
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 12972–12990
December 6-10, 2023 ©2023 Association for Computational Linguistics

FROM WORDS TO WIRES: Generating Functioning Electronic Devices
from Natural Language Descriptions

Peter Jansen
University of Arizona

pajansen@arizona.edu

Abstract

In this work, we show that contemporary lan-
guage models have a previously unknown skill
– the capacity for electronic circuit design from
high-level textual descriptions, akin to code
generation. We introduce two benchmarks:
PINS100, assessing model knowledge of elec-
trical components, and MICRO25, evaluating
a model’s capability to design common micro-
controller circuits and code in the ARDUINO
ecosystem that involve input, output, sensors,
motors, protocols, and logic – with models such
as GPT-4 and Claude-V1 achieving between
60% to 96% PASS@1 on generating full de-
vices. We include six case studies of using
language models as a design assistant for mod-
erately complex devices, such as a radiation-
powered random number generator, an emoji
keyboard, a visible spectrometer, and several
assistive devices, while offering a qualitative
analysis performance, outlining evaluation chal-
lenges, and suggesting areas of development to
improve complex circuit design and practical
utility. With this work, we aim to spur research
at the juncture of natural language processing
and electronic design.12

1 Introduction

The realm of science fiction often presents us with
captivating visions of technology’s future. A case
in point is the replicator from the TV series Star
Trek, a machine capable of creating various physi-
cal objects – from food and medicine to function-
ing devices – based solely on a user’s high-level
description of those objects. Contemporary lan-
guage models hint at the precursors to some of
this capacity for design, including the ability to
design novel 2D and 3D object models (Ramesh
et al., 2022; Nichol et al., 2022), predict molecu-
lar structures for drug discovery (Liu et al., 2021;

1PYTHON library and data: https://github.com/
cognitiveailab/words2wires

2Companion video: https://youtu.be/PZ1rr0dDAPI

Large Language Model

“Design a random number generator that uses
ambient radiation level to set the random seed,
and displays random numbers on a nixie tube.”

Figure 1: An example of using a language model to
convert a high-level textual description of an electronic
device into the designs for that device. Those designs
are then reviewed by a domain expert, and any errors
corrected, before the device is physically manufactured
using rapid-prototyping techniques.

Flam-Shepherd and Aspuru-Guzik, 2023), and gen-
erate increasingly complex sections of code that
power a variety of user applications (Li et al., 2023;
Wang et al., 2023).

In this work, we show that language models have
a previously unknown skill – the capacity to gen-
erate working electronic devices from high-level
textual descriptions – effectively bridging the gap
between the words of a device description to the
wires of a device design. The design process for
electronic devices, such as the random number
generator in Figure 1, typically follows a stage-
like process illustrated in Figure 2. These steps
include: ideation, electronic design (including gen-
erating parts lists, electronic schematics, and code
for embedded processors called microcontrollers),
followed ultimately by physical implementation

12972

https://github.com/cognitiveailab/words2wires
https://github.com/cognitiveailab/words2wires
https://youtu.be/PZ1rr0dDAPI

“Nixie-Tube
Random
Number

Generator”

Idea

I/O 5
R1

220 Ω

D1

SW1
I/O 3

U1

Schematics Construction

Words2Wires (this work) Physical Implementation

PCB Design

U1

D1

Microcontroller
Code

void setup() {
 pinMode(5, OUTPUT);
}
void loop() {
 for (int i=0; i<10; i++) {
 digitalWrite(5, LOW);
 delay(100);
 digitalWrite(5, HIGH);
 delay(100);
 }
}

Component
Pinouts

AT
TI

N
Y

85

VCC

SCL

D1

SDA

D5

D3

D4

GND

Bill of
Materials

ATTINY85

D1

R1

U1

SW1

Figure 2: An overview of the electronics device design process, from concept to design implementation.

via manufacturing. Our focus in this work is on
automating the task of transforming a high-level
concept into a practical electronics schematic, com-
plete with companion microcontroller code—a task
that currently requires significant human expertise
and effort. We evaluate our approach by construct-
ing these devices either in simulators or, for six
open-ended case studies, as physical devices im-
plemented using rapid prototyping techniques such
as breadboards, circuit board manufacture, laser
cutting, and 3D printing.

The contributions in this work are:

1. We empirically demonstrate the novel capac-
ity for language models to design electronic
devices from high-level textual descriptions,
and introduce two benchmarks to measure this
capacity. The first, PINS100, measures knowl-
edge of 100 common electronic components.
The second, MICRO25, measures the ability
to design 25 common electronic devices from
start to finish, including the generation of bills-
of-materials, pinouts, schematics, and code.

