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Abstract

Mixture-of-experts (MoE) models that
employ sparse activation have demonstrated
effectiveness in significantly increasing the
number of parameters while maintaining
low computational requirements per token.
However, recent studies (Hoffmann et al.,
2022; Zuo et al., 2021; Gao et al., 2022) have
established that MoE models are inherently
parameter-inefficient as the improvement in
performance diminishes with an increasing
number of experts. We hypothesize this
parameter inefficiency is a result of all
experts having equal capacity, which may
not adequately meet the varying complexity
requirements of different tokens or tasks. In
light of this, we propose Stratified Mixture
of Experts (SMoE) models, which feature a
stratified structure and can assign dynamic
capacity to different tokens. We demonstrate
the effectiveness of SMoE on three multilingual
machine translation benchmarks, containing
4, 15, and 94 language pairs, respectively.
We show that SMoE outperforms multiple
state-of-the-art MoE models with the same or
fewer parameters.1

1 Introduction

Scaling up the model and data size has
shown tremendous success in enhancing model
performance across a large number of NLP tasks
(Devlin et al., 2019; Conneau et al., 2020; Kaplan
et al., 2020; Brown et al., 2020). Sparsely
gated mixture of experts (MoE) (Shazeer et al.,
2017; Lepikhin et al., 2021) provides an effective
way to greatly scale the model size under the
same computational cost and achieves state-of-
the-art performances on various tasks including
natural language understanding (Fedus et al.,
2021), machine translation (NLLB Team et al.,
2022), language modeling (Du et al., 2022), etc.

1Code is released at https://github.com/fe1ixxu/
Stratified_Mixture_of_Experts.

The efficiency comes from sparsely activating a
subset of the neural network weights for each
incoming sample. However, MoE is reported to
be parameter-inefficient (Hoffmann et al., 2022;
Zuo et al., 2021; Gao et al., 2022) i.e., there
are diminishing improvement returns from adding
more experts. For example, Switch Transformer
(Fedus et al., 2021) only outperforms T5 (Raffel
et al., 2020) by an average of 0.7 on the GLUE
benchmark (Wang et al., 2018) despite being
35× larger. Similarly, in the translation task, a
MoE model with 20 times more parameters only
offers an average improvement of 0.3 BLEU on
its ablation dataset (MoE-64 vs. 1.3B dense)
(NLLB Team et al., 2022).

We hypothesize that this parameter inefficiency
stems from the equal capacity assignment, where
we particularly define ‘capacity’ as the number
of parameters used for the incoming token. For
the current MoE models, the capacity of experts
are the same used for serving all tokens. However,
different tokens may demand varying capacities.
For instance, in the context of multilingual machine
translation, certain translation directions may
necessitate a greater capacity to prevent overfitting,
while others only require a smaller capacity. To
address this limitation, our hypothesis posits that
the dynamic allocation of capacity to tokens results
in more efficient utilization of parameters. Thus,
we propose Stratified Mixture of Experts (SMoE)
models, characterized by a stratified structure,
which allows for the dynamic assignment of
capacity to incoming tokens.

A high-level comparison of vanilla MoE and
SMoE is presented in Figures 1a and 1b. In vanilla
MoE, a single routing gate connects to all E experts
and sends tokens to the top-k experts. Here, we
take E=5 as an example. In SMoE, the experts
are divided into two strata. Each stratum has
its own routing gate that connects to all experts
in the current stratum as well as all experts in
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Figure 1: A high-level illustration of the vanilla MoE and SMoE. a) Vanilla MoE: gate is connected to all experts
and sends tokens to top-k selection. b) SMoE: Experts are stratified into L strata (L=2 in this example). Each
stratum has a gate that is connected to all subsequent experts. Tokens can be directly sent to the last stratum to
only experience one expert, or be sent to both strata and have more capacity. Hence, the dynamic capacity of a
token depends on how many experts it needs to pass. c) A detailed architectural design, where a comprehensive
explanation of the design components will be presented in Section 3.

