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Abstract

How much success in Knowledge Graph Com-
pletion (KGC) would translate into the perfor-
mance enhancement in downstream tasks is an
important question that has not been studied
in depth. In this paper, we introduce a novel
benchmark, namely COMPLEQA, to compre-
hensively assess the influence of representative
KGC methods on Knowledge Graph Question
Answering (KGQA), one of the most impor-
tant downstream applications. This benchmark
includes a knowledge graph with 3 million
triplets across 5 distinct domains, coupled with
over 5,000 question-answering pairs and a com-
pletion dataset that is well-aligned with these
questions. Our evaluation of four well-known
KGC methods in combination with two state-
of-the-art KGQA systems shows that effective
KGC can significantly mitigate the impact of
knowledge graph incompleteness on question-
answering performance. Surprisingly, we also
find that the best-performing KGC method(s)
does not necessarily lead to the best QA results,
underscoring the need to consider downstream
applications when doing KGC1.

1 Introduction

The inherent incompleteness of Knowledge Graphs
(KGs) is a well-recognized problem. As such, a
multitude of methods have been proposed to ad-
dress this issue, spanning statistical relational learn-
ing (Getoor and Taskar, 2007), embedding-based
models (Bordes et al., 2013; Yang et al., 2015;
Sun et al., 2019b), neural-symbolic methods (Yang
et al., 2017; Sadeghian et al., 2019; Qu et al., 2021),
and recent language model-based methods (Yao
et al., 2019; Wang et al., 2021; Saxena et al., 2022).
However, prior studies have largely viewed KG
completion as an end in itself, neglecting to investi-
gate its potential impact on subsequent applications
that utilize the completed KGs.

1Our code and dataset will be released at
https://github.com/PlusRoss/CompleQA
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Figure 1: We compare the performance between incom-
plete and completed KGs by examining their question-
answering results. Dashed arrows in the completed KG
denote new triplets added by KGC.

The applications of KGs span different domains
and tasks. Among them, Knowledge Graph Ques-
tion Answering (KGQA), designed to answer nat-
ural language questions using information from
KGs, is one of the most important. Extensive ap-
proaches have been proposed in recent years (Sun
et al., 2019a; Verga et al., 2021; Ye et al., 2022; Gu
and Su, 2022). Despite the rapid advancement, pre-
vious studies either assume the KGs are complete
or handle incompleteness via specific question-
answering methods (Saxena et al., 2020; Liu et al.,
2022; Saxena et al., 2022), lacking a comprehen-
sive investigation into different approaches. The
impact of KGC on KGQA performance remains
largely unexplored.

In our study, we seek to rectify this oversight
by introducing a novel benchmark COMPLEQA
designed to directly and holistically assess the influ-
ence of KG completion on KGQA. This benchmark
comprises over three million triplets and approxi-
mately 400,000 entities across 5 different domains,
collectively forming the KG. The corresponding
QA dataset includes over 5,000 questions, featur-
ing both single-hop and multi-hop questions. These
questions are sorted into three generalization levels
and are sourced from the GrailQA (Gu et al., 2021)
dataset. For KG completion, we employ entity-
centric incompleteness to align with the QA dataset,
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where the entities in the missing triplets correspond
to those appearing in the questions. Importantly,
different from previous studies, we actually incor-
porate predicted triplets into the KG, and use this
completed KG for question answering, allowing a
seamless study of various KGC and KGQA meth-
ods. Our investigation incorporates the study of
four representative KG completion models, namely
TransE (Bordes et al., 2013), DistMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016), and Ro-
tatE (Sun et al., 2019b). For the KGQA models,
we employ two published leading methods DecAF
(Yu et al., 2023) and Pangu (Gu et al., 2022).

Our experiments show that the incompleteness
of KGs can adversely affect QA performance, and
effective KG completion can help alleviate this and
improve performance by up to 6.1% across vary-
ing degrees of incompleteness. Furthermore, we
discern that KG completion performance does not
always align with downstream performance, due to
the limited overlap in triplet predictions between
models and the disparate influence of these triplets
on KGC and QA performance. We hope our find-
ings stimulate more research that perceives KG
completion not merely as an isolated objective but
as a crucial step toward enhancing the performance
of downstream tasks.

2 Benchmark Construction

In this section, we delineate the procedural steps
employed in the development of our benchmark,
including the knowledge graph, the question-
answering dataset, and the completion dataset.

2.1 Knowledge Graph

A knowledge graph can be denoted as KG =
({E ,R, C,L}, T ), where E is the set of entities,
R is the set of relations, C is the set of classes, L
is the set of literals, and T is the set of triplets. A
triplet, typically denoted as (h, r, t), includes the
head entity h ∈ E , relation r ∈ R and tail entity or
the respective class or literal t ∈ (E ∪ C ∪ L).