2. Our experimental evaluation shows that both
GPT-4 and CLAUDE-V1 have moderate-to-
strong performance on these benchmarks,
with GPT-4 achieving 96% PASS@1 at gener-
ating correct schematics and functioning code
on MICRO25, while CLAUDE-V1 scores 60%
on schematics and 76% on code.

3. We present six real-world case studies of us-
ing language models to construct novel de-
vices, including an emoji keyboard, a visible
light spectrometer, and two assistive devices.
Alongside, we provide a qualitative assess-
ment of the strengths of current language mod-
els for electronic device design, while also
outlining the challenges in enhancing perfor-
mance, automating evaluation, and increasing
their practical utility.

2 Related Work

Arduino microcontroller ecosystem: This work
focuses on circuits that are controlled by microcon-
trollers, which are processors intended for embed-
ded applications. In particular, we focus on micro-
controllers supported by the ARDUINO ecosystem
(Banzi and Shiloh, 2022), a popular cross-platform
set of C++ tools and libraries3 intended to pro-
mote learning and lower the barrier to entry for
creating physical devices. Most of the devices de-
scribed in this work target the ARDUINO UNO, a
platform with more than 10 million units sold as
of 2023, which uses an ATMEGA328P microcon-
troller with 2K of RAM, 32K of program space,
20 input/output (I/O) pins, and a speed of 16MHz.
While these specifications (e.g. RAM and speed)
are modest for desktop computers, they are typi-
cal of microcontrollers and embedded applications
where programs are typically run bare-metal (i.e.
without an operating system).

Code Generation: Though aspects of physical
design (such as circuit board layout) have been
automated for decades (see Huang et al. (2021) for
review), to the best of our knowledge, this is the
first work to use language models for automating
early-stage circuit design, converting high-level
textual device descriptions into initial electronic
schematics and microcontroller code. Designing
code-driven electronic circuits is similar to code
generation tasks (e.g. Chen et al., 2021; Austin
et al., 2021; Hendrycks et al., 2021; Lai et al., 2022;
Nijkamp et al., 2023, inter alia), with the additional
requirement that a model must jointly generate a
corresponding electrical circuit schematic that is
compatible with the code, that together allow the
microcontroller to accomplish a given task.

Conditioned Code Generation: Generating code
from intermediate planning representations (such

3https://www.arduino.cc/

12973

https://www.arduino.cc/

Schematics
(Visual Representation)

I/O 5
R1

220 Ω

D1

SW1
I/O 3

U1

GND

Arduino Uno # Connect Button pin 1 to Uno D3
Connect Button pin 2 to GND

Connect pin 1 of R1 (current limiting resistor) to
Uno Digital I/O 5 (D5), to activate/deactivate D1
Connect D1 anode to pin 2 of R2 (current limiting resistor)
Connect D1 cathode to Uno GND

Schematics as Annotated JSON
(Netlists, as output by the LLM)

[
 [{"name":"SW1", "pin":"1"}, {"name": "uno", "pin":"D3"}],
 [{"name":"SW1", "pin":"2"}, {"name": "uno", "pin":"GND"}],

 [{"name":"R1", "pin":"1"}, {"name": "uno", "pin":"D5"}],

 [{"name":"D1", "pin":"anode"}, {"name": "R1", "pin":"2"}],
 [{"name":"D1", "pin":"cathode"}, {"name": "uno", "pin":"GND"}],
]

Bill of Materials

[
 {"part":"Arduino Uno", "name":"uno", "value":"",
 "notes":"Arduino Uno microcontroller"},
 {"part":"Button", "name":"SW1", "value":"",
 "notes":"Momentary push button"},
 {"part":"LED", "name":"D1", "value":"red",
 "notes":"Standard voltage range (2-3.3V)."},
 {"part":"Resistor", "name":"R1", "value":"220 ohm",
 "notes":"current limiting resistor for LED at 5V"}
]

Component Pinouts

{
 "Arduino Uno": ["5V", "3.3V", "GND", "AREF", "D0/RX", "D1/TX",
 "D2", "D3", "D4", "D5", "D6", "D7", "D8", "D9", "D10", "D11",
 "D12", "D13", "A0", "A1", "A2", "A3", "A4/SDA", "A5/SCL"],
 "SW1": ["1", "2"],
 "D1": ["anode", "cathode"],
 "R1": ["1", "2"]
}

Microcontroller Code

// LED controlled by button
// This code interfaces with a circuit that has a single push button and an LED.
// The LED turns on when the button is pressed, and turns o� when the button is not pressed.

