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Abstract

Since the introduction of distantly supervised
relation extraction methods, numerous ap-
proaches have been developed, the most rep-
resentative of which is multi-instance learning
(MIL). To find reliable features that are most
representative of multi-instance bags, aggrega-
tion strategies such as AVG (average), ONE
(at least one), and ATT (sentence-level atten-
tion) are commonly used. These strategies tend
to train third-party vectors to select sentence-
level features, leaving it to the third party to
decide/identify what is noise, ignoring the in-
trinsic associations that naturally exist from
sentence to sentence. In this paper, we pro-
pose the concept of circular cosine similarity,
which is used to explicitly show the intrinsic
associations between sentences within a bag.
We also consider the previous methods to be
a crude denoising process as they are inter-
rupted and do not have a continuous noise de-
tection procedure. Following this considera-
tion, we implement a relation extraction frame-
work (HFMRE) that relies on the Huffman tree,
where sentences are considered as leaf nodes
and circular cosine similarity are considered as
node weights. HFMRE can continuously and
iteratively discriminate noise and aggregated
features during the construction of the Huffman
tree, eventually finding an excellent instance
that is representative of a bag-level feature. The
experiments demonstrate the remarkable effec-
tiveness of our method1, outperforming previ-
ously advanced baselines on the popular DSRE
datasets.

1 Introduction

In natural language understanding tasks, relation
extraction is an important fundamental task. Its
goal is to understand the contextual information

∗ Equal Contribution
† Corresponding author

1The source code and data can be available at
https://github.com/shaocong-qy/HFMRE

Figure 1: Three aggregation strategies in the MIL frame-
work.

of a sentence or paragraph to identify the target
relationships of entities in the text. Translating peo-
ple’s perceptions of the physical world into seman-
tic information that a computer can understand in
a structured format. Traditional relation extraction
methods currently rely on large-scale, high-quality
datasets, which are often labor-intensive and time-
consuming. To address the difficulty of obtain-
ing high-quality annotated samples, Mintz et al.
(2009) et al. proposed a distantly supervised rela-
tion extraction algorithm. They make an important
assumption: for a triad in an existing knowledge
graph, it is assumed that any sentence in an external
document repository (e.g. Wikipedia) that contains
the pair of entities reflects this relation to some ex-
tent. Based on this assumption, the distantly super-
vised algorithm can label sentences in an external
document repository with relations based on an an-
notated mini-knowledge graph, which is equivalent
to doing automatic annotation of samples. How-
ever, this assumption suffers from data annotation
problems, since a sentence may contain only this
entity pair, but does not express the relationship in
Freebase.

To alleviate the noise problem present in the
dataset, Zeng et al. (2015) et al. first combined
multi-instance learning with deep learning, which
is now the dominant learning framework. Given a
set of multi-instance bags with categorical labels,
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each bag contains several sentences without cate-
gorical labels. The model builds a multi-instance
classifier by learning from multi-instance bags and
applies this classifier to the prediction of unknown
multi-instance bags. There are three main meth-
ods used to reduce or eliminate noisy data from
the bag during MIL: Average (AVG) (Gao et al.,
2021), At-Last-One (ONE) (Zeng et al., 2015) and
Sentence-Level Attention (ATT) (Lin et al., 2016).
As shown in Figure 1, the AVG is an average rep-
resentation of all sentences in the bag as a feature
representation of the bag. The ONE is to first select
the highest confidence sentence in each bag, and
then use only the highest confidence sentence as a
feature of the bag for subsequent training. The ATT
uses a selective attention mechanism that enables
the model to assign different weights to sentences
in a bag, using a weighted average of the sentence-
level representations to produce a bag-level repre-
sentation.

All of the above methods have some weaknesses.
The AVG uses an averaging operation that treats
each sentence in the bag equally and inevitably in-
troduces noise into the bag-level feature representa-
tion, causing a degradation of model performance.
The ONE, based on the at-least-one assumption,
selects the highest scoring sentence in the bag as
the bag-level feature representation, avoiding the
effect of noise as much as possible, but not mak-
ing full use of the data in the bag, resulting in a
waste of data resources. The ATT uses learnable
attention to selectively assign weights to sentences,
and although it compensates for the shortcomings
of AVG and ONE, however, we believe that this
is not an optimal aggregation strategy, as it does
not take into account information about the corre-
lation between sentences, and each sentence exists
in isolation within the bag.