The choice of the knowledge graph is a funda-
mental aspect, and in our study, we opt for Free-
base (Bollacker et al., 2008), primarily owing to its
widespread usage in academic circles. The origi-
nal Freebase contains over 80 million entities. To
facilitate affordable exploratory research, we se-
lect a subset of Freebase as our final knowledge
graph by specifically confining the KG to five im-
portant domains: medicine, computer, food, law,

Table 1: Data Statistics of the QA dataset.

Question Category Train Valid Test
Total 3,395 997 973
I.I.D. - 366 381
Compositional - 232 225
Zero-Shot - 399 367

Table 2: Data Statistics of the KG completion dataset.
For the definition of Incompleteness, please refer to
Section 2.3.

Incompleteness Train Valid Test
20% 1,674,405 1,807 2,864
50% 1,667,397 4,519 7,160
80% 1,660,390 7,230 11,456

and business. Within this sub-sample of Freebase,
we encompass 395,965 entities, 383 relations, and
3,042,911 triplets. Despite the reduction in scale,
we posit that this knowledge graph retains a sub-
stantial breadth and can accurately emulate real-
world conditions and challenges. Following this,
we explain the construction of the QA and comple-
tion datasets derived from this KG.

2.2 Question Answering over KG

We denote a QA model intended for KG as
fQA(KG), and follow previous KGQA settings
(Yih et al., 2016; Trouillon et al., 2016; Gu et al.,
2021), where each natural language question q
aligns with an answer set A and a logical form
l, used to extract answers from the KG. We adopt
GrailQA (Gu et al., 2021) as our foundation, which
contains both single-hop and multi-hop questions
and provides comprehensive evaluation over three
generalization difficulty levels: i.i.d., composi-
tional, and zero-shot, determined by whether the
KG schemas that appeared in the test set have been
observed in the training set. The original GrailQA
is based on the full set of Freebase, thus we elim-
inate questions that cannot be answered or con-
tradict the provided answer labels given our sub-
sampled Freebase, This refinement process results
in a total of 5,365 questions with the statistical
details in Table 1.

2.3 KG Completion

The completion task in a KG refers to, given an in-
complete triplet (h, r, ?) or (?, r, t) where its head
or tail entity is missing, the model is required to
predict the missing entity2.

To align it with the QA task for studying its
impact, we first identify all the unique entities

2Following previous conventions, we don’t consider the
situation of missing classes or literals in this study.
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from the validation and test questions3, denoted
as Evalid and Etest respectively. We then retrieve
all triplets linked to these entities, denoted as T ′

valid

and T ′
test. We randomly choose a proportion P of

these triplets as the final validation and test sets,
Tvalid and Ttest for KG completion. All remain-
ing triplets, including those unlinked to those en-
tities, form the training data Ttrain. We adjust P
to be 20%, 50%, and 80% to introduce varying de-
grees of incompleteness. The quantity of triplets
is detailed in Table 2. Note that compared with
random sampling from the entire KG, sampling
triplets based on entities appeared in the questions
can better align the two tasks. Furthermore, this
is also seen as a realistic scenario where relatively
new entities in KGs often come with incomplete
triplets and their related questions are both impor-
tant and challenging.

2.4 Effect of KG Completion over KGQA

To study the impact of knowledge graph comple-
tion on question answering, we incorporate the
completed triplet into the KG, then compare the
QA performance using the original incomplete KG
with the completed KG. This allows us to freely
explore any KGC and question-answering methods.
The process of incorporating triplets is detailed
below.

In the case of each incomplete triplet (h, r, ?),
the model first predicts N candidate tail entities ti
with scores si denoted as [(t1, s1), · · · , (tN , sN )],
where s1 ≥ · · · ≥ sN . To determine whether
triplet (h, r, ti) should be incorporated into the in-
complete KG, we establish a threshold sT . If the
score si ≥ sT , the triplet (h, r, ti) is added to the
KG. Note that we don’t add the triplet which is
already in the KG. The same process is followed
for missing head entity (?, r, t). Suppose T pred

valid

represents the collection of all added triplets for
the validation set and T pred

test for the test set. KG(T )
represents the KG that maintains the consistent
set of entities, relations, classes, and literals but
incorporates a variable set of triplets T . Finally,
we evaluate the performance of the incomplete
KG fQA(KG(Ttrain)) versus the completed KG
fQA(KG(Ttrain ∪ T pred

valid ∪ T pred
test )). The perfor-

mance difference can indicate the utility of KG
completion over the QA task. Further details on
the utilized models, evaluation metrics, and how to
determine sT are provided in the following section.