the subsequent strata. If Gate1 assigns tokens to
Expert 4 or 5, the tokens will only need to pass
through a single expert (an FFN layer). However,
if tokens are sent to experts in the first stratum
(Experts 1 to 3), they will need to go through
the next stratum as well, meaning that another
expert will be assigned by Gate2 before exiting the
SMoE block. This allows SMoE to dynamically
assign capacity to different tokens. In addition,
a comprehensive illustration of the architectural
design of the SMoE model is provided in Figure 1c.
A thorough explanation of the design elements will
be provided in Section 3. Our main contributions
are summarized as follows:

• We introduce the concept of dynamic
capacity for MoE models and propose a
mixture-of-experts model with a stratified
structure, namely SMoE, which can
automatically assign dynamic capacity to
different incoming tokens to make experts
become more parameter-efficient.

• We focus on the task of multilingual machine
translation (MMT) and show that SMoE
substantially outperforms numerous strong
baselines with fewer than or the same number
of parameters. For instance, we demonstrate
that SMoE only needs half the number of

parameters to achieve a performance on-
par with a naive MoE (Lepikhin et al.,
2021). Furthermore, we carry out an in-
depth analysis to probe the factors that impact
dynamic capacity assignment, including the
language of tokens and the position of the
SMoE block within the model’s architecture.

2 Background and Related Work

Massively multilingual machine translation models
have been developed to handle several translation
directions simultaneously in a single model
(Aharoni et al., 2019). However, the use of shared
parameters for different languages often leads
to negative transfer and decreased performance
(Conneau et al., 2020; Fan et al., 2020). In contrast
to dense MMT models, sparsely gated mixture-
of-experts (MoE) models, which activate a subset
of parameters for each input, have been shown
to significantly improve translation performance
(Kim et al., 2021; NLLB Team et al., 2022).
Shazeer et al. (2017) first demonstrated the benefit
of adding MoE layers to scale RNN models for
improved translation performance, and Lepikhin
et al. (2021) extended this work to transformer
architectures (Vaswani et al., 2017). MoE layers in
the transformer model replace a single feedforward
network (FFN) layer with E FFN layers, denoted
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with {FFN1, . . . ,FFNE}. Each FFN layer is an
expert. Given an input token x, we have

∀e ∈ {1, . . . , E},
FFNe(x) = W

(e)
1 ReLU(W

(e)
2 · x), (1)

where W
(e)
1 and W

(e)
2 are the weights of FFNe. A

trainable routing gate with weights Wg predicts
scores for these experts to use for the input x, in
the form of a routing vector G ∈ RE :

G = softmax(Wg · x). (2)

We select the set of top-K experts, denoted with
E ⊂ {1, · · · , E}, and compute the output of the
MoE layer as follows:

xout =
∑

e∈E
Ge · FFNe(x). (3)

MoE models suffer from the notorious load
imbalance issue, where the gate weights could
collapse and send most tokens to the same
expert. As a result, recent research has focused
on designing better auxiliary load balancing
loss functions to encourage tokens to be evenly
distributed across experts, e.g., Lewis et al. (2021)
formulated token-to-expert allocation as a linear
assignment problem, Roller et al. (2021) modified
the feedforward layer to hash to different sets of
weights depending on the current token, Zoph
et al. (2022) proposed a router z-loss that resolves
instability issues, and Zhou et al. (2022) reversely
design an expert-to-token allocation algorithm.
Other lines of investigation in MoE include
regularization techniques such as gating dropout
(Liu et al., 2022) and output masking (EOM and
FOM) (NLLB Team et al., 2022), as well as
novel MoE architectures, such as conditional MoE
routing (CMR) that add an extra branch beside
MoE layer (NLLB Team et al., 2022), or Pyramid-
Residual MoE (Rajbhandari et al., 2022), a hybrid
dense and MoE model with more experts in the last
layers.

However, all previous work default to equal
capacity for all tokens regardless of their language,
frequency, or any other property. In the subsequent
sections, we present a Stratified Mixture of Experts
(SMoE) model that automatically assigns dynamic
capacities to different types of tokens.

