and the search
query q in literature search; C is the label space
L in classification, the set of candidate papers pC
in link prediction, and the candidate paper pool
P in search. This motivates us to jointly train a
multi-task model that is applicable to all tasks.

To implement this idea, our proposed SciMult
framework is built upon a Bi-Encoder architec-
ture, where two encoders (whose parameters are
shared) encode queries and candidates indepen-
dently. Following Karpukhin et al. (2020), we
adopt maximum inner product search (MIPS) in
the embedding space to find positive candidates for
each query. Formally, the similarity is calculated
as follows:

sim(q, c) = E(q)⊤E(c), (1)

where E(·) is a text encoder (e.g., a Transformer-
based LM) to be learned. We assume the text in-
formation of a paper is its title and abstract (i.e.,
“[CLS] {title} [SEP] {abstract} [SEP]”). Follow-
ing Zhang et al. (2022), we assume that each label’s
name and definition are available1, which consti-
tute the label text information (i.e., “[CLS] {name}
[SEP] {definition} [SEP]”). For search queries, we
naturally form their text input as “[CLS] {query}
[SEP]”. The output of E(·) is the representation of
[CLS] after the last layer.

The Bi-Encoder is trained via a contrastive learn-
ing objective by pulling relevant q and c+ together
while pushing irrelevant q and c− apart:

min
E(·)

− log
exp(sim(q, c+))

exp(sim(q, c+)) +
∑

c−
exp(sim(q, c−))

. (2)

Although it has been shown that model pa-
rameter sharing improves the performance of Bi-
Encoder retrievers (Xiong et al., 2021), simply shar-
ing all parameters of the backbone LM (Liu et al.,
2019) may suffer from task interference and lead
to suboptimal performance. This is because the
semantics implied by relevant (q, c) pairs for dif-
ferent tasks vary. For example, the encoder for
fine-grained paper classification needs to pay more
attention to fields-of-study entities, while the en-
coder for link prediction focuses on understanding

1This assumption holds for benchmark scientific label
spaces such as fields-of-study in the Microsoft Academic
Graph (MAG) (Shen et al., 2018) and terms in Medical Sub-
ject Headings (MeSH) (Coletti and Bleich, 2001). Meanwhile,
if label definitions are not available, our model can take label
names as the only input, the performance of which is studied
in Appendix E.4.
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Figure 1: Two different types of Mixture-of-Experts
Transformer architecture. They will route the input to
different MHA and FFN sub-layers, respectively, when
considering different tasks.

citation intents. To tackle this issue, we consider
two different strategies, task-aware specialization
and instruction tuning to learn task-specific repre-
sentations of scientific text.

3.2 Task-Aware Specialization
Inspired by recent Mixture-of-Experts (MoE) mod-
els (Fedus et al., 2022; Du et al., 2022; Zhou et al.,
2022; Cheng et al., 2023; Ma et al., 2023), we pro-
pose to adopt task-specific Transformer blocks in
the LM architecture. Specifically, a typical Trans-
former block (Vaswani et al., 2017) contains a
multi-head attention (MHA) sub-layer and a feed-
forward network (FFN) sub-layer. Fedus et al.
(2022) propose a Mixture-of-Experts Transformer
block with multiple FFN sub-layers stacked upon
a shared MHA sub-layer. As shown in Figure 1
(right), we adopt this architecture and let each
FFN sub-layer correspond to one particular task
t (t ∈ {classification, link prediction, search}).
For example, if the encoder E(·) is trained/tested
on a classification task, the input will be routed to
the classification FFN. Different from Fedus et al.
(2022), Ma et al. (2023) propose to specialize the
MHA sub-layer and observe better performance
in open-domain question answering. We test this
architecture as well, where, as shown in Figure 1
(left), a shared FFN sub-layer is stacked upon task-
specific MHA sub-layers. We again use the same
task-dependent routing for this variant.

In SciMult, following Du et al. (2022), we stack
typical Transformer blocks and task-specific Trans-
former blocks alternately, i.e., for a base-size LM
with 12 Transformer blocks, there will be 6 typical
Transformer blocks and 6 task-specific Transformer
blocks interleaved with each other. In this way, the
encoder will have both parameters θt characterizing
specific skills for task t and parameters θ charac-
terizing the common knowledge shared across all
tasks. Thus, we denote the encoder as E{θ,θt}(·),
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and the task-aware similarity between the query q
and the candidate c will be modified as

simt(q, c) = E{θ,θt}(q)
⊤E{θ,θt}(c). (3)

Note that the query encoder and the candidate en-
coder for the same task still share their parameters.

3.3 Instruction Tuning

Training LMs with task-specific instructions (Wei
et al., 2022; Sanh et al., 2022; Ouyang et al., 2022;
Wang et al., 2022; Chung et al., 2022; Asai et al.,
2023) has been extensively studied with remarkable
progress achieved. However, the effect of instruc-
tion tuning on scientific literature understanding
tasks has remained elusive. Moreover, the major
focus of previous studies is on effective zero-shot
or few-shot model transfer to new tasks rather than
mitigating task interference. As a result, a head-to-
head comparison between instruction tuning and
MoE in multi-task LM pre-training is missing, so
we aim to bridge the gap in this paper.

Different from task-aware specialization which
trains E{θ,θt}(·) for each task t, instruction tun-
ing keeps one encoder Eθ(·) with all its param-
eters θ shared across different tasks. Each task
t is instead characterized by a natural language
instruction xt. The instructions we use for the
three tasks are shown in Table 1. We can prepend
the representations of xt to the query and can-
didate texts to get their task-aware embeddings.
To be specific, suppose xt contains K tokens
{xt,k}Kk=1. We first use an instruction encoder
Eϕ(·) to encode xt and get its token representa-
tions {x(n)

t,k }Kk=1 after each layer n ∈ {0, 1, ..., N}.
Then, we use the query/candidate encoder Eθ(·) to
encode q = q1q2...qA and c = c1c2...cB . At layer
n ∈ {1, 2, ..., N}, the output representations of q
and c will take the instruction token representations
corresponding to that layer as context. Formally,

q
(n)
1 , ..., q

(n)
A = Transformer(x

(n−1)
t,1 , ...,x

(n−1)
t,K ,

q
(n−1)
1 , ..., q

(n−1)
A ),

c
(n)
1 , ..., c

(n)
B = Transformer(x

(n−1)
t,1 , ...,x

(n−1)
t,K ,

c
(n−1)
1 , ..., c

(n−1)
B ).

(4)

The task-aware similarity between q and c will then
be modified as

simt(q, c) = q
(N) ⊤
[CLS] c

(N)

[CLS]. (5)

There are two ways to train the model. First,
we can update the entire architecture, includ-
ing both the instruction encoder Eϕ(·) and the

Task Instruction

Classification Tag a scientific paper with relevant scientific
topic classes.

Link Prediction Find a pair of scientific papers that one paper
cites the other.

Search Retrieve a scientific paper that is relevant to
the query.

Table 1: Instructions used for the three tasks.

query/candidate encoder Eθ(·), and let them share
parameters (i.e., ϕ = θ). Second, we can keep the
query/candidate encoder frozen and optimize the
instruction encoder only, which bears similarities
with prefix-tuning (Li and Liang, 2021) by treat-
ing instructions as prefixes. We will evaluate both
approaches in our experiments.

3.4 Negative Sampling
Previous studies on contrastive learning with sci-
entific text (Cohan et al., 2020; Ostendorff et al.,
2022) have emphasized the importance of hard neg-
atives. Specific to citation prediction, Cohan et al.
(2020) propose a way to derive hard negatives:
Given a positive query-candidate pair (pQ, pC+)
where pQ cites pC+, if there exists a paper pC−
such that (1) pC+ cites pC− but (2) pQ does not
cite pC−, then pC− is a hard negative.