We hold one hypothesis — the inherent asso-
ciation between sentences within the same bag is
more helpful in discriminating noise. Based on
this opinion, a simple and effective baseline has
been developed. First, the intrinsic association of
the two sentences is visualized using cosine simi-
larity. However, we are not the first to use cosine
similarity to reduce the effect of noise, Yuan et al.
(2019) et al. calculate the similarity between sen-
tences and relation vectors to capture the correla-
tion between them, and thus reduce the number of
sentence instances that are not correlated with the
relation facts. This is an indirect approach, where

the relation vectors are trained, and are likely to
be influenced by other factors in the training pro-
cess, and it is largely impossible to train a perfect
relation vector. We use a more direct and effective
way to identify the noise, called the circular cosine
similarity method (see section 3.2). Simply put,
it is a loop that calculates the sum of the similar-
ity of each sentence in the bag to other sentences.
The greater the sum of the similarity of a sentence,
the more relevant it is to other sentences and the
more likely it is to be a positive example, and vice
versa. Then, to exploit this correlation information
between sentences, we consider each sentence in
the bag as a node needed to construct a Huffman
tree based on the idea of Huffman trees, and use
the circular cosine similarity as node weights to it-
eratively identify noise and aggregate sentence fea-
tures by merging old nodes to generate new nodes,
and finally construct an excellent instance that can
represent the features of the bag.

As the paper uses the Huffman tree idea to solve
the relation extraction problem, we name our base-
line model HFMRE. By constructing Huffman
trees to reduce noise, finding excellent instances
within bags has reasonable interpretability: A Huff-
man tree is the tree with the shortest path with
weights, the higher the weight, the closer to the
root node. Extending to the Huffman tree in the
paper, the circular cosine similarity is used as the
weight of the nodes, so that the positive instances
in the bag are close to the root node and the neg-
ative instances are far from it. When aggregat-
ing sentence features, the negative instances are
then fused one step ahead of the positive instances.
Since the aggregation of features is a continuous
updating process, as shown in Figure 2, the positive
instances express more features in the root node,
and the noise impact of the negative instances is
significantly reduced. To validate the effective-
ness of HFMRE, we evaluated our model on three
mainstream DSRE datasets, including NYT10d,
NYT10m and wiki20m. The results showed that
HFMRE significantly outperformed the current
state-of-the-art baseline, increasing the AUC by
3.2% and boosting the P@M to 86.4. In addition,
the ablation study showed the individual contribu-
tion of each module.

Overall, the main contributions of the paper are
summarized as follows:

1. We propose a baseline model HFMRE for
the DSRE task. It uses the idea of the Huffman
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Figure 2: An example of nodes fusion during Huffman
tree construction. The right child is the one with the
lower weight by default.

tree algorithm, which treats sentences as nodes to
be selected, discovers noise and aggregates sen-
tence information in the process of constructing a
Huffman tree, and ultimately constructs excellent
instances that express bag-level features.

2. The concept of circular cosine similarity
is proposed. Compared with the selective atten-
tion mechanism, circular cosine similarity can di-
rectly, quickly and effectively discriminate poten-
tially noisy data in the bag, and thus effectively
guide the model to selectively aggregate sentence
features.

3. The experiments demonstrate that our method
outperforms previous baselines, achieving state-of-
the-art results on three datasets and providing a
robust baseline model for the DSRE task.

2 Related Work

2.1 Distantly Supervised Relation Extraction

Distantly supervised relation extraction was pro-
posed as a solution to the problem that large
amounts of high-quality annotated data are diffi-
cult and costly to obtain. The main learning frame-
work currently available is multi-instance learn-
ing, which was first applied to relation extraction
by Hoffmann et al. (2011) et al. The method
was soon used in most neural models because of
its effectiveness in alleviating the noise problem
in the dataset. E.g., neural networks based on
CNN(Zeng et al., 2015; Jiang et al., 2016), Trans-
former(Alt et al., 2019), GNN(Vashishth et al.,
2018), BERT(Christou and Tsoumakas, 2021), etc.
Although MIL’s pattern can greatly reduce DS
noise, it does not represent many other useful sen-
tence features in the dataset. Therefore many other
frameworks have recently been derived based on
MIL. (1) Contrastive learning framework. Chen