3GrailQA provides annotated labels for those entities.

3 Methods and Evaluation Metrics

This section presents the methods implemented
on our benchmark and the evaluation metrics em-
ployed to assess their effectiveness.

3.1 Question Answering

We employ two state-of-the-art methods, namely
DecAF (Yu et al., 2023) and Pangu (Gu et al., 2022).
For simplicity, we employ oracle entity linking to
Pangu, avoiding the need to train a specially de-
signed entity linker. In contrast, DecAF operates
based on text retrieval without the need for en-
tity linking. Due to computational limitations, we
chose T5-base (Raffel et al., 2020) as the backbone
model for DecAF and BERT-base (Devlin et al.,
2019) for Pangu. F1 scores of answer matching are
used for the evaluation of QA performance.

3.2 KG Completion

The KGC methods employed in this study com-
prise four representative models: TransE (Bordes
et al., 2013), DistMult (Yang et al., 2015), Com-
plEx (Trouillon et al., 2016), and RotatE (Sun et al.,
2019b). For the implementation of these methods,
we turn to LibKGE (Broscheit et al., 2020), a highly
developed KGC library, with details introduced in
Appendix A.

To measure the performance of KGC, we ad-
here to standard metrics for missing entity predic-
tion: Mean Reciprocal Rank (MRR) and Hits@K
(H@K) in the filtered setting (Bordes et al., 2013).
Importantly, considering our goal to incorporate
predicted triplets into the KG for subsequent ques-
tion answering, we propose to measure triplet
prediction by F1 score: F1 = 2 · |Tpred∩Tgold|

|Tpred|+|Tgold|
where Tpred represents the set of predicted triplets
while Tgold denotes the set of missing ground-truth
triplets. We adjust the threshold sT introduced in
Section 2.4 on the validation split to achieve the
best F1 score. We show such adjustment also pro-
duces good QA performance in Appendix B.

4 Experiments

In this section, we delve into the outcomes of our
empirical investigations. Firstly, from Table 3, it’s
clear that the KG incompleteness negatively affects
performance. Specifically, the F1 scores of DecAF
and Pangu drop by 14.0% and 12.1% respectively
when the KG incompleteness level is 50%. Subse-
quently, we aim to address the following questions:
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Table 3: Experiment results on KG completion and question answering of our benchmark COMPLEQA. Results are
averaged across 3 independent runs with different random seeds. “QA w/ X” signifies the QA performance using
model X. The top performance in each column of each section is highlighted in bold. For QA performance, we
provide a percentage change against scenarios where no KG completion was used, which is color-coded: green for
positive changes and red for negative ones.

Incompleteness Model KGC QA w/ DecAF QA w/ Pangu

MRR H@1 H@3 H@10 F1 F1 F1

0% - - - - - - 0.782 0.880

20%

None - - - - - 0.742 0.846
TransE 0.614 0.533 0.667 0.761 0.467 0.750 ↑1.1% 0.864 ↑2.1%
RotatE 0.667 0.612 0.700 0.763 0.573 0.765 ↑3.1% 0.864 ↑2.1%
DistMult 0.671 0.618 0.718 0.754 0.637 0.757 ↑2.0% 0.865 ↑2.2%
ComplEx 0.681 0.630 0.722 0.756 0.660 0.757 ↑2.0% 0.868 ↑2.6%

50%

None - - - - - 0.672 0.773
TransE 0.462 0.392 0.500 0.590 0.439 0.684 ↑1.8% 0.765 ↓1.0%
RotatE 0.509 0.455 0.538 0.607 0.524 0.701 ↑4.3% 0.778 ↑0.6%
DistMult 0.506 0.471 0.528 0.564 0.565 0.713 ↑6.1% 0.798 ↑3.2%
ComplEx 0.504 0.467 0.527 0.564 0.582 0.712 ↑6.0% 0.798 ↑3.2%

80%

None - - - - - 0.586 0.638
TransE 0.299 0.240 0.324 0.408 0.335 0.578 ↓1.4% 0.650 ↑1.9%
RotatE 0.312 0.265 0.328 0.403 0.373 0.591 ↑0.9% 0.636 ↓0.3%
DistMult 0.255 0.218 0.270 0.320 0.311 0.585 ↓0.2% 0.640 ↑0.3%
ComplEx 0.252 0.212 0.272 0.323 0.320 0.588 ↑0.3% 0.650 ↑1.9%