We generalize this idea to the other tasks. For
extreme multi-label classification, given a positive
paper-label pair (p, l), we consider a paper p′ cited
by p, sharing a common author with p, or published
in the same venue as p, in which case p′ should be
semantically close to p. If p′ has a label l′ that is
irrelevant to p, then l′ is treated as a hard negative
for (p, l). For literature search, we use the training
data from Singh et al. (2022) which contains a
short list of papers returned by an academic search
engine for each query q. The papers clicked by
users will be treated as positives p+, and the others
in the list will be viewed as hard negatives p−.

Related studies (Cohan et al., 2020; Ostendorff
et al., 2022) show that combining easy negatives
(i.e., negatives randomly sampled from the entire
candidate pool C) and hard negatives leads to better
performance. Thus, during pre-training, for each
positive pair (q, c+), we sample one hard negative
and treat all in-batch negatives (Karpukhin et al.,
2020) as easy negatives, both of which are com-
bined as c−’s to optimize Equation 2.

4 Experiments

4.1 Datasets
We adopt a comprehensive collection of benchmark
datasets for model evaluation. Each task has its pre-
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Task Pre-training In-domain Evaluation Cross-domain Evaluation

Classification
MAPLE (Zhang et al., 2023b)

{CS-Journal, Biology-MeSH, Medicine-MeSH}

MAPLE (Zhang et al., 2023b)
{CS-Conference, Chemistry-MeSH},

SciDocs (Cohan et al., 2020)
{MAG Fields, MeSH Diseases}

MAPLE (Zhang et al., 2023b)
{Geography, Psychology}

Link Prediction Citation Prediction Triplets (Cohan et al., 2020)
SciDocs (Cohan et al., 2020)

{Co-view, Co-read, Cite, Co-cite}
Recommendation (Kanakia et al., 2019),

PMC-Patients (Zhao et al., 2022)

Search SciRepEval-Search (Singh et al., 2022) SciRepEval-Search (Singh et al., 2022)
TREC-COVID (Voorhees et al., 2021),

SciFact (Wadden et al., 2020),
NFCorpus (Boteva et al., 2016)

Table 2: Datasets used for pre-training, in-domain evaluation, and cross-domain evaluation.

training, in-domain evaluation, and cross-domain
evaluation datasets2, which will be briefly intro-
duced below. Table 2 summarizes our usage of
these datasets with more details in Appendix A.

Classification. We consider the MAPLE bench-
mark (Zhang et al., 2023b), which consists of
23 fine-grained multi-label paper classification
datasets across 19 scientific fields. Each paper in
MAPLE is tagged with its relevant MAG fields-
of-study (Shen et al., 2018) and MeSH terms (Co-
letti and Bleich, 2001). Among the 23 datasets,
CS-Journal, Biology-MeSH, and Medicine-MeSH
are selected for pre-training; CS-Conference and
Chemistry-MeSH are used for in-domain evalua-
tion; Geography and Psychology, whose candidate
label spaces are not seen during pre-training, are uti-
lized for cross-domain evaluation. Besides, we use
the MAG and MeSH datasets in the SciDocs bench-
mark (Cohan et al., 2020) as in-domain evaluation
datasets for coarse-grained paper classification.

Link Prediction. For pre-training, we leverage
more than 819K citation prediction triplets released
in Cohan et al. (2020), which were used to pre-train
SPECTER (Cohan et al., 2020). For in-domain
evaluation, we make use of the SciDocs benchmark
(Cohan et al., 2020), which evaluates the predic-
tion of four link types: Co-view, Co-read, Cite,
and Co-cite. For cross-domain evaluation, we use
(1) the PMC-Patients dataset (Zhao et al., 2022)
where each query is a patient summary and the task
is to find its linked research articles and patient
summaries, and (2) the Recommendation dataset
(Kanakia et al., 2019) collected via an online sur-
vey, where the participants are authors of query
papers, and they need to judge the relevance be-
tween the query paper and some candidate papers
on a scale of 1 to 5.

Search. For pre-training, we exploit the Search
dataset released in the SciRepEval benchmark

2In-domain evaluation datasets share the same data source
and properties (e.g., the label space, the link type) with pre-
training data; cross-domain evaluation datasets are otherwise
and evaluate model generalizability.

(Singh et al., 2022) with 528,497 queries. It
also has a hold-out testing set with 2,637 queries,
which we employ for in-domain evaluation. For
cross-domain evaluation, we adopt TREC-COVID
(Voorhees et al., 2021), SciFact (Wadden et al.,
2020), and NFCorpus (Boteva et al., 2016), all
of which are from the popular BEIR benchmark
(Thakur et al., 2021). Note that TREC-COVID has
two different versions in SciRepEval and BEIR.
The BEIR version has more simplified queries and
a larger pool of candidate papers. We will report
model performance on both versions.

4.2 Compared Methods

We consider the following LM baselines: SciB-
ERT (Beltagy et al., 2019), SentBERT (Reimers
and Gurevych, 2019), SPECTER (Cohan et al.,
2020), PubMedBERT (Gu et al., 2021), LinkBERT
(Yasunaga et al., 2022), BioLinkBERT (Yasunaga
et al., 2022), OAG-BERT (Liu et al., 2022),
SciNCL (Ostendorff et al., 2022), and SPECTER
2.0 (Singh et al., 2022). Details about the baselines
can be found in Appendix B.

Besides LM baselines, we also report the per-
formance of some task-specific classical methods,
such as Citeomatic (Bhagavatula et al., 2018) for
citation prediction, Kanakia et al. (2019) for rec-
ommendation, and BM25 (Robertson and Walker,
1994) for search.

For our SciMult model, we pre-train five model
variants: SciMult-Vanilla, SciMult-MHAExpert,
SciMult-FFNExpert, SciMult-Prefix, and
SciMult-Instruction. All of them are initialized
from PubMedBERT.3 Among them, SciMult-
MHAExpert and SciMult-FFNExpert adopt the
task-aware specialization strategy presented in
subsection 3.2 with task-specific MHA and FFN
sub-layers, respectively; SciMult-Prefix and
SciMult-Instruction leverage instruction tuning
presented in subsection 3.3, the former of which
tunes the instruction encoder only while the latter

3https://huggingface.co/microsoft/BiomedNLP-P
ubMedBERT-base-uncased-abstract
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MAPLE (Zhang et al., 2023b)
Fine-grained classification CS-Conference Chemistry-MeSH Geography Psychology

R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100 Average

SciBERT (Beltagy et al., 2019) 42.01 42.84 43.87 30.53 31.46 32.15 52.04 54.53 58.11 43.07 44.02 45.22 43.32
SentBERT (Reimers and Gurevych, 2019) 42.79 44.34 45.96 30.75 31.73 32.44 53.54 57.23 61.11 43.33 44.60 46.37 44.52
SPECTER (Cohan et al., 2020) 47.38 53.18 58.43 34.26 39.35 43.41 59.12 65.33 70.75 47.07 51.30 56.17 52.15
PubMedBERT (Gu et al., 2021) 41.93 42.56 43.24 30.46 31.46 31.83 52.19 54.82 56.88 43.93 46.28 49.27 43.74
LinkBERT (Yasunaga et al., 2022) 42.15 43.16 44.22 30.52 31.56 32.37 50.58 50.94 51.63 42.62 42.90 43.23 42.16
BioLinkBERT (Yasunaga et al., 2022) 42.00 42.81 43.57 30.37 31.15 31.48 50.36 50.54 50.86 42.39 42.55 42.79 41.74
OAG-BERT (Liu et al., 2022) 42.59 43.79 44.93 30.58 31.97 32.62 51.44 52.25 53.16 42.63 42.95 43.30 42.68
SciNCL (Ostendorff et al., 2022) 47.92 53.57 58.29 34.99 40.50 44.64 59.00 65.49 71.41 48.74 54.21 59.84 53.22
SPECTER 2.0 (Singh et al., 2022) 48.63 55.09 60.68 36.17 43.06 48.26 62.87 70.30 76.37 50.60 58.27 65.66 56.33