3 Stratified Mixture of Experts

3.1 Architectural Design
The guiding design principle for Stratified Mixture
of Experts (SMoE) is to assign dynamic capacity
to tokens. Given E experts in an MoE block,
we partition them into L strata. The ith stratum
has a gate Gatei which routes tokens to an expert
in the current stratum as well as the subsequent
ones. This means that tokens can never be sent
back to the previous strata. Tokens keep getting
routed in the SMoE block until they reach the
final stratum. Different tokens will pass through
a varying number of experts, resulting in different
capacities, according to the assignment of gates. In
vanilla MoE, however, the capacity through which
every token goes is that of a single FFN layer. The
workflow of how a token passes a SMoE block is
shown in Figure 1c. For example, some tokens in
the 1st stratum may be assigned to experts in the
2nd stratum while others are sent to the 3rd stratum.
After several rounds of assignments, tokens finally
exit the block after reaching the last stratum.

In SMoE, the successive application of multiple
FFN layers to a token can result in training
instability. Therefore, following the approach
of Vaswani et al. (2017); Wang et al. (2019);
Xiong et al. (2020), we incorporate layer
normalization (LayerNorm, Ba et al. (2016))
before dispatching tokens to experts and a residual
connection after the tokens have passed through
the experts. See Figure 1c for an overview of the
design of our stratified experts.

Formally, given T tokens in a mini-batch, we
denote the d-dimensional representation of the tth

token in the ith stratum of the current SMoE block
with xi,t. Let Ei be the set of experts visible to
the current gate (current stratum plus subsequent
strata) and let Ei = |Ei| be its cardinality. Before
being dispatched to FFN layers, tokens are firstly
normalized with LayerNorm,

x′i,t = LayerNorm(xi,t). (4)

Then, Gatei with weights Wi predicts a probability
distribution Gt ∈ R

Ei , scoring all visible Ei

experts at that stratum:

Gt = Gatei(x
′
i,t) = softmax(Wi · x′i,t). (5)

Following Lepikhin et al. (2021), we dispatch
each token to at most k=2 experts. If E is the
set of selected top-k experts and the expert with
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the highest score is in the jth (j > i) layer, xi,t
will be assigned to the jth layer and the output
computation on the token is:

xj,t =
∑

e∈E
Gt,eFFNe(x

′
i,t), (6)

where Gt,e is the gate score for the expert e. Finally,
We employ a residual connection after the FFN
layer:

xj,t = xj,t + xi,t. (7)

Tokens gradually pass experts in deeper layers until
they finish passing the final layer.

3.2 Load Balancing

Similar to Lepikhin et al. (2021), we encourage
tokens to be uniformly distributed across all visible
experts. Each gate has a loss term to balance the
load. For Gatei, the loss is:

Li = Ei

∑

e∈Ei
fepe, (8)

where fe is the fraction of tokens dispatched to
expert e, as their first choice, through top-k-gating:

fe =
1

T

T∑

t=1

1{argmaxGt,e = e}, (9)

and pe is the average routing probability to that
expert over the T tokens in the mini-batch:

pe =
1

T

T∑

t=1

Gt,e. (10)

The auxiliary loss for the current SMoE block is
computed by taking the average of the loss over all
gates within the block.

L = α · 1
L

L∑

i=1

Li, (11)

where α is a hyperparameter to control the strength
of the load balancing loss. We average the loss
over all SMoE blocks in the architecture as the
final auxiliary loss appended to the original task
loss.

4 Experiments

We evaluate the proposed SMoE on a many-to-
many multilingual neural machine translation task.

4.1 Datasets

In this study, we consider three datasets comprising
4, 15, and 94 languages each. The initial two
datasets are extracted from the primary bitexts
of the NLLB-200 training dataset, and we adopt
their resource-level categorizations: high-resource
(≥ 1M), very low-resource (≤ 100K), and low-
resource (the remaining).2 These two datasets
are developed and evaluated using the Flores-200
dataset. The third dataset is OPUS-100 (Zhang
et al., 2020). We follow Zhang et al. (2020)
and divide directions into high-resource, medium-
resource, and low-resource categories.

NLLB M4 dataset From NLLB, we pick 4
languages from 4 different linguistic families,
2 of which are high-resource and the other 2
are low-resource: Northern Sotho (nso, 526K
parallel sentences), Malay (msa, 1M), Tagalog
(tgl, 1M), Catalan (cat, 634K), totaling 3.2M
training examples.

