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Abstract

Sequence Labeling (SL) is long-standing in
Natural Language Processing (NLP). Tradition-
ally, discriminative models have been widely
used to capture the conditional distribution of
sequence tags, rather than generative models.
In this paper, we present DiffusionSL, a frame-
work that utilizes a conditional discrete diffu-
sion model for generating discrete tag data, re-
sulting in a Tag Diffusion Process. We treat
the natural language sequence as the condi-
tional signal and the sequence tags as the gen-
eration target, iteratively refining the noisy tags
to obtain clean ones. To address the discrete-
ness issue, we propose the Bit-Tag Converter
(BTConverter) to model the target in continu-
ous data space. Furthermore, we introduce the
Bit Diffusion Transformer (BitDiT) to model
the process of noise elimination. Leveraging
the powerful iterative refinement capability of
the diffusion model, DiffusionSL achieves su-
perior performance against previous state-of-
the-art (SOTA) baselines and outperforms gpt-
3.5-turbo significantly across multiple bench-
mark datasets and various tasks 1.

1 Introduction

Sequence Labeling (SL) is a basic paradigm in
the natural language processing (NLP) field, which
assigns a predefined label to every meaningful unit
(e.g., word or character) in a given sequence (He
et al., 2020; Lu et al., 2019; Li et al., 2021; Liu
et al., 2021). Many NLP tasks belong to this cat-
egory, such as Named Entity Recognition (NER)
(Zhu and Li, 2022; Liu et al., 2022; Shen et al.,
2022; Shen et al. 2023; He and Tang 2022; Zhou
et al. 2022b), Chinese Word Segmentation (CWS)
(Fu et al., 2020; Huang et al., 2021; Maimaiti et al.,
2021), Part-Of-Speech (POS) tagging (Zhou et al.,
2022a; Nguyen and Verspoor, 2018).

1Code is available at https://www.github.com/
hzy312/DiffusionSL

Most current methods tackled SL in a discrimi-
native manner (Akhundov et al., 2018), which usu-
ally employed a language model (Hochreiter and
Schmidhuber, 1997; Devlin et al., 2019) to encode
the sentence and added a token-level classifier to
capture the conditional tag distribution (Zhang and
Yang, 2018; Yan et al., 2019; Li et al., 2020; Cui
et al., 2021; Wu et al., 2022).

Recently, generative pre-trained language mod-
els have demonstrated their versatility in various
NLP tasks (Raffel et al., 2020). In consequence,
researchers attempt to formulate SL as a sequence
generation problem (Athiwaratkun et al., 2020;
Paolini et al., 2021; Yan et al., 2021; Lu et al.,
2022). This paradigm offers the advantage of flexi-
ble generation formats (Raman et al., 2022), allow-
ing models to be trained to produce output in any
desired format using teacher forcing. In these gen-
erative approaches, the input sentence is encoded
first, and the label sequence is then decoded in an
autoregressive manner, as depicted in Figure 1(a).
Nevertheless, the intrinsic token-by-token gener-
ation style of the autoregressive model results in
inefficient inference, and the difference in condi-
tional signal during training and inference leads to
the exposure bias problem (Arora et al., 2022).

To this end, this paper resorts to the Diffu-
sion Probabilistic Model (DPM) (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Nichol and Dhariwal,
2021; Song and Ermon, 2019; Song et al., 2021b),
renowned as one of the most powerful generative
models in the field of Artificial Intelligence Gener-
ated Content (AIGC) (Cao et al., 2023; Wu et al.,
2023a), especially in the realm of image synthesis
(Liu et al.; Rombach et al., 2022; Hong et al., 2022).
DPM gradually introduces noises into clean data
through a predefined forward process and subse-
quently employs a denoising network in a reverse
process to recover the original data from pure Gaus-
sian noise. The generation process operates in par-
allel. Compared with an autoregressive decoder,
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Figure 1: (a) shows one traditional autoregressive generative method (Paolini et al., 2021) for one typical SL task,
Named Entity Recognition (NER). This line of methods generates the target at once and can not refine them. (b)
demonstrates our non-autoregressive stepwise generative framework DiffusionSL for NER. In inference stage, the
reverse diffusion process of DiffusionSL utilizes a well-trained denoising network to remove the noise step-by-step
and recover the clean tags finally, allowing contents (task-specific tags) refinement in this process. Symbols marked
in yellow background are noisy, whereas symbols without yellow background represent the desired generated ones.

it could naturally solve the exposure bias problem.
Furthermore, the diffusion model can generate the
targets progressively to refine the contents step-by-
step, thereby facilitating the correction of some
mistakes during the generation process. In com-
parison, the conventional autoregressive generative
model generates the targets at once. The afore-
mentioned advantages contribute to the success of
the diffusion model in generating data across vari-
ous modalities (Zhang et al., 2023a; Trippe et al.,
2023; Li et al., 2022c; Li et al., 2022b). Intuitively,
we expect that DPM could also present superior
performance on SL tasks.

Therefore, this paper proposes a novel frame-
work called DiffusionSL. The input sentence serves
as the conditional signal, while the corresponding
task-related tag sequence is the generation target.
We call the entire diffusion process as the Tag Dif-
fusion Process. During the training phase, a fixed
forward process is utilized to sequentially perturb
the tags and a reverse diffusion process is learned to
eliminate noise based on the noisy tags and the en-
coded sentence. In the inference phase, we sample
noisy tags from a standard Gaussian distribution
and employ the well-trained denoising model to
refine these tags into clean ones in an incremental
manner (shown in Figure 1(b)).