SciMult-Vanilla 53.40 64.70 74.09 39.78 51.31 59.75 62.08 70.65 77.79 50.42 56.58 63.17 60.31
SciMult-MHAExpert 54.02 65.49 75.07 39.41 50.92 59.59 65.94 75.01 81.93 51.77 59.55 67.86 62.21
SciMult-FFNExpert 53.73 63.79 72.46 38.01 48.76 57.43 61.90 70.69 78.81 50.09 56.94 64.28 59.74
SciMult-Prefix 53.68 63.62 72.07 37.97 48.95 57.56 62.86 71.65 79.71 50.10 57.25 64.53 60.00
SciMult-Instruction 53.78 63.99 72.72 38.81 50.12 58.96 63.26 71.74 79.52 50.86 58.47 66.46 60.72

Table 3: Fine-grained classification performance on MAPLE (Zhang et al., 2023b). Blue : In-domain evaluation
datasets. Red : Cross-domain evaluation datasets. Gray : Better than all baselines. Bold: The best score.

tunes the whole architecture; SciMult-Vanilla
uses neither of the two strategies. All variants
utilize hard negatives introduced in subsection 3.4
during contrastive learning. Hyperparameter
configurations of SciMult can be found in
Appendix C.

4.3 Fine-grained Classification
Following Zhang et al. (2023b), we consider a sim-
ple heuristic when ranking all candidate labels: la-
bels whose name appears in the query paper p
should be ranked higher than those not appear-
ing in p. In other words, we first rank all labels l
according to sim(p, l) and then reorder all labels
appearing in p in front of all other labels. Here,
we evaluate model performance using Recall@k
(k = 20, 50, 100), i.e., the proportion of gold la-
bels found in the top-k retrieved results to all gold
labels of a paper.

The results are shown in Table 3. We also con-
duct experiments without using this heuristic, the
results of which are shown in Table A3, where
all models perform consistently worse. From Ta-
ble 3, we observe that: (1) SciMult-MHAExpert
and SciMult-Instruction outperform all baselines
on all four datasets. The other three SciMult vari-
ants have significant advantages over all baselines
on in-domain evaluation datasets, but their edges on
cross-domain datasets are not consistent. (2) Com-
paring among all the SciMult variants, SciMult-
MHAExpert is always the best on cross-domain
datasets, indicating its generalizability to unseen
label spaces.

4.4 Coarse-grained Classification
Following Cohan et al. (2020) and Ostendorff et al.
(2022), we directly predict the most likely coarse
label of each paper and use Macro-F1 as the evalu-
ation metric. Two different settings are considered

here: (1) The Bi-Encoder setting (abbreviated to
“BiEnc” in Table 4) follows our practice in fine-
grained classification where we calculate simt(p, l)
given the description of each l (without relying on
any training data after LM pre-training). (2) The
Linear Classifier setting (abbreviated to “Linear” in
Table 4) follows the practice in Cohan et al. (2020),
which takes the embedding vector E(p) as the input
feature of each paper p and trains a linear SVM for
classification. This setting requires labeled training
and validation data after LM pre-training but no
longer needs label descriptions.

The results of both settings are shown in Table 4.
We find that, on average, SciMult variants can al-
ways beat all baselines with a more pronounced out-
of-box advantage (i.e., the “BiEnc” setting). On the
other hand, when further fine-tuned with a linear
classifier, most pre-trained models perform very
similarly with better performance achieved by the
multi-task models (SPECTER 2.0 and our SciMult
variants), indicating the advantage of multi-task
training for coarse-grained classification.

4.5 Link Prediction

In the link prediction task, we also consider two
settings: retrieval and reranking.

For the retrieval setting, given a query paper pQ,
the task is to find all candidate papers pC that are
linked to pQ (via the relation “Cite”, “Co-cite”, etc.
) from the whole dataset. The link prediction per-
formance of compared methods under the retrieval
setting is shown in Table 5, where the evaluation
metrics are Recall@20, 50, and 100. As expected,
SciMult variants significantly outperform all base-
lines in almost all cases.

As for the cross-domain PMC-Patients dataset
(Zhao et al., 2022), besides evaluating the zero-
shot retrieval performance (Table 5), we also test
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Coarse-grained
SciDocs (Cohan et al., 2020)

Classification
MAG Fields MeSH Diseases

Linear BiEnc Linear BiEnc Average

BM25 – 23.54 – 14.84 –
SciBERT 79.7† 18.81 80.7† 12.29 47.88
SentBERT 80.5† 38.76 69.1† 9.07 49.36
SPECTER 82.0† 55.49 86.4† 57.70 70.40
PubMedBERT 77.44 10.67 81.46 1.14 42.68
LinkBERT 77.51 14.00 64.75 1.75 39.50
BioLinkBERT 76.28 7.37 85.50 1.20 42.59
OAG-BERT 77.64 20.87 80.84 1.91 45.32
SciNCL 81.4† 60.02 88.7† 58.67 72.20
SPECTER 2.0 82.66† 60.00 89.40† 66.03 74.52

SciMult-Vanilla 81.31 65.63 88.92 66.29 75.54
SciMult-MHAExpert 81.76 67.38 89.37 66.72 76.31
SciMult-FFNExpert 82.25 69.26 88.07 63.57 75.79
SciMult-Prefix 82.48 69.02 88.62 66.55 76.67
SciMult-Instruction 82.63 69.79 88.71 63.82 76.24

Table 4: Coarse-grained classification per-
formance (Macro-F1 scores) on SciDocs
(Cohan et al., 2020). Scores with † are re-
ported in Cohan et al. (2020), Ostendorff
et al. (2022), and Singh et al. (2022).

Link SciDocs (Cohan et al., 2020) PMC-Patients (2022)
Prediction Cite Co-cite Patient-to-Patient
(Retrieval) R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100 Average

BM25 17.81 24.76 30.49 24.19 31.98 38.03 42.20 48.68 53.75 34.65
SciBERT 2.45 3.83 5.32 5.36 7.17 9.18 17.15 20.17 22.90 10.39
SentBERT 5.45 8.29 11.13 9.19 12.65 15.93 8.20 10.46 12.52 10.42
SPECTER 21.59 31.58 40.02 31.51 43.41 52.90 27.72 34.52 40.43 35.96
PubMedBERT 4.42 6.46 8.43 8.42 11.21 13.77 21.42 24.48 27.18 13.98
LinkBERT 2.38 3.47 4.60 5.02 6.33 7.69 11.77 13.66 15.45 7.82
BioLinkBERT 3.41 5.01 6.63 6.93 9.14 11.24 21.28 24.66 27.48 12.86
OAG-BERT 5.59 8.37 11.11 9.62 13.09 16.39 28.49 32.48 35.97 17.90
SciNCL 24.91 36.57 46.25 34.84 48.50 58.77 31.65 39.30 45.84 40.74
SPECTER 2.0 23.53 34.47 43.54 33.75 46.46 56.23 30.36 36.10 40.96 38.38

SciMult-Vanilla 32.61 46.33 56.40 38.23 52.08 62.02 41.61 50.20 56.94 48.49
SciMult-MHAExpert 34.81 49.31 59.71 39.82 54.16 64.50 42.33 51.25 58.25 50.46
SciMult-FFNExpert 36.34 51.31 61.97 38.12 52.49 62.91 43.36 52.31 59.05 50.87
SciMult-Prefix 34.18 49.27 60.52 37.70 52.21 62.85 43.54 52.28 59.00 50.17
SciMult-Instruction 33.58 47.94 58.37 36.22 49.98 60.26 43.37 52.10 58.72 48.95

Table 5: Link prediction performance on SciDocs (Cohan et al., 2020)
and PMC-Patients (Zhao et al., 2022) under the retrieval setting.