NLLB M15 dataset Taking into account
linguistic diversity and larger data size, we expand
the M4 dataset to cover a set of diverse 15
languages. M15 covers 6 linguistic families and a
balanced number of high-resource, low-resource,
and very low-resource languages (each category
has 5 languages). We show a detailed listing and
information on the M15 dataset in Appendix A.

OPUS-100 In addition to the datasets derived
from NLLB, we also utilize OPUS-100 to examine
a scenario involving a larger number of languages.
OPUS-100 encompasses a total of 100 languages,
which supports 94 development/test language pairs.

Evaluation During inference, we use beam
search with a beam size of 5 and a length penalty of
1.0. We report BLEU scores (Papineni et al., 2002)
for models trained on NLLB dataset and sacrebleu
(Post, 2018) with flores200 tokenizer for models
trained on OPUS-100.

4.2 Baselines

We use five strong baselines to evaluate the
effectiveness of SMoE. All baselines are our own
implementation following the settings from the
original papers. Note that the total number of
experts i.e., the full model capacity is kept constant

2Contrary to NLLB Team et al. (2022), in our study, very
low-resource is not included in the low-resource category but
considered as an independent set.
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for all models in order to ensure fair comparison (8
experts for M4 and 16 experts for M15).

Vanilla MoE. An MoE model with Top-2
gating (Lepikhin et al., 2021).

Switch Transformer. An MoE model with Top-1
gating (Fedus et al., 2021). Switch Transformer
was introduced to mitigate training instabilities
and improve the efficiency of Top-2 MoE models.
Note that switch transformer uses fewer FLOPs per
token due to the top-1 gating approach.

MoE + EOM. A vanilla MoE model regularized
with Expert Output Masking (EOM) (NLLB Team
et al., 2022). EOM masks the expert output for a
random fraction (peom) of outputs. We set peom =
0.1 following the suggestion of NLLB Team et al.
(2022)

Conditional MoE Routing (CMR).
CMR (NLLB Team et al., 2022) augments
MoE with a binary gate that sends tokens to one of
two branches: (1) a shared FFN layer and (2) an
vanilla MoE layer. Note that this method requires
extra parameters due to the added shared FFN
layer. The CMR budget constraint is set to 0.8.

Stacking MoE Layers. A similar model
architecture to SMoE where we simply stack
multiple MoE layers, e.g., stacking 2 MoE layers
with 4 experts each vs. one block of SMoE with 2
strata where each stratum has 4 experts. Unlike
SMoE where each expert is surrounded with a
residual skip connection and preceded with a
LayerNorm, here the stacking is naive without any
addition.

4.3 Training Details
Following Johnson et al. (2017), we prepend
source sentences with a special language token
<2xxx> to indicate the target language. We use
a data sampling temperature of T=1 suggested
by NLLB Team et al. (2022) to train on NLLB
datasets, and T=5 suggested by Zhang et al. (2020)
to train on OPUS-100.

The dense model architecture, backbone for all
trained models, is a Transformer model (Vaswani
et al., 2017) with 12 layers (6 on encoder and 6 on
decoder). We use transformerbase and E=8 experts
for M4, and transformerbig and E=16 experts for
M15 and OPUS-100.3

3transformerbase: FFN dimension of 2048, 8 heads, and
embedding dimension of 512; transformerbig: FFN dimension

In MoE models, every other FFN layer of the
encoder and decoder are substituted with an MoE
layer. For SMoE, in the ith stratum, we enforce that
each expert processes, at most, 2× Ti/Ei tokens,
where Ti is the number of tokens in the mini-batch
sent to the layer i and Ei is the number of visible
experts. For the other MoE baselines, it is 2 ×
T/E, where T is the number of tokens in the mini-
batch and E is the total number of experts. The
multiplicative coefficient α for the auxiliary load
balance loss is set to 0.01. A vocabulary of size
32k for both M4 and M15 and 64K for OPUS-100
with SentencePiece (Kudo and Richardson, 2018).
For a fair comparison, All models are trained for
the same number of updates. More details can be
found in Appendix B.