However, directly applying a DPM on SL task
is challenging. Classical DPM models the image
data and Gaussian noise in a continuous space. In-
stead, tags in SL are discrete. A few research ef-

forts have addressed this issue (e.g., text symbols
(Gong et al., 2023), segmentation maps (Chen et al.,
2023b, 2022)). Following them, this paper intro-
duces a lightweight and flexible module named Bit-
Tag Converter (BTConverter) to represent the tags
as binary bits, which can be viewed as real numbers
in continuous space. Additionally, we propose the
Bit Diffusion Transformer (BitDiT) to model the
noise-removal reverse process, which enjoys faster
convergence and stronger performance.

Currently, Shen et al. (2023) also introduces a
diffusion model into NER, an important SL task.
However, their approach only models the diffusion
process on entity span boundaries, restricting itself
to NER and impeding the potential for extension to
other SL tasks.

In summary, our contributions are as follows:

• This study proposes a novel framework Diffu-
sionSL that addresses the Sequence Labeling
(SL) tasks using a non-autoregressive step-
wise generative approach. To the best of our
knowledge, we are the first to apply the diffu-
sion model to SL rather than only NER.

• We introduce two key modules, BTConverter
and BitDiT, which convert the discrete data
into continuous bits and model the iterative
denoising process. The first module effec-
tively handles the discreteness issue while the
second one accelerates the convergence.
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• We utilize the DiffusionSL for NER, CWS,
and POS tagging. The thorough experiments
on several datasets of these typical tasks indi-
cate that DiffusionSL can achieve better than
previous SOTAs, highlighting the superiority
of the proposed Tag Diffusion Process.

2 Preliminary

The diffusion model is characterized as a latent gen-
erative model. It encompasses a forward process
that involves the gradual introduction of noise to
clean data x0. Additionally, it includes a reverse
process that incrementally eliminates the noise,
thereby generating data following the original dis-
tribution. The forward process q(xt|xt−1) can be
mathematically expressed as:

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1) (1)

q(xt|xt−1) ∼ N (
√
1− βtxt−1, βtI) (2)

Here, N represents the Gaussian distribution and
βt represents the noise introduced at timestep t.
The magnitude of the noise is governed by a noise
schedule β = {βt}Tt=1. Generally, the noise in-
tensity usually follows either a linear (Ho et al.,
2020) or cosine (Nichol and Dhariwal, 2021) func-
tion. In this study, we adopt the linear noise sched-
ule. By employing the notations αt = 1− βt and
ᾱt =

∏t
s=1 αs, we can deduce an equation to di-

rectly incorporate noise into x0, yielding the noisy
data at any given timestep:

q(xt|x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I) (3)

Additionally, the reverse process q(xt−1|xt) al-
lows us to reconstruct samples from pure Gaussian
noise, which is not tractable directly. We can use a
neural network pθ to estimate it:

pθ(x0:T ) = p(xT )

T∏

t=1

pθ(xt−1|xt) (4)

pθ(xt−1|xt) ∼ N (µθ(xt, t),Σθ(xt, t)) (5)

The conditional distribution of xt−1 given xt in
reverse process could be obtained analytically as
follows when x0 is available:

q(xt−1|xt,x0) ∼ N (µ̃t(xt,x0), β̃tI) (6)

µ̃t =

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (7)

β̃t =
1− ᾱt−1

1− ᾱt
βt (8)

Therefore, we train the µθ to predict the µ̃t. Due
to xt =

√
ᾱtx0 +

√
1− ᾱtϵ, we could get µθ by

predicting it directly or predicting ϵ, x0 indirectly.
The variance Σθ could be learned or fixed. We
keep it fixed in this work. The training objective
is the variational lower bound of the negative log-
likelihood − log pθ(x0), which can be simplified
to predict the clean data x0 or injected noise ϵ.

To expedite inference, it is possible to skip cer-
tain timesteps in the reverse process. By taking
in the more noisy samples at timestep ti, we can
generate the less noisy samples at timestep ti−1:

pθ(xti−1 |xti) ∼ N (µ̃, Σ̃) (9)

µ̃ =
√

ᾱti−1 x̃0+
√
1− ᾱti−1 − σ2

ti

xti −
√
ᾱti x̃0√

1− ᾱti

(10)

Σ̃ = ηβ̃tiI (11)

where x̃0 represents the predicted original data by
a learned network. η is usually set to 0, thus result-
ing in a deterministic generation process which is
called DDIM sampling (Song et al., 2021a).

3 Methodology

The details of DiffusionSL are illustrated in Figure
2. We will provide a comprehensive explanation
of it in this section. Firstly, we formally describe
the overall procedure of the Tag Diffusion Process
employed by DiffusionSL. Secondly, we present
a detailed description of two components we pro-
posed to help modeling the Tag Diffusion Process:
BTConverter and BitDiT. Lastly, we summarize the
training and inference algorithms of DiffusionSL.

3.1 Tag Diffusion Process

Tag Diffusion Process shown in Figure 2(a) de-
scribes a conditional generation process where
the conditional signal is input sentence W =
(w1, . . . , wn) and the target is the task-specific tags
L = (ℓ1, . . . , ℓn). The set of all possible tags is
denoted as S , e.g., {B, M, E, S} for Chinese Word
Segmentation. Initially, we construct indices for
tags in S and transform them into bits in continu-
ous space using BTConverter. The resulting trans-
formed clean tag data is referred to as x0. Noise is
incrementally injected into x0 during the forward
diffusion process, while a denoising network is
learned to gradually eliminate the noise during the
reverse diffusion process, ultimately generating the
desired tag data.
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Figure 2: The overall picture of our framework DiffusionSL. (a) depicts the Tag Diffusion Process that eliminates the
noise in the tag data in a progressive manner, which transforms the noisy tags sampled from a Gaussian distribution
into clean tags. In the actual scenario, the tags in this diffusion process are in bit representation, we convert them into
discrete tag representation for clarity in illustrating the denoising process. (b) demonstrates the Bit-Tag Converter
(BTConverter) which enables flexible conversion between the discrete tags and the continuous bits. (c) presents the
Bit Diffusion Transformer (BitDiT), the denoising neural network.