Patient-to-Article Retrieval MRR P@10 nDCG@10 R@1K

DPR (SciMult-MHAExpert) 64.44 22.12 28.62 69.09

DPR (PubMedBERT) 42.96 16.08 19.51 63.40
DPR (SPECTER) 46.41 15.59 19.70 57.98
DPR (BioLinkBERT) 40.89 15.33 18.47 62.44
BM25 48.22 9.97 15.28 30.64
Contriever 15.03 3.41 4.62 16.74
SentBERT 10.58 2.71 3.53 13.52

Patient-to-Patient Retrieval MRR P@10 nDCG@10 R@1K

DPR (SciMult-MHAExpert) 25.35 6.65 22.39 83.78

BM25 22.86 4.67 18.29 69.66
DPR (BioLinkBERT) 21.20 5.59 18.06 80.49
DPR (PubMedBERT) 19.37 5.05 16.30 79.35
DPR (SPECTER) 15.08 3.79 12.27 73.01
Contriever 10.50 2.24 8.01 52.64
SentBERT 5.28 1.17 3.88 37.55

Table 6: Comparison between SciMult-MHAExpert
and models on the leaderboard of PMC-Patients (Zhao
et al., 2022) Patient-to-Article Retrieval and Patient-to-
Patient Retrieval tasks. SciMult-MHAExpert achieves
the new state-of-the-art performance.

supervised SciMult by further fine-tuning it on
the provided training data. Specifically, we pick
SciMult-MHAExpert (because of its overall good
performance according to Table 9) and use DPR
(Karpukhin et al., 2020) to fine-tune it. The compar-
ison between DPR(SciMult-MHAExpert) and ex-
isting models on the leaderboard of PMC-Patients4

is shown in Table 6. Our model outperforms all ex-
isting models and achieves the new state-of-the-art.

For the reranking setting, we follow the original
evaluation protocol of SciDocs (Cohan et al., 2020):
For each query paper pQ, a small set of candidate
papers {pC1, pC2, ...} is given, which contains up
to 5 positives and 25 random negatives. The task
aims to rank the positives higher than the negatives,
so we use MAP and nDCG as evaluation metrics.
The Recommendation dataset (Kanakia et al., 2019)
has a similar format, except that the score of each

4https://pmc-patients.github.io/

candidate is not binary and ranges from 1 to 5. As
a result, the model needs to rank candidate papers
with higher scores in front of those with lower
scores, and we use nDCG and nDCG@k (k =
5, 10) as the metrics. (MAP cannot be used in
Recommendation because relevance is not binary.)
The performance is demonstrated in Table 7.

From Table 7, we observe that: (1) On Sci-
Docs, SciMult variants outperform SPECTER in
most cases. Note that for the link prediction task,
SciMult uses exactly the same pre-training data
(including hard negatives) as SPECTER (Cohan
et al., 2020). Therefore, this observation implies
that exploiting pre-training data from other tasks
can benefit the link prediction performance, which
validates our motivation to develop a multi-task
learning framework. (2) On SciDocs, SciMult vari-
ants can rarely outperform SciNCL and SPECTER
2.0 (but the gaps are not evident). This is possi-
bly because SciNCL uses more complicated hard
negative sampling strategies, and SPECTER 2.0 ex-
ploits more diverse pre-training data and tasks. In
fact, Ostendorff et al. (2022) have pointed out the
data leakage issue that 40.5% of SciDocs papers
appear in the pre-training data. This motivates us
to incorporate the cross-domain Recommendation
dataset, on which SciMult-Vanilla and SciMult-
MHAExpert consistently outperform all baselines.

4.6 Search

We use nDCG@10, the primary metric of BEIR
(Thakur et al., 2021), to measure models’ perfor-
mance on the search task. The results are shown
in Table 8. We find that, on the four cross-domain
evaluation datasets and on average, four SciMult
variants can outperform all baselines. In particular,
on NFCorpus, only SciMult can beat BM25, while
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SciDocs (Cohan et al., 2020) Kanakia et al. (2019)
Link Prediction (Reranking) Co-view Co-read Cite Co-cite Recommendation

MAP nDCG MAP nDCG MAP nDCG MAP nDCG nDCG@5 nDCG@10 nDCG Average

Citeomatic (Bhagavatula et al., 2018) 81.1† 90.2† 80.5† 90.2† 86.3† 94.1† 84.4† 92.8† – – – –
Kanakia et al. (2019) – – – – – – – – 83.88‡ 87.71‡ 93.59‡ –
SciBERT (Beltagy et al., 2019) 50.7† 73.1† 47.7† 71.1† 48.3† 71.7† 49.7† 72.6† 77.17 82.49 90.86 66.86
SentBERT (Reimers and Gurevych, 2019) 68.2† 83.3† 64.8† 81.3† 63.5† 81.6† 66.4† 82.8† 76.75 81.49 90.80 76.45
SPECTER (Cohan et al., 2020) 83.6† 91.5† 84.5† 92.4† 88.3† 94.9† 88.1† 94.8† 83.38 87.39 93.64 89.32
PubMedBERT (Gu et al., 2021) 59.43 78.23 55.59 75.63 51.81 73.43 58.19 77.80 77.30 82.21 91.09 70.97
LinkBERT (Yasunaga et al., 2022) 44.21 67.76 41.04 65.31 39.33 63.91 42.84 67.18 76.10 80.89 90.47 61.73
BioLinkBERT (Yasunaga et al., 2022) 56.46 76.38 50.76 72.18 47.73 70.55 52.94 74.44 77.02 81.78 90.73 68.27
OAG-BERT (Liu et al., 2022) 64.61 81.50 60.13 78.65 57.35 77.60 62.47 80.92 76.73 82.12 90.96 73.91
SciNCL (Ostendorff et al., 2022) 85.3† 92.3† 87.5† 93.9† 93.6† 97.3† 91.6† 96.4† 85.33 88.38 94.34 91.45
SPECTER 2.0 (Singh et al., 2022) 85.18† 92.27† 86.95† 93.53† 92.23† 96.84† 91.13† 96.28† 86.03 89.12 94.59 91.29

SciMult-Vanilla 83.99 91.68 86.66 93.67 91.37 96.26 91.50 96.45 87.32 89.32 94.88 91.19
SciMult-MHAExpert 83.92 91.60 86.45 93.55 92.58 96.92 91.47 96.36 86.68 89.45 94.77 91.25
SciMult-FFNExpert 83.23 91.26 85.61 93.20 93.77 97.42 90.39 95.94 85.75 88.45 94.29 90.85
SciMult-Prefix 83.43 91.48 85.89 93.27 94.28 97.60 90.73 96.09 86.05 88.85 94.66 91.12
SciMult-Instruction 82.13 90.88 84.14 92.36 92.63 96.91 89.27 95.43 86.49 88.81 94.51 90.32

Table 7: Link prediction performance on SciDocs (Cohan et al., 2020) and Recommendation (Kanakia et al., 2019)
under the reranking setting. Scores with † are reported in Cohan et al. (2020), Ostendorff et al. (2022), and Singh
et al. (2022). Scores with ‡ are calculated from the model output released by Kanakia et al. (2019).