Q1: How much does the good performance in
KGC translate to the enhancement in QA? The
experimental results in Table 3 demonstrate that
KGC can indeed enhance the QA performance in
the majority of the cases. Notably, the ComplEx
algorithm for KGC boosted the QA performance of
DecAF alone (without KGC) by 6.0% and of Pangu
by 3.2% at 50% incompleteness level. However,
at the 80% incompleteness level, the same Com-
lEx algorithm only boosted the QA performance
of DecAF by 0.3% and of Pangu by 1.9%, which
are much less than the performance gains at the
50% and 20% incompleteness levels. The observa-
tions on other KGC methods demonstrated similar
patterns; some of them even lead to decreased QA
results. This could be attributed to that incorrect
triplets introduced by the KGC methods outweigh
the correctly predicted ones.

To validate this, we construct a scenario that
incorporates only the correctly-predicted triplets
into the KG, while all the incorrect triplets are
discarded. Figure 2, along with other results in
Appendix C, clearly illustrates a significant perfor-
mance enhancement in this scenario, especially at
the 80% incompleteness level, thereby substantiat-
ing the detrimental impact of incorrect predicted
triplets on the QA model.
Q2: Does the best KGC method(s) always lead
to the best QA performance? According to Table
3, we see that better KGC does not always translate
to better downstream outcomes. As an illustration,

20 50 80
Incompleteness%

0.600
0.625
0.650
0.675
0.700
0.725
0.750

F1

ComplEx-DecAF

QA only
KGC + QA
KGC* + QA

20 50 80
Incompleteness%

0.65

0.70

0.75

0.80

0.85

F1

ComplEx-Pangu

QA only
KGC + QA
KGC* + QA

Figure 2: QA performance under different completed
KGs. “QA only” means using the original incomplete
KG for QA. “KGC + QA” means using the KGC-
completed KG. KGC* means only keeping the correct
triplets while discarding all the incorrect ones.

although ComplEx achieves exceptional KGC re-
sults at 20% incompleteness, it does not outperform
RotatE in terms of QA performance when DecAF
is used. Similarly, even though RotatE produces
top-tier KGC outcomes at 80% incompleteness,
it even leads to the worst QA performance when
Pangu is utilized.

To quantitatively assess the relationship between
the performance of KGC and QA, we use Spear-
man’s rank correlation coefficient. This measures
the Pearson correlation between the ranked val-
ues of two variables. In many instances, we find
that the correlation between the KGC metric and
QA metric is not high, with a value below 0.5.
Another observation is that the F1 score of KGC
performance corresponds better with QA perfor-
mance than the mean reciprocal rank (MRR). This
is reasonable because QA performance relies on
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Table 4: Spearman’s rank correlation coefficient be-
tween KGC metrics (MRR and F1) and QA metrics (F1)
with two models DecAF and Pangu.

Incompleteness Metrics F1-DecAF F1-Pangu

20% MRR 0.32 0.95
F1 0.32 0.95

50% MRR 0.40 0.32
F1 0.80 0.95

80% MRR 0.20 -0.63
F1 0.40 -0.30

the completed knowledge graph, which includes
predicted triplets. The F1 score, in this context, is
a more direct measure of the quality of predicted
triplets compared to MRR.

To delve further, we measured the overlap of pre-
dicted triplets among various models and found that
no model’s predictions, correct or incorrect, fully
encompassed the other’s. For example, in a 20%
incomplete KG, ComplEx and RotatE had about
80% shared correct predictions and 30% shared
incorrect ones. In this case, despite ComplEx’s
superior performance in KGC, it doesn’t solely
determine QA performance as various predicted
triplets impact QA differently, and this impact may
not align well with their contribution to KGC per-
formance. This discrepancy points to the need for
KGC methods that optimize both KG completion
and downstream task performance.

5 Conclusion

In this study, we introduced a novel benchmark to
investigate the impact of representative KGC meth-
ods on the Knowledge Graph Question Answering
(KGQA) task. Our findings demonstrate that KG
incompleteness negatively affects KGQA, and ef-
fective KGC can significantly mitigate this issue.
However, we also discovered that best-performing
KGC method does not necessarily lead to the best
KGQA results. Our work underlines the necessity
to view KGC not merely as a standalone goal, but
as a vital step toward improving downstream tasks.

Limitations

While our study offers new insights into the rela-
tionship between Knowledge Graph Completion
(KGC) and Knowledge Graph Question Answer-
ing (KGQA), it has several limitations that require
further exploration.