Specifically, we follow the Equation (3) to per-
turb the data for the forward diffusion process.
More specifically, noisy tags {xt}Tt=1 at each noise
level could be obtained by the following equation:

q(xt|x0) =
√
ᾱtx0 + (1− ᾱt)ϵ (12)

During the reverse diffusion process, we sample
an incomplete timestep sequence of length λ to gen-
erate the target tags. We train a denoising network,
denoted as bdθ,ϕ, which takes in the noisier tags
xti at the timestep ti along with the input sentence
W and then outputs the predicted x̃0. Here, bd
is the abbreviation for BitDiT. Further details on
this network will be provided in Section 3.3. Sub-
sequently, we can obtain the less noisy tags xti−1

following the Equation (9), (10) and (11):

xti−1 =
√
ᾱti−1bdθ,ϕ(xti ,W, ti)+

√
1− ᾱti−1 − σ2

ti

xti −
√
ᾱtibdθ,ϕ(xti ,W, ti)√

1− ᾱti

(13)

By iteratively performing λ denoising steps, the
desired target tags are acquired.

3.2 Bit-Tag Converter

The diffusion model is unable to generate the dis-
crete data directly. Thus, we propose Bit-Tag Con-
verter (BTConverter) to transform the discrete se-
quence tags into the bits during training (tag2bit)
and convert the bits back to the discrete tags dur-
ing decoding (bit2tag). The functionality of the
BTConverter is illustrated in Figure 2(b). We con-
struct an index for every tag in S . If the number of
elements in the tag set is |S|, we use ⌈log2 |S|⌉ bits
to represent tags. We assign 0 ∼ S − 1 to every
tag in S sequentially, and the bit representation of
the i-th tag is its corresponding binary bits (i.e.,
(101)2 represents the 5-th tag), which could be de-
noted as tag2bit(i). After converting the tags into
bits, every bit is taken as an independent real num-
ber. Then, they are shifted and scaled to the range
of [−b, b], where b represents a hyper-parameter
named signal-noise-ratio (SNR) (Xu et al., 2023; Ji
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Algorithm 1 Training for DiffusionSL

# input_ids, attention_mask: [bsz, len]
# gold_seq_tags: [bsz, len]

# encode conditional signal with a PLM
hid = encoder(input_ids, attention_mask)

# convert tags into continuous bits
# [bsz, seq_len, num_bits]
tag_bits = tag2bit(gold_seq_tags)
tag_bits = (tag_bits * 2 - 1) * SNR

t = Uniform(1, T)
epsilon = Normal(0, 1)
crpt_bits = sqrt(alpha_bar(t)) * tag_bits +

sqrt((1 - alpha_bar(t))) * epsilon

pred_bits = bd(corrupt_bits, t, hid)
loss = mse_loss(pred_bits, tag_bits)

return loss

et al., 2023). After the inference with the reverse
diffusion process, we use bit2tag(bits) to convert
bits back into discrete tags, which are then decoded
based on the schema of the downstream task. Fur-
ther details of the tag2bit and bit2tag functions
are provided in Appendix A.

3.3 Denoising Network: Bit Diffusion
Transformer

To eliminate noise during the reverse diffusion pro-
cess, we employ a denoising network based on
the Transformer architecture (Vaswani et al., 2017).
This network, named Bit Diffusion Transformer
(BitDiT), takes the bit representation of the noisy
tags xt, the input sentence W, and the timestep
t as inputs and generates the predicted clean tags
x̃0. The architecture of BitDiT is illustrated in
Figure 2(c). It consists of a BERT-style (Devlin
et al., 2019) encoder that represents the sentence
in hidden space and a decoder that generates the
targets in parallel. The encoder and decoder are
parameterized by θ and ϕ respectively. The overall
functionality of the denoising network could be
represented as follows:

x̃0 = bdθ,ϕ(xt,W, t) (14)

In more detail, we first obtain the encoding vec-
tors of the input sentence and cache them for all
inference timesteps:

H = Encoderθ(W) (15)

Next, we use the decoder to generate the clean
tags. The decoder comprises four components:

Algorithm 2 Inference for DiffusionSL

# input_ids, attention_mask: [bsz, len]
# encode conditional signal with PLM
hid = encoder(input_ids, attention_mask)

# begin with an isotropic Gaussian
bits = Normal(0, 1)

# denoise the data iteratively
for t in range(T):

bits_0_pred = bd(bits, t, hid)
bits = ddim_sample(bits_0_pred)

tags = bit2tag(bits)

return tags

Condition Embedder: It encodes the timestep
t using a learned lookup table and fuses it with the
cached H to get the conditional signal ct, allowing
the decoder to be aware of input and time:

ct = Linear(Concate(H,Embeds(t))) (16)

Pre Layer: This layer consists of a multi-layer
perceptron (MLP) that projects the bit represen-
tations to a higher dimension for modeling more
fine-grained interactions between tags.

Generator: This component consists of N our
designed Transformer blocks. It generates clean
tags based on the conditional signal ct.