SciRepEval (Singh et al., 2022) BEIR (Thakur et al., 2021)

Search
Search TREC-COVID TREC-COVID SciFact NFCorpus
(2022) (2021) (2021) (2020) (2016)

nDCG@10 nDCG@10 nDCG@10 nDCG@10 nDCG@10 Average

BM25 73.47 55.86 57.79 65.63 30.00 56.55
SciBERT 71.39 40.98 4.17 0.88 1.90 23.86
SentBERT 71.84 51.30 20.73 9.40 6.69 31.99
SPECTER 73.42 66.45 29.91 49.74 15.83 47.07
PubMedBERT 70.77 45.28 7.56 0.30 1.09 25.00
LinkBERT 71.66 52.45 2.28 0.49 1.77 25.73
BioLinkBERT 71.18 36.01 3.17 0.12 0.98 22.29
OAG-BERT 72.17 55.09 7.11 18.33 8.48 32.24
SciNCL 73.78 73.50 34.69 56.51 22.34 52.16
SPECTER 2.0 78.22† 79.43 58.48 67.16 22.84 61.23

SciMult-Vanilla 76.44 86.76 67.22 70.76 31.20 66.48
SciMult-MHAExpert 76.33 86.29 71.18 70.67 30.79 67.05
SciMult-FFNExpert 76.02 82.32 52.15 63.57 27.48 60.31
SciMult-Prefix 76.55 82.83 68.15 70.70 30.02 65.65
SciMult-Instruction 75.86 83.59 61.05 70.62 30.25 64.27

Table 8: Search performance on SciRepEval-Search (Singh et al.,
2022), TREC-COVID (Voorhees et al., 2021), SciFact (Wadden et al.,
2020), and NFCorpus (Boteva et al., 2016). The score with † is
reported in Singh et al. (2022).

MHAExpert FFNExpert Prefix Instruction

Classification
(Fine)

Table 3
+3.15% -0.95% -0.51% +0.68%

Classification
(Coarse)
Table 4

+1.02% +0.33% +1.50% +0.93%

Link Prediction
(Retrieval)

Table 5
+4.06% +4.91% +3.46% +0.95%

Link Prediction
(Reranking)

Table 7
+0.07% -0.37% -0.08% -0.95%

Search
Table 8

+0.86% -9.28% -1.25% -3.32%

Table 9: Relative performance change of
different SciMult variants in comparison
with SciMult-Vanilla in terms of the aver-
age evaluation metric.

all baseline LMs are lacking by a clear margin.

4.7 Overall Analysis

To summarize, in Tables 3, 4, 5, and 8, all SciMult
variants except SciMult-FFNExpert can always
beat all baselines in terms of the average metric.

Meanwhile, to systematically examine whether
our proposed techniques can mitigate task interfer-
ence, we calculate the relative performance change
of the four non-Vanilla variants in comparison with
SciMult-Vanilla in each task. Table 9 shows the
results. We observe that SciMult-MHAExpert im-
proves SciMult-Vanilla across all tasks, which im-
plies that the MoE architecture with task-specific
MHA sub-layers effectively overcome task inter-
ference during multi-task pre-training. By contrast,
other proposed techniques are advantageous in a
subset of tasks, such as coarse-grained classifica-
tion and link prediction under the retrieval setting.

To validate the design choices of SciMult, we

conduct more analysis through controlled exper-
iments, which can be found in Appendix E. To
briefly summarize, we observe that: (1) Using hard
negatives in multi-task contrastive learning helps
produce higher-quality text representations in gen-
eral and benefit all tasks. (2) When pre-training
non-Vanilla variants, warming up the LM by train-
ing a Vanilla variant during initial steps yields bet-
ter performance. (3) Using some other reasonable
instructions during inference does not significantly
affect model performance. (4) Although label def-
initions are used for paper classification during
pre-training and are beneficial to the classification
performance during inference, our model can still
outperform baselines in classification by taking la-
bel names as the only input.

5 Related Work

Scientific Literature Understanding. Recent
LMs pre-trained on domain-specific scientific texts,
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from Transformer-based ones such as SciBERT
(Beltagy et al., 2019), BioBERT (Lee et al., 2020),
ChemBERT (Guo et al., 2021), and PubMed-
BERT (Gu et al., 2021) to GPT-based ones such as
SciGPT2 (Luu et al., 2021) and BioGPT (Luo et al.,
2022), aim to learn high-quality contextualized text
representations for scientific literature understand-
ing. Subsequent studies have utilized these LMs
to fine-grained paper classification (Zhang et al.,
2022, 2023a), cite-worthiness detection (Wright
and Augenstein, 2021), scientific claim verification
(Wadden et al., 2020), and so on.

Besides text information, metadata associated
with scientific papers are also broadly considered.
For example, Citeomatic (Bhagavatula et al., 2018),
SPECTER (Cohan et al., 2020), BioLinkBERT
(Yasunaga et al., 2022), and SciNCL (Ostendorff
et al., 2022) leverage citation links between papers;
OAG-BERT (Liu et al., 2022) models venues, au-
thors, fields-of-study, and affiliations during LM
pre-training; S2AND (Subramanian et al., 2021)
further utilizes year, email, and position informa-
tion for author name disambiguation. Nevertheless,
all aforementioned models either consider typical
LM pre-training tasks (e.g., MLM and NSP) only or
focus on one additional task during model training
(e.g., citation prediction). In comparison, SciMult
exploits data from heterogeneous sources and pro-
poses a multi-task learning framework that can be
applied to a wide range of tasks.

Contrastive Learning and Multi-task Learning
in the Scientific Domain. SPECTER (Cohan et al.,
2020) and SciNCL (Ostendorff et al., 2022) are
pioneering studies on using contrastive learning to
enhance scientific LMs. They propose to derive
positive and negative contrastive pairs from cita-
tion triplets and demonstrate the power of mining
hard negatives. MICoL (Zhang et al., 2022) and
CitationSum (Luo et al., 2023) adopt contrastive
learning to multi-label classification and summa-
rization of scientific papers, respectively. As for
multi-task learning, Luan et al. (2018) propose a
multi-task scientific knowledge graph construction
framework by jointly identifying entities, relations,
and coreference; Wang et al. (2019) treat multiple
biomedical named entity recognition datasets (with
different types of entities annotated) as multiple
tasks so that they can mutually benefit each other.
However, these studies do not have specific designs
to tackle task interference. To the best of our knowl-
edge, the recent work by Singh et al. (2022) is the
most relevant one to SciMult, which pre-trains a
scientific LM on various tasks and uses adapters

(Houlsby et al., 2019) and control codes (Keskar
et al., 2019) to produce task-aware paper repre-
sentations. We believe our study is orthogonal to
Singh et al. (2022) as the techniques considered by
us, including the Mixture-of-Experts Transformer
(Fedus et al., 2022) and instruction tuning (Wei
et al., 2022), are distinct from theirs.

6 Conclusions

In this work, we propose to pre-train scientific
LMs via multi-task contrastive learning. To mit-
igate task interference, we adopt two strategies:
Task-aware specialization considers a Mixture-of-
Experts Transformer architecture so that each task
has its unique components, while instruction tun-
ing relies on task-specific instructions to produce
task-aware text representations. Extensive exper-
iments on a comprehensive collection of bench-
mark datasets demonstrate the advantages of our
models against competitive scientific LMs in ex-
treme multi-label classification, link prediction,
and search. In particular, we achieve the new
state-of-the-art performance on the PMC-Patients
leaderboard. We also show that task-specific MHA
sub-layers are beneficial to the model performance
across all examined tasks, whereas the benefit of
other proposed techniques is not consistent. Further
analysis validates some of our design choices, such
as hard negative mining in extreme classification.