et al. (2021) et al. propose a contrastive instance
learning framework that uses the initial MIL as an
encoder of relational triples and constraint positive
pairs against negative pairs for each instance. So
as to improve the performance of DSRE models
in the MIL framework. (2) Reinforcement learn-
ing framework. Qin et al. (2018) et al. propose a
deep reinforcement learning framework that can
be applied to any state-of-the-art relation extrac-
tor. Feng et al. (2018) et al. define instance selec-
tion as a reinforcement learning problem, where
the instance selector selects high-quality sentences
by reinforcement learning. The relation classifier
makes predictions about the sentences, providing
rewards to the instance selector. (3) Hierarchical
Contrastive Learning Framework. Li et al. (2022)
et al. propose a hierarchical contrastive learning
framework for the DSRE task. It can make full use
of semantic interactions within specific levels and
cross levels to reduce the impact of noisy data.

2.2 Huffman Tree

The Huffman tree was first proposed by Huffman
(1952), also known as an optimal binary tree, for
a given N leaf node with weighted values, the
aim is to construct a minimum binary tree with
weighted path lengths. The Huffman tree is a data
structure that is commonly used for data compres-
sion and coding. Later, Huffman trees were also
used in other areas such as channel coding(Yin
et al., 2021; Liu et al., 2018; Wu et al., 2012), text
compression(Dath and Panicker, 2017; Bedruz and
Quiros, 2015; Mantoro et al., 2017), image com-
pression(Yuan and Hu, 2019; Kasban and Hashima,
2019; Patel et al., 2016), audio coding(Yi et al.,
2019; Yan and Wang, 2011), etc.

In recent years, with the development of deep
learning, the idea of Huffman trees has been in-
troduced. Morin and Bengio (2005) et al. was
first proposed using Huffman trees for Hierarchical
Softmax, and the method was subsequently widely
used and developed by later generations(Mnih and
Hinton, 2008; Chen et al., 2016; Mikolov et al.).
With the rise of large deep neural network models,
Gajjala et al. (2020) et al. train large deep neural
network (DNN) models in a distributed manner
based on Huffman coding techniques. Due to the
computationally intensive and memory-intensive
nature of neural networks, which makes them diffi-
cult to deploy on embedded systems with limited
hardware resources, Huffman coding was intro-
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duced to enable model compression. Han et al. et
al. apply a three-stage pipeline: pruning, trained
quantization and Huffman coding. The network
is first pruned by learning only the critical con-
nections. Next, the weights are quantized to force
weight sharing and finally, Huffman coding is used
to compress the parameter files. Wang et al. (2020)
et al. proposed a compression schema (HEPC)
based on Huffman coding, which can reduce the
kernel schema number and index storage overhead
of sparse neural networks with little loss of accu-
racy. Today, Huffman trees have been used in a
variety of fields, for example, in natural language
processing, Khan et al. (2020) et al. to develop
fixed output length text codes using Huffman’s al-
gorithm and to construct new vocabularies based on
codewords. In the field of biology, Jin et al. (2016)
et al. introduced Huffman coding to calculate the
similarity of DNA sequences.

3 Methodology

We treat each sentence in the bag as a node to be
selected that we need to construct a Huffman tree,
so each bag eventually generates a Huffman tree
and then looks through the Huffman tree to find
excellent instances. The Huffman tree constructed
in the method has the following characteristics:

1) The parent nodes in a Huffman tree aggregate
the features of the child nodes.

2) The root node of a Huffman tree aggregates
the features of all sentences within the bag and is
used as the bag feature for relation querying.

3) A sentence with more reflected bag features
(excellent instances) is closer to the root node and
expresses more features in the root node.

The main architecture of the HFMRE model is
shown in Figure 3. There are four major steps: sen-
tence encoding, constructing Huffman tree nodes,
constructing Huffman trees and relation querying.
The specific details are described below.

3.1 Sentence encoding

Specifically, we employ a bag Bi(e1, e2) =
{Ii,1, Ii,2, · · · , Ii,n} as a unit to encode sentence
features, each containing n sentences. For each
sentence Ii,j =

(
xj
1,x

j
2, · · · ,xj

n

)
in the bag, we

add the special token "[CLS]" at the beginning of
the sentence, and the head and tail entities in the
sentence are surrounded by the special symbols "$"

and "#"(Wu and He, 2019). Thus, the sentence is
processed before being fed to the encoder as:

Ii,j = ([CLS], · · · , $, · · · , $, · · · ,#, · · · ,#, · · · )
(1)

We input the sentences to the encoder (BERT)
to generate a context-rich semantic embedding Îi,j
containing each token x, then followed the setting
of Devlin et al. (2019) et al. using the final hidden
state corresponding to the special token "[CLS]"
as the aggregated sequence representation of the
relation extraction task.