Post Layer: This layer performs layer normal-
ization to normalize the representations and then
applies another MLP to project them back to the
original dimension.

The generation process can be summarized as:

x̃0 = Post(Generator(Pre(xt), ct)) (17)

where Pre and Post represents the Pre Layer and
the Post Layer. Instead of using cross-attention
to incorporate the conditional signal in the Trans-
former blocks of Generator, we resort to adaptive
layer normalization (Perez et al., 2018; Brock et al.;
Li et al., 2022a; Peebles and Xie, 2022), which pre-
dicts the element-wise affine parameters based on
the condition ct to substitute the naive layer nor-
malization (Ba et al., 2016) used in the original
Transformer (Vaswani et al., 2017). The layer nor-
malization used in the Post Layer has also been
modified to this accordingly. We also learn an ad-
ditional scale factor for this Transformer before
each skip connection (He et al., 2016) to control
the amount of newly learned information added.
We refer the architecture diagram and calculation
details of this Transformer block in Appendix B.
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Methods
MSRA Resume Conll03

P R F P R F P R F

discriminative
BiLSTM-tagger 90.74 86.96 88.81 93.66 93.31 93.48 - - -

Zhang and Yang (2018) 93.57 92.79 93.18 94.81 94.11 94.46 - - -
Yan et al. (2019) - - 92.74 - - 95.00 - - 91.45
Li et al. (2020) - - 94.12 - - 95.45 - - -

Wu et al. (2022) 94.92 94.19 94.55 95.63 95.52 95.58 - - -

generative
Athiwaratkun et al. (2020)∗ - - - - - - - - 92.00

Paolini et al. (2021)∗ - - - - - - - - 91.48
Lu et al. (2022)∗ - - - - - - - - 92.17
DiffusionNER△ 95.71 94.11 94.91 - - - 92.99 92.56 92.78

DiffusionNER†
reproduction (95.64) (93.97) (94.80) (96.64) (91.84) (94.18) (92.35) (92.76) (92.55)

gpt-3.5-turbo‡ (one-shot) 48.03 57.47 52.33 64.74 28.16 39.25 34.67 61.75 44.41

DiffusionSL (Ours) 95.69 95.28 95.49 96.58 96.22 96.40 93.15 92.26 92.70

Table 1: Results of NER. * demonstrates the results of the autoregressive generative methods, which exhibit inferior
performance compared to the non-autoragressive ones. The results of DiffusionNER (Shen et al., 2023) on Resume
dataset were not reported in the original paper, so we reproduce and test on it, along with the other two datasets. △
represents the results reported in the original DiffusionNER paper while the † refers to our reproduced results. ‡ is
the results obtained by prompting gpt-3.5-turbo with one demonstration example.

3.4 Training and Inference

For training, we use the Mean Squared Error Loss
(MSE Loss) to regress the predicted bits:

LMSE = Ex0,W,t,ϵ||x0 − bdθ,ϕ(xt,W, t)||22 (18)

For inference, we sample a sequence of tags in
bit representation with the same length as the in-
put sentence from a standard Gaussian distribution.
Then, we conduct λ denoising steps to get the de-
sired clean bits. The discrete tags are acquired
by the bit2tag function of the BTConverter. The
pseudo-code of training and inference is provided
in Algorithm 1 and Algorithm 2, respectively.

4 Experiments

4.1 Experimental Settings

We conduct experiments to evaluate the proposed
DiffusionSL framework on seven different datasets.
We choose MSRA (Levow, 2006), Resume (Zhang
and Yang, 2018), and Conll03 (Tjong Kim Sang
and De Meulder, 2003) for NER, MSRA, PKU
(Emerson, 2005), and CTB6 (XUE et al., 2005)
for CWS, and CTB5 (XUE et al., 2005) for POS
tagging. The detailed statistics of these datasets are
provided in Appendix C. We provide the detailed
hyper-parameter settings in Appendix D.

We compare the previous models for NER, CWS,
and POS tagging to test the effectiveness of the Dif-
fusionSL. Compared methods can be divided into
discriminative and generative ones. The former

capture the conditional tag distribution and the lat-
ter generates the desired outputs at the decoder
end. For NER baselines, the works of Huang et al.
(2015a), Zhang and Yang (2018), Yan et al. (2019),
Li et al. (2020) and Wu et al. (2022) are discrimina-
tive while the works of Athiwaratkun et al. (2020),
Paolini et al. (2021), Lu et al. (2022) and Shen et al.
(2023) are generative. CWS (Yang et al., 2017; Ma
et al., 2018; Yang et al., 2019; Tian et al., 2020) and
POS (Diao et al., 2020; Meng et al., 2019) base-
lines are all discriminative ones. We also compare
one of the most powerful Large Language Mod-
els (LLMs), gpt-3.5-turbo (OpenAI, 2023). More
details of baselines are deferred to the Appendix E.

4.2 Overall Results

DiffusionSL achieves better performance on var-
ious datasets across different tasks. Promising
results validate the effectiveness of DiffusionSL
over the previous baselines, including both dis-
criminative and generative methods. NER results
in Table 1 show that DiffusionSL achieves 95.49,
96.40, and 92.70 F1 scores on MSRA, Resume,
and Conll03 datasets. Meanwhile, for CWS, Dif-
fusionSL achieves 98.33, 96.54, 97.46 F1 scores
on MSRA, PKU, and CTB6 respectively according
to Table 2. For POS tagging, our method achieves
97.18 F1 score on CTB5, with an improvement of
0.36, which is demonstrated in Table 2. The strong
performance proves this non-autoregressive step-
wise generative approach can generate task-specific
tags effectively and thus tackle the corresponding
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CWS MSRA PKU CTB6

Ma et al. (2018) 98.10 96.10 96.70
Yang et al. (2019) 97.80 95.90 96.30
Tian et al. (2020) 98.16 96.47 97.13
Cui et al. (2021)† 98.31 96.51 97.39

DiffusionSL(Ours) 98.33 96.54 97.46

POS tagging CTB5

Diao et al. (2020) 96.64
Meng et al. (2019) 96.61
Cui et al. (2021)† 96.82

DiffusionSL (Ours) 97.18

Table 2: Results of CWS and POS tagging. † denotes
the results reproduced by us.