#de�ne PIN_BUTTON 3 // Button on Digital I/O 3
#de�ne PIN_LED 5 // LED on Digital I/O 5

// the setup function runs once when you press reset or power the board
void setup() {
 pinMode(PIN_BUTTON, INPUT_PULLUP); // Initialize button pin to input mode (using
 // internal pull-up resistor)
 pinMode(PIN_LED, OUTPUT); // Initialize LED pin to output mode
}

// the loop function runs over and over again forever
void loop() {
 int buttonState = digitalRead(PIN_BUTTON); // Read the state of the button
 if (buttonState == LOW) { // If the button is pressed, turn on the LED
 digitalWrite(PIN_LED, HIGH);
 } else { // If the button is not pressed, turn o� the LED
 digitalWrite(PIN_LED, LOW);
 }
}

Language Model Generated

Simulated Construction Physical Construction

Textual Device Description
“Create a device that turns on an LED when a button is pressed”

Figure 3: An example of representing a device specification as text (in formatted JSON) such that it can be
generated by a language model, for a trivial device that illuminates an LED in response to a button being pressed.
The device specification includes the bill of materials, component pinouts, schematic (represented as a netlist),
and microcontroller code. The specification can then be used to create that device, either in simulation or through
physical construction. The device shown here was generated by GPT-4, and edited slightly for space.

as UML diagrams) can increase task performance
(Liu et al., 2022b), and here we adapt this to the
electronics context by generating device specifi-
cations (such as schematics) immediately before
code generation, to condition code generation on
a specific device. Similarly, generating structured
representations (in the form of code) can better
elicit the knowledge in a language model (Madaan
et al., 2022), where here we adapt this to generating
device specifications as highly-structured JSON
representations. These device specifications (bills
of materials, pinouts, schematics, and code) are
thousands of tokens long, and their generation is
enabled by the increase in model context lengths to

8K tokens, allowing models to generate hundreds
of lines of code (OpenAI, 2023; Li et al., 2023)
compared to earlier models with smaller genera-
tion capacity (Chen et al., 2021; Li et al., 2022;
Fried et al., 2023).

Hardware Description Languages: A contem-
poraneous body of work describes code genera-
tion tasks for hardware description languages (such
as VHDL or VERILOG) that run on specialized
processors called Field-Programmable Gate Ar-
rays (FPGAS) – typically to prototype specialized
CPU designs, or accelerate digital signal process-
ing. Thakur et al. (2023) introduce a benchmark
of 17 simple bitwise tasks, with the most advanced

12974

tasks including bitwise addition or counting, and
show the best performing model (CODEGEN-6B)
to achieve 60% PASS@10 when solving these
tasks. Similarly, Blocklove et al. (2023) use GPT-4
as a Verilog coding assistant, demonstrating that
it can perform well at generating 8 simple Verilog
designs (such a bitwise adder, or 3-state finite state
machine), while also providing a qualitative evalu-
ation of using GPT-4 as an assistant to design an
8-bit accumulator-based microprocessor. In con-
trast, where these projects generate code that runs
on FPGAs, this work (WORDS2WIRES) generates
both electrical schematics and code for electrical
devices that are built from – and interface with –
real electrical components, such as sensors, motors,
and displays, while also providing a larger-scale
set of benchmarks that perform significantly more
complex and real-world tasks.

Single-shot vs Collaborative: In this work, we
investigate device generation in two contexts. First,
we assess single-turn generation of error-free de-
vices using the MICRO25 benchmark, a set of elec-
tronic design tasks evaluated using code metrics
similar to PASS@1 (Kulal et al., 2019) that require
generating a single correct solution, with strict bi-
nary measures of task success. In the second con-
text, we explore a collaborative coding-assistant
setting, where prompts can be iteratively refined,
and any errors in the schematics or code corrected
by the end user. This approach is akin to tools such
as GITHUB COPILOT (Chen et al., 2021), which
assist in generating short parts of programs. How-
ever, in our case, the model is utilized to generate
an initial version of the entire project, after which
the user corrects any errors before physically con-
structing the device.

3 Experiment 1: Component Knowledge

To design electronic circuits, the designer needs a
knowledge of the individual electrical components
that can be used to build a circuit. One of the
most fundamental aspects of this knowledge is the
component pinouts, or the specific function of each
electrical terminal (or pin) on a component. For
example, a light-emitting diode (LED) typically
has two pins, one an anode where positive voltage
is applied, and one a cathode where the negative
terminal or ground is applied. Here we measure
large language models’ knowledge of component
pinouts by asking them to generate pinouts for a
large number of common electrical components.