4.4 SMoE configurations
We use a series of numbers separated by hyphens
to describe the SMoE configuration. For instance,
SMoE-4-4-8 indicates that all MoE blocks have 3
strata, where the 1st stratum has 4 experts, the 2nd

has 4 and the 3rd has 8.

4.5 Results
M4 Results The results are in Table 1. We
consider two configurations for SMoE: SMoE-4-4
and SMoE-2-2-2-2. The better SMoE settings
for M4 is SMoE-2-2-2-2. In M4, SMoE-2-2-2-2
outperforms Switch Transformer by +0.9 BLEU
on average and vanilla MoE by +0.74 BLEU.
Out of 5 MoE baselines, CMR achieves the best
performance (+0.4 BLEU over Switch Transformer
and +0.3 BLEU over vanilla MoE), however, CMR
models have more parameters as well as more
FLOPs per token.

It is worth noting that simply stacking MoE
layers degenerates the model performance, which
indicates the importance and effectiveness of the
specific design of SMoE.

M15 results We show results in Table 2.
We consider a multitude of settings splitting
the 16 experts per layer over 2, 3 or 4
strata. The best SMoE settings for the larger
M15 dataset is SMoE-4-12. This configuration
demonstrated an average improvement of +1.04
BLEU over the Switch Transformer and +0.93
BLEU over the vanilla MoE across the 15
languages evaluated. However, MoE+EOM and
CMR only improve vanilla MoE by +0.52 and

4096, 16 heads, and embedding dimension 1024.
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xxx→eng eng→xxx
Avg. #Parameters FLOPs/tok

Methods (8 experts) nso msa tgl cat nso msa tgl cat

Dense Model (Vaswani et al., 2017) 28.87 37.01 41.76 40.35 26.68 44.30 38.20 45.50 37.83 60M 167M
Vanilla MoE (Lepikhin et al., 2021) 29.45 41.26 44.23 42.91 27.59 47.12 40.10 47.66 40.04 148M 192M
Switch Transformer (Fedus et al., 2021) 29.69 40.35 44.50 43.19 27.73 46.44 39.88 47.26 39.88 148M 167M
MoE+EOM (NLLB Team et al., 2022) 30.52 40.50 44.52 43.48 27.71 46.85 40.09 47.14 40.10 148M 192M
MoE+CMR (NLLB Team et al., 2022) 30.54 41.29 44.65 43.71 27.76 46.87 40.36 47.65 40.35 161M 217M

Stacking 2 4-expert MoE 28.65 39.24 42.02 41.36 27.58 46.27 40.06 47.50 39.09 148M 242M
SMoE-4-4 30.14 41.05 45.13 43.97 27.86 47.48 39.85 47.71 40.40 148M 217M
Stacking 4 2-expert MoE 25.53 35.53 38.34 37.43 24.99 41.35 36.85 42.15 35.27 148M 327M
SMoE-2-2-2-2 30.96 41.88 44.86 43.37 27.83 47.96 40.95 48.39 40.78 148M 247M

Table 1: Overall BLEU results on the M4 dataset. The best values are bold and the second-best values are underlined.
The number of experts is 8 for all methods. The two SMoE models attain the two best performances across all
languages.

eng→xxx xxx→eng
Avg. #Parameters FLOPs/tok

Methods (default is 16 experts) all high low very low all high low very low

Dense Model (Vaswani et al., 2017) 29.27 38.68 32.44 16.69 29.94 37.55 32.37 19.89 29.61 209M 506M
Vanilla MoE (Lepikhin et al., 2021) 32.01 40.41 34.77 20.84 32.00 39.38 34.73 21.89 32.00 963M 606M
Switch Transformer (Fedus et al., 2021) 31.67 40.44 34.72 19.87 32.09 39.85 34.75 21.68 31.89 963M 506M
MoE+EOM (NLLB Team et al., 2022) 32.02 40.63 35.19 20.25 32.81 40.42 35.33 22.69 32.41 963M 606M
MoE+CMR (NLLB Team et al., 2022) 31.83 40.22 34.81 20.46 33.02 40.41 35.42 23.21 32.42 1.01B 707M