Shot 1 5 10 15

F1 41.78 44.49 46.73 39.25

Table 3: Gpt-3.5-turbo experiments results on Resume
dataset. Shot is the number of demonstration example
used in prompting. Due to the budget of OpenAI api,
we only test one dataset.

problems effciently.
Compared to DiffusionNER, which is our con-

current work that applies the diffusion model on
NER, we surpass it on all the datasets, illustrat-
ing the advantages of Tag Diffusion Process over
the entity span boundary diffusion process. In our
view, the generation format (e.g., span boundary)
is unnatural, and it separates the span localization
and the entity label classification to some extent.
Hence the diffusion model can not model the entity
label information well. Besides, this generation
format necessitates extra heuristic post-processing
operations. As a result, it limits this framework
to the NER task and results in sub-optimal perfor-
mance. Our DiffusionSL can not only handle NER
but also all other SL tasks, which enjoys stronger
performance and more flexibility at the same time.

We also compare the gpt-3.5-turbo (OpenAI,
2023), which is one the most powerful LLMs
among OpenAI gpt-series, on NER datasets. We
prompt the LLM with one demonstration example
(one-shot) for three NER datasets. The experiment
of adding more demonstrations is also conducted
on Resume dataset. Our experimental results in
Table 3 test that the performance will not increase
infinitely with the increase of demonstrations. We
find that LLM still could not catch up with the task-
specific supervised small models. Thus exploring
the specific algorithms for sequence labeling is still
meaningful. The corresponding prompt details are

Bit Embedding#bits Embedding768

NER-Resume 96.40 50.07 96.28
POS-CTB5 97.18 96.72 96.86

Table 4: Ablation study of tag representation on Resume
NER dataset and CTB5 POS tagging dataset. #bits is
the bit representation dimension.

1 10 50 100

NER-Resume 96.37 96.40 96.40 96.40
POS-CTB5 97.18 97.18 97.19 97.19

Table 5: Ablation study of denoising sampling steps on
Resume NER dataset and CTB5 POS tagging dataset.
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Figure 3: The convergence process of Cross-Attn and
BitDiT. Here, *-Max denotes the best performance of
method *. The best performance of BitDiT differs from
the result reported in Table 1, as the latter presents the
test F1 score corresponding to the highest dev F1.

shown in Appendix F.

5 Ablation Study and Analysis

5.1 Effects of BTConverter
We conduct experiments to compare with the most
intuitive and straightforward alternative, embed-
ding method, which creates a learnable embedding
table for each discrete symbol in S. Results are
shown in Table 4. During training, a prototype
embedding is learned for each tag. In inference
phase, the embeddings generated from the diffu-
sion model are decoded into discrete tags based
on their distance to different prototypes. For fair
comparison, we firstly set the dimension of the
embedding table the same as the bit representa-
tion dimension. Resume has 13 tags and CTB5
has 103 tags in S. Their corresponding bit dimen-
sion is 4 and 7. The embedding representation
exhibits inferior performance compared to the bit
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representation. Even if we scale the dimension of
embedding representation to 768, it still can not out-
perform bit representation and requires additional
|S| × htag trainable parameters. Additionally, the
decoding method requires calculating the distance
from each tag embedding to each prototype, which
is more complex than the bit2tag function in BT-
Converter that only operates once for every tag
during decoding. These results demonstrate the
lightweight and flexible nature of BTConverter.

5.2 Effects of BitDiT

BitDiT incorporates conditional signals through
adaptive layer normalization, whereas the standard
Transformer decoder block and the DiffusionNER
utilize an additional cross-attention layer to percep-
tualize the conditional information. We refer to
this method as Cross-Attn (Vaswani et al., 2017;
Shen et al., 2023). Figure 3 shows the convergence
process of BitDiT and Cross-Attn on the Reusume
dataset. From the result, we discover that Cross-
Attn exhibits slower convergence speed and inferior
final performance compared to BitDiT. This find-
ing underscores the significance of our proposed
BitDiT architecture.

5.3 Effects of Denoising Steps

We validate the impact of denoising steps on perfor-
mance, while the corresponding results are shown
in Table 5. We find that the performance improves
with the increase of the steps until reaching the bot-
tleneck. Owing to the iterative refinement nature of
the diffusion model, we can increase the sampling
steps to boost the performance (Chen et al. 2022,
Shen et al. 2023). But the performance will not
improve infinitely with the increase of the steps.
So we choose 10 as the defaulting steps for balance
between the performance and the speed.

6 Case Study

We visually show the denoising process details by
one Chinese NER case. In Figure 4, we input the
sentence中国中央致中国致公党十一大的贺词
(The CPC Central Committee’s congratulatory mes-
sage to the 11th National Congress of the Chinese
Zhigong Party) as condition signal, then we gen-
erate the corresponding tags in ten decoding steps
by iterative refinement. We also show the label ac-
curacy of tags in the bottom for every step, which
increases with the number of reverse steps. Finally,
we get the exactly correct NER tags of the input

sentence at the final step. Then, we can decode the
desired entities (中共中央 (CPC Central Com-
mittee’s), NT), (中国致公党十一大 (the 11th
National Congress of the Chinese Zhigong Party),
NT) by the semantics of these tags. To the best of
our knowledge, we are the first to introduce this
iterative denoising process and shift the traditional
classification paradigm to the non-autoregressive
generation paradigm for sequence labeling.