Limitations

In comparison with previous studies on instruction
tuning considering tens of (Asai et al., 2023) to
thousands of (Wang et al., 2022) tasks, we do not
explore that many different scientific literature un-
derstanding tasks. As a result, we may not unleash
the power of instruction tuning to the utmost extent.
It is of our interest to collect more datasets in the
scientific domain, such as author name disambigua-
tion (Subramanian et al., 2021) and biomedical
question answering (Jin et al., 2019), and then ex-
plore whether the instruction tuning model trained
on more tasks can mitigate task inference and sup-
port zero-shot transfer to new tasks. Also, our
study focuses on the Bi-Encoder architecture only.
It would be meaningful to investigate other types
of architectures, such as Cross-Encoders and late-
interaction models (Humeau et al., 2020; Khattab
and Zaharia, 2020), and study how to apply task-
aware specialization and instruction tuning to them.
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A Dataset Details

Statistics of the pre-training and evaluation datasets
are summarized in Table A1 and Table A2, respec-
tively.

We lowercase the text in all datasets.

A.1 Classification

The MAPLE benchmark (Zhang et al., 2023b) is
available at https://github.com/yuzhimanhua
/MAPLE. The SciDocs benchmark (Cohan et al.,
2020) is available at https://github.com/all
enai/scidocs.

MAPLE (CS-Journal). Because label definitions
are not released in MAPLE, we adopt the defini-
tions of 15,808 CS fields-of-study in Zhang et al.
(2022). This label space is not identical to the orig-
inal label space of CS-Journal (with 15,540 labels),
and we remove papers that do not have any relevant
labels in the adopted label space. Because some
general labels (e.g., “Machine Learning”) are rel-
evant to a large proportion of papers in the original
dataset, we perform downsampling to ensure each
label l appears in at most 100 positive (p, l) pairs
in the pre-training data. In this way, the LM will
not be overwhelmed by cases of general labels and
can learn more semantics of specific labels (e.g.,
“Lagrangian Support Vector Machine”).

MAPLE (Biology-MeSH and Medicine-MeSH).
We combine these two datasets and use a shared
label space of 30,194 MeSH terms in the 2022 ver-
sion of MeSH. The definition of each MeSH term
is its “Scope Note”. Same as above, we perform
downsampling to ensure each label l appears in at
most 100 positive (p, l) pairs in the pre-training
data.

MAPLE (Coarse). There are 19 fields in MAPLE.
For each of the 18 non-CS fields, we sample 50,000
papers, label it as the corresponding coarse field
(e.g., a paper p from the Mathematics field will
form the paper-label pair (p, Mathematics)), and
put it into the pre-training data. These data can train
the LM to perform coarse-grained classification.

MAPLE (CS-Conference). The candidate label
space of CS-Conference for evaluation is the same
as that of CS-Journal for pre-training (i.e., 15,808
labels from Zhang et al. (2022)). Because this label
space is not identical to the original label space of
CS-Conference (with 13,613 labels), we remove
papers that do not have any relevant labels in our
adopted label space.

MAPLE (Chemistry-MeSH). The candidate la-
bel space of Chemistry-MeSH for evaluation is
the same as that of Biology-MeSH and Medicine-
MeSH during pre-training, which is a superset of
the original label space of Chemistry-MeSH.

MAPLE (Geography and Psychology). We di-
rectly use the original data. Since we do not have la-
bel definitions in these two fields, only label names
are used as the text information.

SciDocs (MAG Fields and MeSH Diseases). Un-
der the Linear Classifier setting, we directly use
the original data and their train-val-test split. Under
the Bi-Encoder setting, because no training and val-
idation samples are needed, we merge the training,
validation, and testing sets for evaluation.

A.2 Link Prediction

The SciDocs benchmark (Cohan et al., 2020) is
available at https://github.com/allenai/sci
docs. The PMC-Patients dataset (Zhao et al., 2022)
is available at https://github.com/pmc-pat
ients/pmc-patients. The Recommendation
dataset (Kanakia et al., 2019) is available at
https://github.com/akanakia/microsoft-a
cademic-paper-recommender-user-study.

Citation Prediction Triplets. We directly use the
data from https://huggingface.co/datasets/
allenai/scirepeval/viewer/cite_predictio
n. In each triplet (pQ, pC+, pC−), pQ cites pC+

and pQ does not cite pC−. With a probability of
about 40%, pC− is a hard negative.

SciDocs (Co-view, Co-read, Cite, and Co-cite).
Under the reranking setting, we directly use the
original data. Under the retrieval setting, for “Cite”
links, a query-candidate paper pair (pQ, pC) is
viewed as positive if pQ cites pC according to the
dataset; for “Co-cite” links, a query-candidate pair
(pQ, pC) is viewed as positive if pQ and pC are
co-cited by at least 10 papers in the dataset; for
“Co-view” and “Co-read” links, we cannot derive
a version for retrieval because we do not know
whether (pQ, pC) is positive when pC is not in the
reranking candidate pool of pQ in the original data.

PMC-Patients. In Table 5, because no training and
validation samples are needed, we merge the train-
ing, validation, and testing sets of the Patient-to-
Patient Retrieval task for evaluation. In Table 6, to
compare SciMult with other models on the PMC-
Patients leaderboard, we adopt the original train-
val-test split.
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Dataset #Queries #Positive (Query, Candidate) Pairs

Classification

MAPLE (CS-Journal) (Zhang et al., 2023b) 358,447 1,242,885
MAPLE (Biology-MeSH + Medicine-MeSH) (Zhang et al., 2023b) 1,345,128 1,976,858
MAPLE (Coarse) (Zhang et al., 2023b) 900,000 900,000

Link Prediction

Citation Prediction Triplets (Cohan et al., 2020) 165,340 819,836

Search

SciRepEval-Search (Singh et al., 2022) 528,497 620,033

Table A1: Statistics of Pre-training Data.

Dataset #Queries #Candidates

Fine-grained Classification

MAPLE (CS-Conference) (Zhang et al., 2023b) 261,781 15,808
MAPLE (Chemistry-MeSH) (Zhang et al., 2023b) 762,129 30,194
MAPLE (Geography) (Zhang et al., 2023b) 73,883 3,285
MAPLE (Psychology) (Zhang et al., 2023b) 372,954 7,641

Coarse-grained Classification

SciDocs (MAG Fields) (Cohan et al., 2020) 25,001 19
SciDocs (MeSH Diseases) (Cohan et al., 2020) 23,473 11

Link Prediction (Retrieval)

SciDocs (Cite) (Cohan et al., 2020) 92,214 142,009
SciDocs (Co-cite) (Cohan et al., 2020) 54,543 142,009
PMC-Patients (Patient-to-Patient Retrieval, Zero-shot) (Zhao et al., 2022) 100,327 155,151
PMC-Patients (Patient-to-Article Retrieval, Supervised) (Zhao et al., 2022) 5,959 1,413,087
PMC-Patients (Patient-to-Patient Retrieval, Supervised) (Zhao et al., 2022) 2,812 155,151

Link Prediction (Reranking)

SciDocs (Co-view) (Cohan et al., 2020) 1,000 reranking, 29.98 for each query on average
SciDocs (Co-read) (Cohan et al., 2020) 1,000 reranking, 29.98 for each query on average
SciDocs (Cite) (Cohan et al., 2020) 1,000 reranking, 29.93 for each query on average
SciDocs (Co-cite) (Cohan et al., 2020) 1,000 reranking, 29.95 for each query on average
Recommendation (Kanakia et al., 2019) 137 reranking, 16.28 for each query on average

Search

SciRepEval-Search (Singh et al., 2022) 2,637 reranking, 10.00 for each query on average
TREC-COVID in SciRepEval (Voorhees et al., 2021) 50 reranking, 1386.36 for each query on average
TREC-COVID in BEIR (Voorhees et al., 2021) 50 171,332
SciFact (Wadden et al., 2020) 1,109 5,183
NFCorpus (Boteva et al., 2016) 3,237 3,633

Table A2: Statistics of Evaluation Datasets.