The primary focus of our study was to examine
the influence of KGC on KGQA, which, although
an essential application of KGs, is just one of many

potential downstream tasks. Other tasks like rec-
ommendation systems and semantic search may
also benefit from KGC, and their responses to KGC
could differ from KGQA. Therefore, more research
is needed to fully comprehend the impact of KGC
on these diverse applications.

Additionally, our study did not employ large
language models for few-shot learning in ques-
tion answering, a technique that is in vogue in the
field of NLP. Assessing the impact of KGC in such
scenarios would provide fascinating insights and
help determine if our conclusions hold true in these
trending methods.

Ethics Statement

An important ethical concern arising from our re-
search is the potential misuse of Knowledge Graphs
(KGs) augmented by Knowledge Graph Comple-
tion (KGC) methods. While KGC aims to enhance
KG completeness and boost Question Answering
(QA) systems’ accuracy, it may inadvertently in-
troduce or propagate biases or inaccuracies if the
KGC algorithms exhibit inherent flaws.

Such biases could affect QA systems, leading to
skewed or misleading responses that can foster mis-
information or reinforce existing biases, especially
in critical decision-making domains. This under-
lines the need for responsible use and continuous
evaluation of KGC algorithms, involving rigorous
validation of predicted triplets and transparency
about algorithmic workings and limitations. Future
work must focus on devising methods to identify,
measure, and rectify biases within KGC algorithms,
promoting ethical use of these technologies.
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A Knowledge Graph Completion

We introduce the hyper-parameter settings for our
KG completion models based on the LibKGE
(Broscheit et al., 2020) library.

The dimensionality of our embeddings is set to
200, utilizing xavier uniform initialization (Glorot
and Bengio, 2010). Following previous approaches
(Bordes et al., 2013; Sun et al., 2019b), we em-
ploy negative sampling for training. In this process,
negative triplets are created for every triplet in the
training dataset by randomly substituting either the
head or tail entity. Each triplet gives rise to 50 neg-
ative triplets, half by replacing the head entity and
half by substituting the tail. The batch size is 4096,
with a maximum of 500 epochs. We deploy early
stopping after 5 evaluations over the validation set,
with one evaluation after every 10 epochs.

When it comes to optimization, we leverage
Adam (Kingma and Ba, 2015) for TransE (Bor-
des et al., 2013) and RotatE (Sun et al., 2019b)
with a learning rate of 0.001. For ComplEx (Trouil-
lon et al., 2016) and DistMult (Yang et al., 2015),
we employ Adagrad (Duchi et al., 2010) with a
learning rate within the range [0.01, 1.0].

For RotatE and TransE, we choose from binary
cross entropy (BCE), Kullback-Leibler divergence
(KL), and margin ranking (MR) for the training
losses, and explore the loss argument within [0, 50].
For ComplEx and DistMult, we utilize BCE loss
with a loss argument of 0.0. We experimented with
other training losses and arguments, but found them
ineffective. Hyperparameter search is conducted
via Bayesian optimization using the Ax framework
(https://ax.dev/), with the number of trials as 40.

B Score Threshold

We aimed to study the effect of score threshold sT
for each KGC method, which is introduced in Sec-
tion 2.4. We vary this threshold for each method
to evaluate the corresponding KGC and QA perfor-
mance. As shown in Figure 3, the KGC F1 score
initially rises and then falls, as increasing the score
threshold leads to fewer triplets being added, which
although improves precision, it negatively impacts
recall. We see that the curve representing the rela-
tionship between the score threshold and the KGC
F1 score appears to coincide well with the QA
performance curve. However, there are instances
where this alignment is less pronounced, indicating
that utilizing KGC F1 to pinpoint the task-specific
score threshold provides a useful starting point, but
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Figure 3: Performance variation with different score
threshold. Each plot depicts the performance trends
for one KGC method at 50% KG incompleteness level.
The curves represent changes in KGC F1 scores on the
validation split and QA w/ DecAF F1 scores on the test
split as the score threshold varies.

is not sufficient on its own. We believe that further
investigation of this issue could provide valuable
insights for future research.

C Filtering Incorrect Triplets

As additional experiments for Section 4.1, we
present the question-answering performance of
other KGC methods besides ComplEx after dis-
carding incorrect triplets and retaining only the
correct ones. As depicted in Figure 4, it’s clear that
QA efficacy significantly improves when incorrect
triplets are excluded, notably when the knowledge
graph is 80% incomplete, which reflects a situation
where KGC quality is notably poor, with a high
frequency of incorrect triplet predictions.
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Figure 4: QA performance under different completed
KGs. “QA only” means using the original incomplete
KG for QA. “KGC + QA” means using the KGC-
completed KG. KGC* means only keeping the correct
triplets while discarding all the incorrect ones.
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