3.2 Constructing Huffman Tree Nodes
In this section, we will prepare the leaf nodes
needed for the Huffman tree algorithm. It is well
known that each node to be selected in a Huffman
tree has an information frequency (often recorded
as a weight) and a name that belongs to it. We
therefore make three important assumptions to
make the conversion of sentences to leaf nodes:

a. Assume that the order of the sentence in the
bag is the “name” attribute of the node.

b. Assume that the circular cosine similarity of
the sentence is the “weight” attribute of the node.

c. Further, we add a new attribute “value” to
the node, and assume that the encoded feature of
the sentence is the “value” attribute of the node,
which is used as a feature vector when aggregating
excellent instances within the bag.

In conclusion, this is the conceptual definition
of the nodes of the Huffman tree in this study. The
conceptual diagram of the nodes is shown in Figure
3 and the formula is expressed as follows:

Ni⟨name|weight|value⟩ (2)

The circular cosine similarity is the sum of the
cosine similarity of a sentence to all other sentences
in the bag. As shown in Figure 3, each sentence
in the bag is calculated against the other sentences,
just like in a round-robin football game, where each
team plays each other once. Ultimately, we take
the sum of the similarity of a sentence to other sen-
tences as the circular cosine similarity of that sen-
tence. Let a bag Bi(e1, e2) = {Ii,1, Ii,2, · · · , Ii,n}
contains n sentences, then the circular cosine simi-
larity of the jth sentence is defined as:

CCSCj =

n∑

x=1

Îi,j ∗ Îi,x
||Îi,j |||Îi,x||

(3)
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Figure 3: Model architecture for HFMRE.

There is some conceptual advantage in using cir-
cular cosine similarity as the weight of a Huffman
tree node, which essentially reflects the overall rel-
evance of a sentence to other sentences. Assuming
that sentence A has a higher circular cosine simi-
larity than sentence B, then sentence A is a better
representation of the whole bag than sentence B,
because sentence A is closer to the other sentences
and jointly represents the bag features. Moreover,
when a sentence has significantly lower circular
similarity than other sentences, then there is a high
probability that the sentence is a noisy piece of
data.

3.3 Constructing a Huffman Tree

Huffman tree, originally a data structure for com-
puter numerical storage, is used to compress and
encode data. Its construction is a continuous itera-
tive process, merging the two binary trees with the
smallest weight each time, and the weight of the
merged tree is the sum of the weight of the first two
trees, so the structure of Huffman tree is a bit like
a pyramid, and the node at the top has the largest
weight.

In this paper, we follow the algorithmic
idea of Huffman trees. The two sentences
with the smallest weight (circular cosine simi-
larity) are fused each time in the set of nodes
list{node1, node2, · · · , noden}, where the sen-
tence with the smaller weight is multiplied by a
reduction factor α, which is used to control the ef-
fect of noise. As shown in Figure 2. The new node
after fusion can be formulated as:

Nnew⟨name⟩ = argMax
{
N1,2,...,n⟨name⟩

}
+ 1 (4)

Nnew⟨value⟩ = σ
([
Ni⟨value⟩⊕Nj⟨value⟩∗α

]
∗Ws

)
+bs

(5)

Nnew⟨weight⟩ =
n∑

x=1

Nnew⟨value⟩ ∗ Nx⟨value⟩
||Nnew⟨value⟩||||Nx⟨value⟩| |

(6)

where σ denotes the non-linear activation func-
tion, ⊕ denotes vector connection, Ws denotes
a trainable parameter matrix, and bs is the bias,
both of which are shared globally, α is a hyper-
parameter, and n denotes the total number of nodes
in the set.

It is worth noting that due to the merging of two
nodes into a new node (subtree), the set of nodes
is thus updated — old nodes are deleted and new
nodes are added. In equation (6), the weights of the
new node are the circular similarity between the
sentences in the updated set of nodes, and likewise,
the weights of the other nodes to be selected in the
set are updated at the same time.