2-layer SMoE
SMoE-4-12 33.00 41.14 35.77 22.10 32.86 40.63 35.14 22.80 32.93 963M 656M
SMoE-12-4 32.52 41.11 35.56 20.89 32.94 40.03 35.21 23.60 32.73 963M 757M
SMoE-8-8 32.28 41.24 35.33 20.27 32.72 40.30 34.80 23.08 32.50 963M 707M

3-layer SMoE
SMoE-4-4-8 32.83 41.61 35.82 21.07 32.24 39.40 34.53 22.80 32.54 963M 724M
SMoE-8-4-4 32.24 40.99 35.12 20.61 33.06 40.36 35.12 23.71 32.65 963M 805M

4-layer SMoE SMoE-4-4-4-4 32.87 41.50 35.68 21.42 32.63 40.03 34.50 23.35 32.75 963M 825M

Vanilla MoE, 32 experts 32.98 41.05 35.69 22.19 32.90 40.79 35.49 22.42 32.94 1.77B 606M

Table 2: Overall BLEU results on the M15 dataset. The best values are bold and the second-best values are
underlined. Unless otherwise mentioned, the number of experts is 16. All SMoE models outperform the baselines.
The best setting is SMoE-4-12, which outperforms vanilla MoE by +0.93 BLEU. Vanilla MoE would require to
double its parameters to achieve similar performance to SMoE-4-12.

+0.53 BLEU, respectively. Note that if vanilla
MoE wants to achieve similar performance to
SMoE-4-12 (32.94 vs. 32.93 BLEU on average), it
has to increase experts from 16 to 32, which almost
doubles the total number of parameters from 963M
to 1.77B (last row of Table 1), which means our
model is much more parameter-efficient.

SMoE models with more strata, allowing for
more depth, do not guarantee better performance.
A clear example is SMoE-4-12 and SMoE-4-4-4-4
in M15 (32.93 vs. 32.75 averaged BLEU).
However, for ‘balanced’ SMoE (equal number of
experts per stratum), fewer experts per stratum
achieves better performance: SMoE-2-2-2-2
outperforms SMoE-4,4 (40.78 vs. 40.40 BLEU)
on M4 and SMoE-4-4-4-4 outperforms SMoE-8,8
(32.75 vs. 32.50 BLEU) on M15.

OPUS-100 Results: A Larger Performance
Gap. Table 3 presents the comprehensive results.
Notably, the performance disparity becomes
more pronounced we scale our experiments to

94 languages ( OPUS-100 does not support
the remaining 5 languages ). We select
the two optimal SMoE configurations in M15:
SMoE-4-12 and SMoE-4-4-4-4. The SMoE-4-12
configuration consistently demonstrates superior
performance, achieving a larger margin compared
to our best baselines, EOM and CMR. The
SMoE-4-12 outperforms our naive MoE model and
Switch Transformer by +1.01 and +1.63 BLEU,
significantly outperforming the gains achieved by
EOM (+0.11 and +0.73) and CMR (+0.14 and
0.76).

Overall, SMoE outperforms all baselines with
the same or a fewer number of parameters.

4.6 Computational Cost

As a token may pass through multiple strata in
any given SMoE layer, the average computational
cost is higher than other MoE models. In the
last column of Tables 1 and 2, we record FLOPs
per token for all models, and Table 3 shares the
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eng→xxx xxx→eng
Avg.

Methods all high medium low all high medium low
Dense Model (Vaswani et al., 2017) 27.37 23.89 31.17 29.76 30.60 29.40 31.85 31.49 28.99
Vanilla MoE (Lepikhin et al., 2021) 30.34 26.16 34.78 33.38 32.38 31.20 33.67 33.21 31.36
Switch Transformer (Fedus et al., 2021) 30.03 25.76 34.46 33.27 31.44 30.58 33.00 31.18 30.74
MoE+EOM (NLLB Team et al., 2022) 30.48 26.24 34.76 33.86 32.45 31.23 33.69 33.44 31.47
MoE+CMR (NLLB Team et al., 2022) 30.56 26.32 34.98 33.77 32.43 31.33 33.69 33.11 31.50
SMoE-4-12 32.15 27.99 36.67 35.06 32.58 32.42 33.76 31.37 32.37
SMoE-4-4-4-4 31.84 27.31 36.52 35.33 32.71 31.87 33.80 33.04 32.28