Recommendation. In the original dataset, each
paper only has its MAG ID (Sinha et al., 2015),
while its title and abstract are not included. We find
the title and abstract of most papers in a version
of the Microsoft Academic Graph downloaded in
2021. Those papers whose titles and abstracts are
not found are removed from evaluation.

A.3 Search
The SciRepEval benchmark (Singh et al., 2022)
is available at https://github.com/allenai/s
cirepeval. The BEIR benchmark (Thakur et al.,
2021) is available at https://github.com/bei
r-cellar/beir.
SciRepEval-Search. The original data scores each
query-paper pair (q, p) in the range of 0 to 14 ac-
cording to user click-through events from a schol-
arly search engine. The training and validation sets
of SciRepEval-Search are put into our pre-training

data, where we treat all (q, p) pairs with a positive
score as positive (q, p) pairs. The testing set of
SciRepEval-Search is utilized for in-domain evalu-
ation.
TREC-COVID. We directly use the original test-
ing set. In the SciRepEval version, each query has
multiple segments separated by [SEP].
SciFact and NFCorpus. We directly use the origi-
nal data. Because no training and validation sam-
ples are needed, we merge the training, validation,
and testing sets for evaluation.

B Baseline Details

• SciBERT (Beltagy et al., 2019) is an LM pre-
trained on scientific text using masked language
modeling (MLM) and next sentence prediction
(NSP).

• SentBERT (Reimers and Gurevych, 2019) is a
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general-domain LM that leverages negative sam-
pling to fine-tune BERT for producing better sen-
tence embeddings.

• SPECTER (Cohan et al., 2020) uses paper cita-
tions to generate positive and negative samples
for contrastive fine-tuning of SciBERT.

• PubMedBERT (Gu et al., 2021) is a biomedical
LM pre-trained on PubMed papers using MLM
and NSP. We use the checkpoint pre-trained on
abstracts rather than that on full texts because the
former one performs better on the majority of our
evaluation tasks.

• LinkBERT and BioLinkBERT (Yasunaga et al.,
2022) leverage a Cross-Encoder architecture
that concatenates two linked text segments to-
gether and are trained through MLM and NSP on
Wikipedia and PubMed, respectively.

• OAG-BERT (Liu et al., 2022) is an entity-
augmented scientific LM pre-trained on both aca-
demic texts and their associated metadata entities
(e.g., venues, authors) through masked entity pre-
diction.

• SciNCL (Ostendorff et al., 2022) advances the
sampling strategy of SPECTER to create higher-
quality positives and negatives for neighborhood
contrastive learning.

• SPECTER 2.0 (Singh et al., 2022) is the succes-
sor to SPECTER pre-trained on a much larger
collection of citation prediction triplets and more
diverse tasks from the SciRepEval benchmark
(Singh et al., 2022). We adopt SPECTER 2.0-
Adapters to generate task-specific embeddings
for different tasks.

For all baselines, we set the similarity func-
tion as sim(q, c) = cos(q, c) where q and c are
query and candidate embeddings, respectively, af-
ter LM encoding. (Except for reranking tasks on
SciDocs, where the evaluation code explicitly sets
sim(q, c) = −||q − c||2.)

When using SentBERT and OAG-BERT, we take
the average of all token embeddings to represent
the entire input sequence because this leads to sig-
nificantly better performance; when using other
baselines above, we take the [CLS] embedding.

For SPECTER 2.0, we try to use the most proper
variant in each task. To be specific, following Singh
et al. (2022), for coarse-grained classification, we

use the classification adapter; for link prediction,
we use the proximity adapter; for search, we use
the adhoc query adapter to encoder queries and
the proximity adapter to encode candidate papers.
For fine-grained classification, we test both the
classification adapter and the proximity adapter,
the latter of which achieves better performance on
average, so we choose the proximity adapter.

C Hyperparameter Configurations of
SciMult

For pre-training, we use the AdamW optimizer
(Loshchilov and Hutter, 2019) with (β1, β2) =
(0.9, 0.999) and warm up the learning rate for the
first 5% of the steps. We train the model for 20
epochs with a peak learning rate of 3e-4 and a
weight decay of 0.01. The training is on 48 V100
GPUs with fp16, and the batch size per GPU is
32. When pre-training the four non-Vanilla model
variants, we adopt a two-stage strategy: We first
train a SciMult-Vanilla checkpoint to learn com-
mon knowledge shared across different tasks. Then,
starting from that checkpoint, we leverage task-
aware specialization or instruction tuning for con-
tinual pre-training, expecting the model to learn
task-specific skills.

D More Results on Fine-grained
Classification

In this section, we show the fine-grained classifica-
tion performance of compared methods on MAPLE
(Zhang et al., 2023b) without the label name match-
ing heuristic. The results are in Table A3. We find
that: (1) In comparison with the results in Table 3,
after removing the label name matching heuristic,
all models perform consistently worse. This obser-
vation validates the effectiveness of the heuristic
proposed in Zhang et al. (2023b). (2) Most find-
ings drawn from Table 3 still hold in Table A3. For
example, all SciMult variants can outperform all
baselines in terms of the average metric; SciMult-
MHAExpert is always the best on cross-domain
evaluation datasets.

E Analysis

In this section, we analyze some design choices of
SciMult through controlled experiments.

E.1 Effect of Hard Negatives
We first demonstrate the contribution of hard nega-
tives in our contrastive learning framework. Since
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MAPLE (Zhang et al., 2023b)
Fine-grained classification CS-Conference Chemistry-MeSH Geography Psychology

R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100 Average

BM25 (Robertson and Walker, 1994) 17.41 23.73 29.12 7.78 10.75 13.41 15.81 24.15 35.99 13.00 18.45 24.90 19.54
SciBERT (Beltagy et al., 2019) 0.84 1.98 3.63 0.77 1.58 2.71 3.73 8.05 14.08 1.72 3.48 5.84 4.03
SentBERT (Reimers and Gurevych, 2019) 2.94 5.24 7.97 1.20 2.21 3.45 7.68 14.26 20.97 2.62 4.79 7.67 6.75
SPECTER (Cohan et al., 2020) 16.28 24.50 32.60 11.80 17.94 23.88 18.12 28.02 37.36 15.18 23.46 32.24 23.45
PubMedBERT (Gu et al., 2021) 0.87 1.68 2.75 0.80 1.28 1.83 4.51 8.69 12.56 2.92 5.95 9.79 4.47
LinkBERT (Yasunaga et al., 2022) 1.33 2.55 4.14 0.68 1.58 2.72 0.57 1.16 2.34 0.65 1.13 1.72 1.71
BioLinkBERT (Yasunaga et al., 2022) 1.02 1.95 3.05 0.46 0.87 1.40 0.32 0.68 1.40 0.14 0.39 0.79 1.04
OAG-BERT (Liu et al., 2022) 2.61 4.24 6.09 1.72 2.68 3.74 1.96 3.22 4.75 0.79 1.31 1.97 2.92
SciNCL (Ostendorff et al., 2022) 17.42 25.32 32.82 13.96 20.33 26.22 21.80 32.96 43.02 22.76 32.85 42.30 27.65
SPECTER 2.0 (Singh et al., 2022) 20.90 30.21 38.87 18.72 27.08 34.41 31.61 45.26 56.85 26.27 38.85 50.21 34.94