The above steps are repeated until there is only
one node left in the set list, i.e. the root node of the
Huffman tree, root⟨name|weight|value⟩, and the
Huffman tree construction is complete. Based on
the three traits of the Huffman tree in our method,
the root node continuously aggregates the features
of the outstanding instances in the bag, so we use
the feature root⟨value⟩ of the root node for subse-
quent relation querying. The code implementation
of this process can be found in the Appendix D.
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3.4 Relation Querying

We trained a query vector qi for each relation ri
separately, as shown in Figure 3, and all the query
vectors form a relation matrix, denoted as Q. The
root node constructed in the above process is then
denoted as K. The attention score of each query
vector qi and root⟨value⟩ is calculated based on
the idea of attention, and then activated by sig-
moid function, the probability pi of root⟨value⟩
and each relation ri is returned. In inference, a
positive prediction is performed if pi > threshold
(0.5). The process is denoted as:

P(K|Q) = sigmoid(QKT ) (7)

3.5 Loss Function

We use a simple binary cross-entropy loss function
without adding any loss term to evaluate the differ-
ence between the predicted label and the gold label
for each bag.

4 Experiments and Analysis

We conduct experiments on popular datasets from
the DSRE task to validate the effectiveness of our
method. The experimental results were analyzed
in detail and ablation experiments were performed
to understand the key factors affecting the perfor-
mance of the model.

4.1 Datasets

We evaluated our method HFMRE on three popu-
lar DSRE benchmarks — NYT10d, NYT10m and
Wiki20m, and the statistics for the datasets are pre-
sented in Appendix C.

NYT10d is the most popular dataset used on
distantly supervised relation extraction tasks from
Riedel et al. (2010) et al. The dataset was distantly
supervised by NYT corpus with Freebase.

NYT10m is a dataset recently published by Gao
et al. (2021) et al. It merges some inappropri-
ate relation categories from NYT10 to form a 25-
category relation dataset and contains a manually
annotated test set.

Wiki20m is also published by Gao et al. (2021)
et al. Its test set was derived from the supervised
dataset Wiki80, and the training/validation/test set
was repartitioned to ensure that no identical sen-
tence instances existed between the three partitions
to avoid any information leakage.

Figure 4: PR Curve for Models on NYT10d.

4.2 Evaluation Parameters and
Hyper-parameters

We follow the previous setup and use evaluation
parameters that are widely used in the literature.
These include P@N (P@100, P@200, P@300):
indicating the top N most confident predictive pre-
cisions computed by a model on a triad; P@M:
indicating the average of the three P@N results
above; AUC: indicating the area under the ROC
curve, meaning the classifier’s ability to classify
positive and negative cases; M-F1: macro f1; µ-F1:
micro f1, and we also plotted PR curves to show
the trade-off between model precision and recall.

We use bert-base-uncased as the pre-training
weights for our model HFMRE, and the detailed
settings of the hyper-parameters are given in Ap-
pendix A.

4.3 Baseline Models
For the NYT10d dataset, we compared some
of the models that are representative of recent
years. Including PCNN-ATT(Lin et al., 2016),
RESIDE(Vashishth et al., 2018), DISTRE(Alt
et al., 2019), REDSandT(Christou and Tsoumakas,
2021), CIL(Chen et al., 2021) and HiCLRE(Li
et al., 2022). For the recently released datasets
NYT10m and Wiki20m, we report the compari-
son results with the baseline models BERT-ONE,
BERT-AVG, and BERT-ATT from the original pa-
per(Gao et al., 2021), and we additionally add com-
parisons with the more robust model CIL and the
latest model HICLE.

4.4 Evaluation on Distantly Supervised Set
Table 1 summarizes the experimental results of
our model versus the baseline models on NYT10d,
where bold indicates the best score and underlining
indicates the second best score. As can be seen
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Models
NYT10d

AUC P@100 P@200 P@300 P@M
PCNN-ATT 34.1 73.0 68.0 67.3 69.4
RESIDE 41.5 81.8 75.4 74.3 77.2
DISTRE 42.2 68.0 67.0 65.3 66.8
REDSandT 42.4 78.8 75.0 73.0 75.3
CIL 50.8 90.1 86.1 81.8 86.0
HiCLRE 45.3 82.0 78.5 74.0 78.2
HFMRE 54.0 89.0 87.0 83.3 86.4

Table 1: Experiment results on distantly supervised datasets.

from the above results: (1) our model HFMRE
significantly outperforms all baseline models, im-
proving by 3.2 AUC pts compared to the strongest
baseline CIL, even when the CIL uses an additional
loss term (MLM loss, CL loss). (2) Our model
achieves the best performance on all metrics except
for the P @100 metric, which was slightly lower
than CIL. (3) Our model achieves a state-of-the-art
new result on the NYT10d dataset.