7 Related Work

7.1 Sequence Labeling

Sequence Labeling (He et al., 2020) assigns a
unique label with special semantics to each unit in a
sentence. Named Entity Recognition (Huang et al.,
2015b), Part-of-speech tagging (Todi et al., 2018),
Chinese Word Segmentation (Shi et al., 2017), Text
Chunking (Zhai et al., 2017), Slot Filling (Zhang
et al., 2019), Semantic Role Labeling (Daza and
Frank, 2018) and many other NLP tasks could be
tackled using sequence labeling. Traditional ma-
chine learning methods (Baum and Petrie, 1966;
Lafferty et al., 2001) and deep-learning-based meth-
ods (Huang et al., 2015b; Devlin et al., 2019)
are proposed to address it. Recently, knowledge-
enhanced pretrained encoders (Diao et al., 2020;
Liu et al., 2021; Jiang et al., 2022) boost this field
significantly.

7.2 Diffusion Model

Diffusion model is derived from the image gen-
eration field (Sohl-Dickstein et al., 2015). The
strong performance of the diffusion-based gener-
ative model (Ho et al. 2020, Ramesh et al. 2021)
significantly boosted the development of the im-
age field. Thus, lots of eyes from other fields
are attracted by the diffusion model, e.g., speech
synthesis (Zhang et al., 2023a), protein design
(Trippe et al., 2023), time series forecasting (Li
et al., 2022c), natural language generation (Li et al.,
2022b). For NLP, the discreteness nature of lan-
guage symbol poses several challenges. Nonethe-
less, many techniques are proposed to boost the
development of this field (Hoogeboom et al., 2021;
Li et al., 2022b; Yuan et al., 2022; Lin et al., 2023;
He et al., 2023; Zhou et al., 2023). We provide a
more detailed survey about applying the diffusion
model to the natural language field in appendix G.
Currently, diffusion model dominats the field of
generative AI and there are so many works chasing
to improve the diffusion model from different per-
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Figure 4: Visulization example for Chinese NER. 中国中央致中国致公党十一大的贺词 means The CPC
Central Committee’s congratulatory message to the 11th National Congress of the Chinese Zhigong Party.

spectives, e.g., likelihood estimation (Kingma et al.,
2021), efficient sampling (Song et al., 2021a), con-
dition guided diffusion (Ho and Salimans, 2022).

8 Conclusion

In this paper, we cast the Sequence Labeling (SL)
task as a conditional generation problem. Further-
more, we introduce a novel framework DiffusionSL
to model SL using a non-autoregressive stepwise
generation approach. Meanwhile, we propose BT-
Converter to handle the discreteness problem and
BitDiT to model the progressive noise-removal pro-
cess. Experimental results indicate that our model
performs better on NER, CWS, and POS tagging
compared to previous strong baselines, thus reveal-
ing the superiority of DiffusionSL. Our work is
pioneer research to cast Natural Language Under-
standing task as a non-autoregressive correspond-
ing generation task. We hope DissusionSL could
be used in more tasks that could be formulated as
sequence labeling and leave this as the future work,
e.g. semantic role labeling, text chunking.

Limitations

There are several disadvantages that are hard to
avoid for DiffusionSL. Firstly, more sampling steps
result in a slowerer sampling speed. Though we
choose ddim as sampling method to decrease the

sampling steps, it is still slower than the discrimi-
native models. Secondly, BitDiT incorporates an
extra random-initialized decoder compared to the
BERT-style tagger models, which needs more com-
putation memory and is harder to train, we must
search the hyperparameters thoroughly to find an
optimal result. Thirdly, the initial noise is sam-
pled from a Gaussian distribution, thus bringing
randomness in the Tag Diffusion Process.
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A int2bit and bit2int

Algorithm 3 convert tags into bits

def tag2bit(x, num_bits):
mask = 2 ** torch.arange(num_bits - 1, -1,

-1, dtype=torch.int32)
x = x.unsqueeze(dim=-1)
bits = ((x & mask) != 0).float()
bits = bits * 2 - 1
return bits

Algorithm 4 convert bits back into tags

def bit2tag(x, num_bits):
x = (x > 0).int()
mask = 2 ** torch.arange(num_bits - 1, -1,

-1, dtype=torch.int32)
tags = (x * mask).sum(dim=-1)
return tags

B Transformer Block of BitDiT Decoder

We show the architecture details of the Trans-
former block used in BitDiT decoder in Figure
5. The noisy tag bits xt goes through two sub-
blocks. The first block consists of an Adaptive
Layer Normalization (ALN) layer, a Multi-Head
Self-Attention (MHSA) layer and a scaled skip-
connection. The second is basically the same but
the MSHA layer is substituted by a Feedforad Net-
work (FFN) layer. The scale factor before the skip
connection is learned based on the conditional em-
bedding ct. The calculation procudure could be
summarized as follows:

xt = α1 × MHSA(ALN1(xt), ct) + xt (19)

xt = α2 × FFN(ALN2(xt), ct) + xt (20)

α1,2 = Linear1,2(ct) (21)

where α1 and α2 are scale factors. The ALN learns
the scale γ and shift β parameters based on the ct:

ALN(xt, ct) = γ × LN(xt) + β (22)

LN(xt) =
xt − E(xt)√
Var(xt) + ϵ

(23)

γ = Linear3(ct) (24)

β = Linear4(ct) (25)

where ϵ is for avoiding division-by-zero error and
numerical stability.