Table 3: Overall BLEU results on the OPUS-100 dataset. The best values are bold and the second-best values
are underlined. The number of experts is 16. We consider the two best settings in M15 dataset, SMoE-4-12 and
SMoE-4-4-4-4. Both of them substantially outperform all baselines. The number of parameters and FLOPs/tok for
MoE models are the same as Table 2.
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Figure 2: Average requested capacity (RC) of all tokens in each translation direction. The blue bars are for xxx�eng
directions and the purple bars are for eng�xxx directions. Directions in each subset are sorted from high-resource
to low-resource. On the decoder side, the average RC of eng tokens is similar regardless of the source language, but
averaged RC has a large variance if the target language is different. On the encoder side, RC is always different
even though the source language is the same.

same information with Table 2.4 Although SMoE
requires more FLOPs per token, the additional
cost is only a marginal increase over vanilla MoE
models. For example, in M15 and OPUS-100,
our best setting SMoE-4-12 merely uses 8% more
FLOPs/tok than other top-2-gating MoE models,
but significantly outperforms all of them.

5 Analysis

The advantage of SMoE is that it can assign
dynamic capacity to different tokens, with some
tokens passing through only one expert and others
passing through multiple experts. Here, we define
the Requested Capacity (RC) as the average
number of experts that a token need to pass in one
SMoE block. RC of a token is dictated by how the
SMoE gates route it throughout the different strata.
To understand what may affect the RC of tokens,

4FLOPs are calculated for the forward pass as done in
Kaplan et al. (2020).

we examine three potential influencing factors:
the language of the input token, the frequency
of the token, and the depth of the SMoE block.
All analysis is conducted using the SMoE-4-4-4-4
model trained on the M15 dataset.

5.1 The Language of The Input Token

Here, we investigate whether different languages
have different RCs. We begin with collecting the
average RC in all translation directions for all
tokens in the training and development (Flores-
200 dev) sets. We investigate SMoE blocks in the
encoder and decoder separately as they process
different tokens (source tokens for the encoder and
target tokens for the decoder). The average RC
is then averaged across all SMoE blocks in either
encoder or decoder.

Figure 2a shows the average RC in the decoder
for each translation direction in M15. When
translating into English (xxx�eng, blue bars), we
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observe that the target English tokens have similar
RC in the decoder side (≈1.85 experts) irrespective
of the source language. When translating from
English (eng�xxx), the RC varies a lot with
respect to the target language.

Unlike in the decoder where only the target
language matters, Figure 2b shows variability in
RC with respect to both source and target languages
i.e, not only the language of the tokens themselves
(source), but also the target language we will be
translating into once we move to the decoder. We
hypothesize the special symbol at the beginning
of the source sequence (<2xxx>) can affect the
capacity assignment. In conclusion, capacity
assignment is sensitive to the target language in
the decoder and to the translation direction in the
encoder.

5.2 Token Frequency

As in the previous section, we record the average
RC for all tokens in training and development data,
and in all translation directions. To avoid looking
at all 32K tokens in our vocabulary, we select the
top-25 tokens with the highest RC in each SMoE
block and in each translation direction, totaling
4500 tokens.5 We similarly collect the bottom-
25 tokens with the lowest RC. After removing
tokens repeatedly selected by different directions
or by different SMoE blocks, we end up with
2580 unique high-RC tokens and 3208 unique low-
RC tokens. We draw in Figure 3 a violin plot
to show the distribution of tokens in these two
groups in terms of their frequency in the training
data. We rank the frequencies on the y-axis so
that a lower rank means more frequent tokens, e.g.,
rank 0 corresponds to the most frequent token in
our training data. The results show that there is
no strong correlation between frequency and RC
for tokens with the highest RC. On the other end
of the spectrum, tokens with the lowest RC tend
to be high-frequency tokens, as indicated by the
right violin plot being wider at the bottom part
(rank < 10k). Many of these high-frequency tokens
are basic subword units (like _li, _el, _pa) or
punctuation marks. One can interpret RC as a
metric for ‘difficulty in processing a given token’.
The model was overly exposed to these frequent
tokens, and as such, does not require a lot of
capacity to process them.