Figure 4 reflects the overall precision-recall pro-
file of our model HFMRE versus the other baseline
models on NYT10d. It can be observed from the
curves that (1) our HFMRE model has a more con-
vex curve compared to the other baseline models,
enclosing almost all other curves, especially in the
threshold interval of 0.2 to 0.8, showing higher pre-
cision and recall results. (2) Although our curve
is slightly lower than the CIL in the initial small
interval, which may be the reason why our model
is slightly lower than the CIL in the P@100 metric,
it is clearly higher for us in the other intervals.

4.5 Evaluation on Manually Annotated Set

The test set implemented using the distant supervi-
sion hypothesis suffers from data annotation prob-
lems and does not accurately reflect model perfor-
mance, so we further evaluated our method on test
sets using manual annotation (NYT10m, Wiki20m).
The results of the experiment are shown in Ta-
ble 2. (1) On NYT10m, our model achieves the
best scores on the AUC (63.4) and µ-F1 (62.4) met-
rics, and the second best score on M-F1(35.7). We
can also observe an interesting phenomenon that, in
contrast to the NYT10 dataset, the HICLRE model
outperforms the CIL model across the board, and
we believe that the different levels of semantic inter-
action and multi-granularity recontextualization of
the HICLRE model can play a greater role in anno-
tating accurate data. (2) On Wiki20m, surprisingly

BERT-AVG achieves the best AUC result, which
we suspect is caused by the different principles of
"N/A" relation labeling in Wiki20m and NYT10
—Wiki20m labels the relations of entity pairs out-
side of its relation ontology as "N/A", and NYT10
labels entity pairs without relations as "N/A". In
other words, our model may predict the entity pair
marked as "N/A" in Wiki20m as a relation other
than the relation ontology. We achieved the best
scores on the M-F1 and µ-F1 metrics, demonstrat-
ing that we are still the best performing model in
terms of overall accuracy and recall.

In summary, our model has been well gener-
alized and is still able to guarantee performance
in real scenarios with manual annotation, which
means that our approach can be applied to real
problems.

4.6 Ablation Study

The following ablation experiments are designed to
understand the factors affecting the performance of
the HFMRE model: (1) To verify the validity of the
circular cosine similarity, instead of using the circu-
lar cosine similarity to identify the in-bag noise, we
identify the noise by the regular sentence-level at-
tention and then construct a Huffman tree based on
the attention score. (2) To verify the validity of the
relation query, we use the conventional full connec-
tion layer instead of the relation query to obtain the
probability score of each relation. (3) To verify the
validity of constructing Huffman trees, we perform
subsequent relation querying by weighting the sen-
tences in the bag according to the cosine similarity
summation, such that HFMRE degenerates into a
common multi-instance learning framework. (4)
We remove all three components mentioned above
so that HFMRE degrades to plain BERT-Att, using
BERT-Att as a base criterion for comparison. The
results of the experiments on the NYT10m dataset
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Models
NYT10m Wiki20m

AUC M-F1 µ-F1 AUC M-F1 µ-F1
BERT-ONE 58.1 33.9 61.9 88.9 81.1 81.6
BERT-AVG 56.7 35.7 60.4 89.9 82.0 82.7
BERT-ATT 51.2 25.8 54.1 70.9 64.3 66.8
CIL* 59.5 36.3 60.5 88.7 81.9 82.4
HiCLRE* 61.4 36.9 60.9 85.6 76.7 78.0
HFMRE 63.4 35.7 62.4 89.1 82.4 83.3

Table 2: Experiment results on human-annotated datasets.* means that we have run their model on the datasets
which were not covered in the original paper and reported the results. We have obtained the original code of the
model from the respective authors and have successfully replicated the results in their paper.

Models AUC Change in AUC
(1) -CCSC 60.2 -3.2
(2) -Relation Query 57.7 -5.7
(3) -Huffman Tree 58.2 -5.2
(4) BERT-Att 51.2 -12.2

Table 3: Ablation experiments on the nyt10m dataset.

are shown in Table 3.