LayerNorm

Scale	Shift

Scale
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Scale	Shift

Scale
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Linear
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Figure 5: Transformer block details of the BitDiT De-
coder. MHSA represents Multi-Head Self-Attention and
FFN represents Feedforward Network. β and γ are the
learned affine parameters for adaptive layer normaliza-
tion. α is the scale factor before each skip connection.

C Statistics of datasets

Task Dataset Train Dev Test

NER
MSRA 41728 4636 4365
Resume 3821 463 477
Conll03 14041 3250 3453

CWS
MSRA 78231 8693 3985
PKU 17150 1906 1944
CTB6 23458 2079 2796

POS CTB5 18078 350 348

Table 7: The statistics of the datasets. For CWS task,
whose dev set is not provided, we randomly select 10%
of the original training instances to serve as the dev set.

D Hyper-parameters settings

For conditional text encoder, we choose
chinese-bert-wwm-ext2 for chinese datasets
and bert-large-cased3 for English datasetes.
We take AdamW(Loshchilov and Hutter, 2019)

2https://huggingface.co/hfl/
chinese-bert-wwm-ext

3https://huggingface.co/bert-large-cased
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as optimizer. We set the peak learning rate as
1e-5, with 1000 warm-up steps and a liner decay
scheduler. The timestep for training is set to
1000 and the ddim sampling step is set to 10 for
efficiency. The SNR scale is set to 0.1. We use the
B-M-E-S schema instead of the B-I-O schema.

E Baselines

E.1 NER
• BiLSTM-tagger (Huang et al., 2015b) uses

a BiLSTM to encode the sentence and a CRF
layer to decode the NER tags.

• TENER (Yan et al., 2019) designs a specific
attention mechanism and improves the perfor-
mance of the Transformer for NER.

• FLAT (Li et al., 2020) introduces the
character-word lattice into the Transformer
architecture to enhance the NER performance.

• NFLAT (Wu et al., 2022) proposes Inter-
Former to apply lexical enhancement and re-
moves the word-character and word-word at-
tention interaction for memory efficiency.

• Athiwaratkun et al. (2020) uses a generative
model for joint sequence labeling and se-
quence classification task. It can tackle many
sequence labeling at the same time and per-
forms well in different scenarios.

• Paolini et al. (2021) proposes an augmented
natural languages and then cast many se-
quence labeling tasks as a translation be-
tween original language sequence and the aug-
mented ones.

• UIE (Lu et al., 2022) utilze the proposed struc-
ture extraction language to unify various infor-
mation extraction tasks and uses unsupervised
corpora to pretrain, thus resulting in better
information extraction ability.

• DiffusionNER (Shen et al., 2023) models the
entity as a labeled span (left boundary, right
boundary, entity label) and cast the NER as a
boundary-denoising process. It generates the
entities from the noisy spans using a diffusion
model. DiffusionNER sets the boundaries as
the generation objective, which can only be
used for NER. Conversely, DiffusionSL can
be used for all sequence labeling tasks, which
enjoys more versatility.

• gpt-3.5-turbo (OpenAI, 2023) is one of the
most powerful LLMs. We test its one-shot
performance to generate the sequence labeling
targets, and the corresponding prompts are in
Table 6.

E.2 CWS

• Ma et al. (2018) uses a simple unigram and
bigram-based Bi-LSTM to extract the entities.

• Yang et al. (2019) improves the Lattice LSTM
by integrating the subword embedding.

• WMSEG(Tian et al., 2020) introduces the
memory mechanism to incorporate the word-
hood information to enhance the segmentation
model.

• Cui et al. (2021) enhances the BERT encoder
by masking the whole word.

E.3 POS tagging

For POS tagging, most works focus on adding more
features to enhance the word representation ability
of the text encoder.

• ZEN (Diao et al., 2020) incorporates the n-
gram information to enhance the BERT.

• Glyce (Meng et al., 2019) incorporates the
visual information to enhance the BERT.

• Cui et al. (2021) enhances the BERT encoder
by masking the whole word.

F LLM experiments

We show the prompt we used in the LLM exper-
iments in Table 6. For one-shot experiments, we
only add one example following the task definition.
For few-shot experiments tested on Resume, we
add more demonstration examples following the
task definition. For fair comparison in few-shot
experiments, examples used in the 15-shot incorpo-
rate the ones used in 10-shot, and so on.

G Detailed Related Work of Diffusion
Model with Language

We provide a complete and detailed review of pre-
vious work about applying the diffusion model to
language for the potential audiences to get familiar
with this promising field. Most existing literature
focuses on NLG instead of NLU.
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• Multinomial-Diffusion (Hoogeboom et al.,
2021) defines a multinomial diffusion process
with categorical data to generate text or a seg-
mentation map.

• D3PM (Austin et al., 2021) also defines the
diffusion model in discrete space and the
newly proposed discrete corruption process
improves the performance.

• DiffusionLM (Li et al., 2022b) firstly pro-
poses to embed the text into continuous space
to circumvent the discreteness problem and
round the final denoised vectors back into
words.

• DiffuSEQ (Gong et al., 2023) firstly employs
the diffusion model for seq2sesq text genera-
tion setting. And it novelly proposes to con-
catenate and embed the source and target text
and only add noise to the target text embed-
ding while keeping the source text embedding
as clean.