Pinout Scoring Method GPT3.5

GPT-4
Clau

de

Strict Scoring (Exact) 55% 74% 56%
Permissive Scoring 74% 86% 72%

Table 1: Model accuracy in generating accurate pinout
information for 100 common electronic components.
Strict scoring requires all generated pins on a given
device to be accurate in order to be counted as correct.
Permissive scoring requires pins critical to the function
of a given component to be correct, but still counts
generations with non-critical missing pins (such as when
the device is mounted to a breakout board) to be correct.

Component Pinouts: While LEDs and other com-
mon components such as resistors and capacitors
commonly have two pins, other components have
varying numbers of pins, each with different func-
tions. For example, a common kind of digital motor
called a hobby servo typically has three pins: an an-
ode, a cathode, and a digital signal pin that accepts
a pulse from a microcontroller that signifies what
angle the motor should turn to. Common sensors
generally have between two and ten pins, depend-
ing on the communication protocols (e.g. digital
vs analog) they employ. Similarly, integrated cir-
cuits, and microcontrollers in specific, can have as
few as 8 pins (such as the ATTINY85 microcon-
troller in Figure 2), but frequently have dozens and
occasionally hundreds of unique pins. Connect-
ing component pins incorrectly in a schematic will
cause a device to malfunction, so this knowledge
is critical to constructing working circuits.

Benchmark: We assembled a benchmark of elec-
tronic component pinouts, PINS100, containing
100 common parts frequently used in circuits
found on high-traffic electronic tutorial websites
such as the ARDUINO PROJECT HUB and AU-
TODESK TINKERCAD CIRCUITS. Components
range from 2 to 40 pins, and span a large assort-
ment of part categories including passives (e.g. re-
sistors/capacitors), input (e.g. switches), output
(e.g. LEDs, motors, relays), sensors, integrated cir-
cuits, power regulators, logic (e.g. 7400-SERIES

AND and OR gates), and microcontrollers (e.g AR-
DUINO, RASPBERRY PI).

Models: We evaluate on instruction-tuned mod-
els including OpenAI’s CHATGPT (GPT-3.5-
TURBO) and GPT-4 (OpenAI, 2023), and An-
thropic CLAUDE-V14. Model prompts are identi-

4https://www.anthropic.com/

12975

https://www.anthropic.com/

cal across models, and include a static 1-shot ex-
emplar (a 14-pin 7400-SERIES logic integrated
circuit) that provides an example of the pinout task,
as well as the requested JSON output format. Addi-
tional hyperparameters, evaluation details, and the
full prompt are provided in the APPENDIX.

Evaluation: We evaluate using two binary mea-
sures of accuracy analogous to the PASS@1 code-
generation metric (Kulal et al., 2019). The first
scoring method, strict, requires a given model to
output all of a component’s pins correctly to be
considered correct, otherwise it will be considered
incorrect. The second method, permissive, requires
only the function-critical pins of a component to
be present to be considered correct, while failing
to include non-critical pins still counts as success.5

Results: Model performance in the pinout gener-
ation task is shown in Table 1. Performance re-
flects average binary PASS@1 performance of a
given model on generating accurate pinouts – for
example, a score of 50% reflects that 50% of the
components had completely correct pinouts. Here,
GPT-4 achieves the highest strict scoring perfor-
mance, generating accurate pinouts for 74% of
components, while both GPT3.5 and CLAUDE-V1
achieve similar levels of performance, generating
correct pinouts for 55% and 56% of components,
respectively. Permissive scoring increases perfor-
mance, with the best-scoring GPT-4 model capable
of generating pinouts that include the most critical
pins for 86% of electrical components in the bench-
mark. Taken together, these results suggest that
large language models have a moderate-to-strong
knowledge of electrical component pinouts, a core
requirement for designing functioning electronic
circuits.

4 Experiment 2: Circuit Generation

How well can contemporary language models lever-
age their component knowledge to design simple
but functioning electronic devices? In this ex-
periment, we investigate end-to-end generation of
working devices, which includes generating four
core elements: (1) a bill of materials (BOM), or
list of components in the device, (2) the pinouts for
each component, (3) a complete electrical circuit
diagram called a schematic that details how the
components are to be connected, and (4) the code

5Additional details of permissive scoring (including an
example) can be found in APPENDIX B.1.1.

to be programmed onto a microcontroller – a light-
weight processor that controls embedded circuits.
An example of a complete model-generated design
for a trivial device that turns on an LED in response
to a button being pressed is shown in Figure 3.