From the experimental results, it is noted that all
four models after ablation show a significant per-
formance degradation compared to the complete
model HFMRE. From model (1) HFMRE(-CCSC)
can confirm our previous speculation that the cir-
cular cosine similarity method does focus more
on noise than traditional selective attention, and
that the intrinsic connections between sentences
are of great benefit in identifying noise. Model (2)
HFMRE (-Relation Query) performance dropped
by 5.7 AUC pts, illustrating the effectiveness of
our relation querying step, which indeed can query
through the relation matrix to a relation that best
fits the entity pair. Model (3) HFMRE(-Huffman
Tree) demonstrates that constructing a Huffman
tree is an essential process and that the bag-level
features constructed by this process can effectively
improve the performance of the model. When we
ablate the model in its entirety, the performance
of the model (4) BERT-Att shows a huge reduc-
tion (63.4 → 51.2), which once again illustrates
the effectiveness of the modules in our approach.
These modules are complementary to each other
and are indispensable. We conducted the same ex-
periments on the remaining datasets and the results
are presented in Appendix B.

Encoder AUC P@100 P@200
PCNN 44.6 94.0 92.5
SPANBERT 61.0 93.0 91.5
BERT 63.4 99.0 95.0

Table 4: Experimental results of different encoders on
nyt10m dataset.

4.7 Case Study

4.7.1 The Influence of Sentence Encoders
To further understand the effectiveness of our
method, we conduct experiments using different
encoders to verify that our method is encoder-
independent. Taking nyt10m as an illustration, the
experimental results are shown in Table 4.

We report experimental results of the model on
three different encoders and find interesting phe-
nomena. Firstly, our model performs well on pre-
trained models (BERT, SPANBERT), enough to
match or even surpass existing methods. Second,
on PCNN, the AUC metric of the model gets signif-
icantly decreased due to the structural flaws of the
PCNN model, however against the common sense
the model does not decrease on the P@M (100,
200) metrics, but instead outperforms HFMRE
(SPANBERT). Overall, HFMRE achieves good re-
sults using different encoding methods, proving
that our approach is encoder-independent.

4.7.2 The Influence of Different Model
Combinations

We have demonstrated the effectiveness of the in-
dividual components of the HFMRE model in our
ablation study, and in order to gain a deeper un-
derstanding of the positive effects of the individual
components, we conducted experiments with dif-
ferent combinations of Sentence Encoder = {BERT,
SPANBERT, PCNN}, Weight = {Circular Cosine
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Models AUC
(A)PCNN+CCSC+Huffman Tree 44.6
(B)PCNN+ATT+Weighted Average 56.8
(C)BERT+ATT+Weighted Average 51.2
(D)BERT+ATT+ Huffman Tree 60.2
(E)BERT+CCSC+ Weighted Average 58.2
(F)BERT+CCSC+Huffman Tree 63.4
(G)SPANBERT+CCSC+Huffman Tree 61.0

Table 5: Experimental results of different model com-
binations on the nyt10m dataset.

Similarity (CCSC), Attention Score (ATT)}, and
Aggregator = {Weighted Average, Huffman Tree}.
Taking nyt10m as an illustration, the experimental
results are shown in Table 5.

The analysis reveals that (1) In the case of BERT
as an encoder, both our proposed components
CCSC and Huffman Tree can substantially improve
the model performance, and using combination
(C) as a baseline comparison, it can be observed
that the performance of combinations (D), (E), and
(F) are all significantly improved. (2) Our model
architecture is suitable for BERT or its variant mod-
els (SPANBERT, etc.), but not suitable for PCNN.
We suspect that this is due to the convolutional
kernel, which messes up the overall semantics of
a sentence. The features encoded by PCNN are
composed of many local semantics, rather than
BERT encoding features from the perspective of
the global semantics of the whole sentence. Be-
cause of this coding characteristic of PCNN, the
original position of the sentence in the vector space
changes, so that the circular cosine similarity can
not distinguish the noise effectively.

5 Conclusion and Outlook

In this work, we propose a relation extraction
model HFMRE for distantly supervised tasks to
address the shortcomings of existing aggregation
strategies. Moving away from the traditional mind-
set, HFMRE innovatively treats sentences as leaf
nodes and continuously identifies noise and aggre-
gates positive example features within the bag as
the sentences are used to construct Huffman trees.
Experiments have demonstrated the effectiveness
of our method, as compared to existing baseline
models, our HFMRE can significantly identify in-
bag noise and is able to find an excellent instance
that represents a bag-level feature.