SciMult-Vanilla 31.52 46.04 58.61 26.96 39.63 50.37 32.20 46.96 59.12 30.02 40.48 50.31 42.69
SciMult-MHAExpert 35.63 51.00 64.02 26.11 38.85 49.89 37.70 52.44 63.99 32.69 44.80 56.28 46.12
SciMult-FFNExpert 38.43 52.66 64.89 22.83 34.93 46.05 26.35 41.37 55.03 27.95 40.05 51.23 41.81
SciMult-Prefix 38.42 52.58 64.51 22.67 34.88 45.95 28.25 43.00 56.55 26.09 38.48 49.71 41.76
SciMult-Instruction 38.47 52.88 65.10 24.36 36.91 48.19 29.55 43.91 57.40 28.80 41.71 53.66 43.41

Table A3: Fine-grained classification performance on MAPLE (Zhang et al., 2023b) when the compared methods
do not use the “label name matching” heuristic.

Vanilla (w/ Hard Negative) Vanilla (w/o Hard Negative)

Classification
(Fine)

60.31 59.89

Classification
(Coarse)

75.51 77.44

Link Prediction
(Retrieval)

48.49 45.90

Link Prediction
(Reranking)

91.19 90.88

Search 66.48 65.87

Table A4: Average metrics of SciMult-Vanilla with and
without hard negatives in each evaluation task.

the benefit of using hard negatives in citation pre-
diction has been reported in Cohan et al. (2020)
and Ostendorff et al. (2022), we mainly show how
hard negative mining in fine-grained classification
(proposed in subsection 3.4) improves the perfor-
mance. Table A4 shows the average metrics of
SciMult-Vanilla when trained with hard negatives
of classification and without them (but still with
hard negatives of the other tasks). We find that
SciMult-Vanilla (with Hard Negative) outperforms
SciMult-Vanilla (without Hard Negative) in most
tasks, including not only classification but also link
prediction and search. This observation indicates
that the general quality of the learned text represen-
tations is enhanced after utilizing hard negatives of
classification.

E.2 Effect of the Pre-training Strategy

As mentioned in Appendix C, when pre-training
non-Vanilla variants of SciMult, we follow a two-
stage strategy: We first warm up the LM by train-
ing a Vanilla variant and then apply task-aware
specialization or instruction tuning, hoping the
first stage learns common knowledge and the sec-
ond stage focuses on task-specific skills. We now
explore the effect of this strategy by comparing

MHAExpert (w/ Warm-up) MHAExpert (w/o Warm-up)

Classification
(Fine)

62.21 59.98

Classification
(Coarse)

76.28 76.08

Link Prediction
(Retrieval)

50.46 47.59

Link Prediction
(Reranking)

91.25 90.89

Search 67.05 62.34

Table A5: Average metrics of SciMult-MHAExpert
with different pre-training strategies in each evaluation
task.

SciMult-MHAExpert with an ablation version:
We skip the warm-up stage and directly use Pub-
MedBERT as the initial checkpoint to start the
second stage. Table A5 demonstrates the perfor-
mance of SciMult-MHAExpert (with Warm-up)
and SciMult-MHAExpert (without Warm-up). We
find that the warm-up strategy has a positive contri-
bution across all tasks.

E.3 Effect of Instructions

We now explore the effect of using different instruc-
tions during inference. As shown in Table 1, during
pre-training, we use the following instruction for
the link prediction task:

“Find a pair of scientific papers that
one paper cites the other.”

We call it the ‘Cite” instruction. Different from
the pre-training data in which links are always cita-
tion links, the evaluation datasets consist of other
link types. Therefore, we consider the following
instructions:

“Find a pair of scientific papers that
are co-viewed frequently.”

“Find a pair of scientific papers that
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“Co-view” “Co-read” “Cite” “Co-cite”
Instruction Instruction Instruction Instruction

Co-view
Prediction

81.16 81.47 82.13 82.08

Co-read
Prediction

83.38 83.63 84.14 84.29

Cite
Prediction

92.47 92.78 92.63 93.11

Co-cite
Prediction

87.49 88.05 89.27 88.83

Table A6: MAP scores of SciMult-Instruction with
different instructions in the SciDocs (Cohan et al., 2020)
link prediction task under the reranking setting.

“Cite” “Co-cite” “Related”
Instruction Instruction Instruction

Link Prediction
(Retrieval)

48.95 49.35 49.28

Link Prediction
(Reranking)

90.32 90.31 90.35

Table A7: Average metrics of SciMult-Instruction with
different instructions in link prediction tasks.

are co-read frequently.”

“Find a pair of scientific papers that
are co-cited frequently.”

“Find a pair of scientific papers that
one paper is related to the other.”

We call these four instructions “Co-view”, “Co-
read”, “Co-cite”, and “Related”, respectively.

Table A6 shows the MAP scores of SciMult-
Instruction with different instructions in the Sci-
Docs (Cohan et al., 2020) link prediction task under
the reranking setting. We find that the “Co-view”
and “Co-read” instructions underperform the “Cite”
and “Co-cite” instructions in most cases, even in
Co-view and Co-read link prediction.

Table A7 shows the average metrics of SciMult-
Instruction with different instructions in link pre-
diction tasks. We find that the “Cite”, “Co-cite”,
and “Related” instructions are on par with each
other.

E.4 Availability of Label Definitions in
Classification

Although both label names and definitions are used
for paper classification during the pre-training of
SciMult, we would like to emphasize that label
definitions are not required but optional during in-
ference. For example, as mentioned in Appendix
A, the Geography and Psychology datasets do not
have label definitions, thus classification on these
two datasets relies on label names only. According
to Table 3 and Table A3, SciMult-MHAExpert out-
performs all baselines consistently on Geography

CS-Conference R@20 R@50 R@100

SPECTER 2.0 (Name Only) 48.14 53.93 58.98
SPECTER 2.0 (Name+Definition) 48.63 55.09 60.68

SciMult-MHAExpert (Name Only) 52.57 61.27 67.84
SciMult-MHAExpert (Name+Definition) 54.02 65.49 75.07

Chemistry-MeSH R@20 R@50 R@100

SPECTER 2.0 (Name Only) 35.73 42.19 46.96
SPECTER 2.0 (Name+Definition) 36.17 43.06 48.26

SciMult-MHAExpert (Name Only) 37.83 46.47 52.59
SciMult-MHAExpert (Name+Definition) 39.41 50.92 59.59

Table A8: Fine-grained classification performance of
SPECTER 2.0 and SciMult-MHAExpert when taking
label names only or label names+definitions as input.

and Psychology.
On CS-Conference and Chemistry-MeSH, we

conduct additional experiments by removing la-
bel definitions and letting the model use label
names only during inference. The performance
of SciMult-MHAExpert and SPECTER 2.0 (the
strongest baseline in Table 3) is demonstrated in
Table A8. We can observe that, after removing la-
bel definitions, although the performance of both
SPECTER 2.0 and SciMult-MHAExpert drops
(which is intuitive because we remove some useful
information), SciMult-MHAExpert consistently
performs better than SPECTER 2.0. In fact, even
if SPECTER 2.0 uses label definitions, SciMult-
MHAExpert still outperforms SPECTER 2.0 with
label names only.
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