• SSD-LM (Han et al., 2022) iteratively gen-
erates text blocks in a semi-autoregressive
manner and conducts the diffusion process
on the natural vocabulary space, which bal-
ances the advantage of Autoregressive and
Non-Autoregressive model and allows conve-
nient guidance incorporation.

• SED (Strudel et al., 2022) casts the discrete
language symbols into continuous embed-
dings and incorporates the self-condition trick
into the backward denoising process.

• CDCD (Dieleman et al., 2022) uses the score-
matching framework to solve several language
modeling tasks in continuous time and input
space.

• DiffusionBERT (He et al., 2023) uses the dif-
fusion model to improve the masked language
model, which combines the advantage of two
denoising models. New proposed noise sched-
ule and time embedding injection methods are
applied to it.

• Difformer (Gao et al., 2022) proposes an an-
chor loss function, a layer norm module over
the embeddings, and a noise factor that con-
trols the added noise to tackle the problems
incorporating the collapse of the denoising ob-
jective, the imbalanced norm of embedding

among words, distraction resulted by adding
standard noise.

• Lovelace et al. (2022) demonstrates that the la-
tent space of pretrained language model could
be used to learn a diffusion model in which
the latent representations could be decoded
into natural language.

• SeqDiffSeq (Yuan et al., 2022) uses a self-
condition technique and a newly proposed
adaptive noise schedule for sequence-to-
sequence diffusion language model based on
Transformer.

• Diff-Glat (Qian et al., 2022) proposes modal-
ity diffusion process and residual glancing
sampling to boost the performance of Non-
Autoregressive parallel text generation.

• GENIE (Lin et al., 2023) pretrains a novel
Transformer-based encoder-decoder diffusion
language model on a large-scale corpus with a
novel pretraining technique named continuous
paragraph denoise.

• DiffusER (Reid et al., 2023) applies an edit-
based generative model based on diffusion de-
noising process to revise the already existing
text, making gradual text refinement probable.

• RDMs (Zheng et al., 2023) proposes a novel
family discrete diffusion model with a route-
and-denoise decoding process.

• Dinoiser (Ye et al., 2023a) manipulates the
noise in the training and inference stage to
avoid the pitfall of discreteness of the embed-
ding space and boost the impact of source
sentences for conditional sequence learning.

• Masked-Diffusion LM (Chen et al., 2023a)
uses a linguistic masking strategy to perturb
the clean sentence which enables an easy-first-
generation backward process.

• RenderDiffusion (Li et al., 2023) transforms
the discrete language symbol generation prob-
lem into the glyph image generation problem,
thus casting the less-studied text-to-text dif-
fusion model as a well-studied text-to-image
model.

• DiffusionSum (Zhang et al., 2023b) tackles
the extractive summary problems by directly
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generating the desired summary sentence em-
bedding to match the corresponding natural
sentences in the original document.

• Tang et al. (2023) proposes two methods
named Distance Penalty and Adaptive De-
cay Sampling to bridge the gap between the
training and inference(namely exposure bias
problem in the traditional NLG setting) of the
diffusion language model.

• Diffusion-NAT (Zhou et al., 2023) unifies the
BART and discrete diffusion model and pro-
poses a self-prompting technique for text-to-
text generation.

• AR-Diffusion (Wu et al., 2023b) combines
the Autoregressive language model and the
Non-Autoregressive diffusion language model
to boost the text generation performance and
speed, due to the left-to-right sequential nature
of language.

• DDLM (Balagansky and Gavrilov, 2023) re-
produces the CDCD-based (Dieleman et al.,
2022) LM and publicly releases the corre-
sponding training code and checkpoint, then
firstly tests the performance of downstream
tasks, making it convenient for other re-
searchers to explore this field.
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dataset prompt

MSRA 请从给定文本中识别人名、地名、组织名并列举出来，每个词最多出现在一个类别
中。
文本：我们是受到郑振铎先生、阿英先生著作的启示，从个人条件出发，瞄准现代
出版史研究的空白，重点集藏解放区、国民党毁禁出版物。
结果：人名：郑振铎，阿英；地名：无；组织名：国名党
{文本：
结果：} ...
文本：{text}
结果：

Resume 请从给定文本中识别国籍、教育水平或学历、地名或籍贯、人名、公司或组织机构
名、专业、民族名、职务或身份并列举出来，每个词最多出现在一个类别中。
文本：1966年出生，汉族，中共党员，本科学历，工程师、美国项目管理协会注册
会员（PMIMember）、注册项目管理专家（PMP）、项目经理。
结果：国籍：无；教育水平或学历：本科学历；地名或籍贯：无；人名：无；公司
或组织机构名：美国项目管理协会；专业：无；民族名：汉族；职务或身份：中共
党员，工程师，注册会员，PMIMember，注册项目管理专家，PMP，项目经理；
{文本：
结果：} ...
文本：{text}
结果：

Conll03 Please list all Organization, Person, Location, and Miscellaneous Entity in the given text,
output using the format as "Entity: Organization: None | Person: None | Location: Word1,
Word2 | Miscellaneous: Word3"
Text: The European Commission said on Thursday it disagreed with German advice to
consumers to shun British lamb until scientists determine whether mad cow disease can be
transmitted to sheep.
Entity: Organization: European Commission | Person: None | Location: None |
Miscellaneous: German, British
{ Text:
Entity: } ...
Text: {text}
Entity:

Table 6: The prompt used in LLM experiments. Following Ye et al. (2023b), we use task definition followed
by demonstration examples as the prompt. {文本：结果：} ... and {Text: Entity:} ... mean adding more
demonstrations. We refer to text as the input sentence.
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