In future work, we see more possibilities for the

HFMRE architecture. For example, HFMRE can
construct different Huffman trees for different re-
lations, i.e. 53(Number of relations in NYT10d
dataset) Huffman trees can be constructed within a
bag, and then relation querying can be performed
on the 53 outstanding instances. Alternatively, pos-
itive pair Huffman trees and negative pair Huff-
man trees can be constructed separately to further
improve model performance through contrastive
learning.

Limitations

Although our HFMRE is able to find excellent bag-
level features, there are still some limitations. (1)
The complexity of our method is determined by the
number of nodes needed to construct a Huffman
tree, so when there are too many sentences in a
multi-instance bag, the complexity of the model
skyrockets, which means that more GPU memory
is needed. In practice, therefore, we limit the num-
ber of nodes and we select the required Huffman
nodes from a multi-instance bag by random sam-
pling. Through experimentation, we recommend
that selecting 10 and less number of sentences
from a bag as nodes is the optimal choice.(2) Our
HFMRE has only been experimented on monolin-
gual datasets, and its performance on multilingual
datasets has yet to be verified.
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A Hyper-parameter Setting and
Implementation Details

Hyper-parameters Value
hidden size 786
max_seq_len 258
epochs 3/3/5
learning rate 2e-5
weight_decay 1e-5
train batchsize 16
test batchsize 16
Activation function tanh
optimizer adamw
num_nodes 1/6/6

Table 6: Detailed settings for hyper-parameters.
num_nodes represents the maximum number of nodes
needed to construct a Huffman tree.

Implementation details: The IDE used for the
experiments in this paper is Pycharm2021 Pro-
fessional Edition. the PyTorch version is 1.9.1;
CUDA version is 11.6; CUDNN version 10.2.The
model training and inference were performed on an
NVIDIA A100-SMX with 40GB of GPU memory
and 16GB of CPU memory.

HFMRE takes approximately 40 minutes to train
each epoch for the NYT10d dataset, 30 minutes
for the NYT10m dataset, and 50 minutes for the
Wiki20m dataset.

For parameter tuning, we take a manual tun-
ing approach, with tuning intervals of {8, 16, 32}
for batch size, {1, 2, · · · , 15} for num_nodes, and
{1e− 5, 2e− 5} for learning rate.

B Ablation Study

Models(AUC) NYT10d NYT10m Wiki20m
(1) -CCSC 52.9(-1.1) 60.2(-3.2) 82.8(-6.3)
(2) -Relation Query 50.6(-3.4) 57.7(-5.7) 80.8(-8.3)
(3) -Huffman Tree 52.8(-1.2) 58.2(-5.2) 86.7(-2.8)
(4) BERT-Att 27.8(-26.2) 51.2(-12.2) 70.9(-18.2)

Table 7: Performance of different ablation models on
AUC metrics.
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C Datasets Statistics

Datasets
Train Validation Test

#Rel
#facts #sents N/A #facts #sents N/A #facts #sents N/A

NYT10d 18,409 522,611 74% - - - 1,950 172,448 96% 53
NYT10m 17,137 417,893 80% 4,062 46,422 80% 3,899 9,744 32% 25
Wiki20m 157,740 698,721 59% 17,485 64,607 73% 56,000 137,986 25% 81

Table 8: Statistics of three datasets.

D Huffman tree Algorithm

Algorithm 1 Construct Huffman tree inside the bag
Require: HuffmanNode {name,weight, value} ▷

Creating leaf nodes,each leaf node corresponds to a name,
weight and value.

Ensure: The Huffman Tree
1: createLeafNodes(nodes, name, weight, value); ▷ nodes,

i.e. sentences within a bag.
2: PriorityQueue queue; ▷ Creating a Huffman tree node

queue.
3: for each node in nodes do:
4: enqueue(queue, node);
5: end for
6: ▷ Constructing Huffman trees.
7: while size(queue) > 1 do:
8: ▷ Remove the two nodes with the lowest weight from

the queue.
9: node1 = dequeue(queue);

10: node2 = dequeue(queue);
11: ▷ Create a new node as their parents, default right

child is the smaller of weight.
12: parent = createNode(node1 , node2);
13: parent.left = node1;
14: parent.right = node2;
15: ▷ Putting parent nodes in the queue.
16: enqueue(queue, parent);
17: end while
18: return dequeue(queue); ▷ The last node left in the queue

is the root node.
19: void createNode(left,right):

node.name = Max(queue[i].name)+1;
node.weight = CCSC(queue);
node.feature = left.feature⊕right.feature;
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