525 × 6 (#SMoE blocks) × 30 (#directions) = 4500.

High Requested Capacity Low Requested Capacity
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Figure 3: Violin plots of the token frequency in high-
RC (left) and low-RC (right) tokens. Unlike high-RC
tokens, low-RC tokens tend to be highly frequent ones.
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Figure 4: Average RC of SMoE blocks in different
locations of the architecture.

5.3 Location of The SMoE Block

We analyze in this section the average RC in
relation to the location of the SMoE block in the
transformer architecture. As depicted in Figure
4, RC varies depending on the location of the
SMoE block. Early encoder layers (encoder 2nd
layer is the first SMoE block in the model) request
more capacity than the subsequent encoder SMoE
blocks. We hypothesize that this first block takes on
the task of mapping tokens coming from different
languages and different scripts to a shared space.

6 Conclusion

This work presents Stratified Mixture of Experts
(SMoE) models, a novel design for MoEs that
is capable of dynamically assigning capacity to
input tokens. Through experimental evaluation
at three scales (M4, M15, and OPUS-100),
we have demonstrated that the proposed SMoE
model surpasses the performance of many current
state-of-the-art MoE methods. This proves that
dynamically assigning capacity to tokens in MoE
models is a viable solution to address the MoE’s
parameter inefficiency. Additionally, we conduct
a thorough analysis to investigate the factors that
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influence dynamic capacity assignment, including
the language of the tokens and the location of the
SMoE block within the model architecture.

Limitations

Stratified Mixture of Experts (SMoE) aims to
improve the performance of Mixture of Experts
(MoE) models by assigning dynamic capacity to
different tokens. While SMoE has demonstrated
performance improvements over many state-of-
the-art baselines, it also comes with an additional
computational cost compared to traditional MoE
models. However, the cost is small and the benefits
of SMoE in terms of improved performance often
outweigh this added computational cost, especially
in tasks where performance is critical. For example,
in OPUS-100, with 8% FLOPs/tok, SMoE-4-12
achives +1.01 BLEU compared with traditional
MoE (Lepikhin et al., 2021).
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A M15 Information

We show the detailed information of the M15
dataset in Table 4.

B Additional Training Details

We employ the transformerbase model (with an
FFN dimension of 2048 and an embedding
dimension of 512) for the M4 dataset, and the
transformerbig model (with an FFN dimension
of 4096 and an embedding dimension of 1024)
for M15 and OPUS-100 dataset. The maximum
learning rate is 0.0008 for M4 and M15, and
0.0005 for the OPUS-100 dataset. The optimizer is
Adam (Kingma and Ba, 2014) with inverse_sqrt
learning rate scheduler and weight decay of 0. The
total number of training steps is 100K with 8K
warm-up steps. The batch size is 13K tokens for
M4 and M15, and 65K tokens for OPUS-100.
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Language Language code Parallel Data Size Resource Level Language family
Northern Sotho nso 526 K Low Central Narrow Bantu
Rundi run 454 K Low Central Narrow Bantu
Swati ssw 94 K Very Low Central Narrow Bantu
Indonesian ind 6.5 M High Malayo-Polynesian
Malay msa 1 M High Malayo-Polynesian
Tagalog tgl 1 M High Malayo-Polinesian
Bokmål (Norwegian) nob 238 K Low North Germanic
Icelandic isl 1 M High North Germanic
Faroese fao 4 K Very Low North Germanic
Slovene slv 15 M High Southwestern Slavic
Luxembourgish ltz 8 K Very Low Western Germanic
Limburgish lim 5 K Very Low Western Germanic
Catalan cat 634 K Low Western Romance
Galician glg 195 K Low Western Romance
Friulian fur 6 K Very Low Western Romance

Table 4: Information about the 15 languages in the M15 dataset.
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