Benchmark: To assess a model’s ability to cre-
ate microcontroller-driven electronic devices, we
developed a benchmark, MICRO25, that includes
25 tasks intended for the common ARDUINO mi-
crocontroller ecosystem.. These tasks, shown in
Table 2, span 5 core categories including: input, in-
terface protocols, output, sensors, and logic. Each
task is either tailored to test a specific fundamental
competency required to build basic microcontroller-
driven electronic devices common in introductory
microcontroller curricula, or the integration of sev-
eral competencies into larger design flows.6

Representations: Models were given format
prompts to export all generated elements (bill of
materials, pinouts, schematics, and code) in an an-
notated JSON format, shown in Figure 3. The anno-
tated format allows the model to add comments for
each generated element (e.g. specifying the uses of
each component, or the purpose of each connection
in the schematic), analogous to chain-of-thought
reasoning (Wei et al., 2022) applied to circuit gener-
ation, as well as code generation from requirements
specifications (Liu et al., 2022b), where here the
requirements are the schematics and other device
specifications generated immediately preceding the
code. Additional details of this representation for-
mat are provided in APPENDIX B.4 and C.

Models: We evaluate on instruction-tuned models
with large (8k token) context windows, including
OpenAI’s GPT-4 (OpenAI, 2023) and Anthropic
CLAUDE-V1. Prompts are identical across both
models, and include a static minimal 1-shot exam-
ple of generating each of the 4 elements of a device
specification (bill of materials, pinouts, schematic,
code) in the desired JSON output format. In re-
sponse to specific types of errors identified during
pilot studies, the prompt also includes three incom-
plete snippets that provide portions of two positive
and one negative generation example. After ini-
tial generation, the models are given a reflection

6MICRO25 and PINS100 require partially-overlapping
component knowledge. Solving MICRO25 requires some
(but not all) of the components in PINS100. Similarly, each
MICRO25 task has many possible solutions, and with hun-
dreds of thousands of different electrical components currently
available, it is possible to generate solutions whose schematics
use one or more components not listed in PINS100.

12976

Category Task Description

Schematic (GPT-4)

Code (GPT-4)

Schematic (Claude)

Code (Claude)

Input

Digital - Button Turn on an I/O pin when a single button is pressed. ✓ ✓ ✓ ✗
Digital - Multiple Turn on an I/O pin when exactly 2 of 4 buttons are pressed. ✓ ✓ ✓ ✗
Analog Read potentiometer, activate I/O pin when voltage exceeds 2.5V ✓ ✓ ✗ ✓

Protocols

Serial/UART Read the serial port. When "hello" is read, respond with "world". ✓ ✓ ✓ ✓
Serial/SPI Connect using SPI. When "hello" is read, respond with "world". ✓ ✓ ✓ ✓
I2C Read a value from a specific I2C address and register every second. ✓ ✓ ✓ ✓
SD Card Open a file, randomly append one of 4 strings every 10 seconds. ✓ ✓ ✓ ✓

Output

Motor - DC Rotate a DC motor clockwise then counterclockwise every 5 seconds. ✗ ✓ ✗ ✓
Motor - Stepper Oscillate a stepper motor 45 degrees every 5 seconds. ✓ ✓ ✗ ✗
Motor - Servo Continuously move a servo back and forth from 45 to 135 degrees. ✓ ✓ ✓ ✓
LED - Blink Blink an LED every 500 milliseconds. ✓ ✓ ✓ ✓
LED - Sequence Blink 4 LEDs in sequence, once every 500 milliseconds. ✓ ✓ ✗ ✓
LED - 7 Segment Count from 0 to 9 on a 7-segment display, changing every 500 msec. ✓ ✓ ✓ ✓
LED - Neopixel Slowly move through a rainbow of colours on an RGB LED. ✓ ✓ ✓ ✓
Relay Turn on a relay for 2 seconds, then off for 5 seconds. ✓ ✓ ✗ ✓
LCD Print "Hello World" on a 16x2 LCD (HF44780 compatible controller) ✓ ✓ ✗ ✓
Sound - Buzzer Cycle between high, medium, then low tones on a Piezo Buzzer. ✓ ✓ ✗ ✓
Analog Output Produce a sawtooth wave, ramping up from 0V to 5V every 50 msec. ✓ ✓ ✗ ✓

Sensors

Resistive - CDS Read the light intensity from a resistive sensor (CDS cell). ✓ ✓ ✗ ✓
Manual Protocol Read the distance from a HC-SR04 ultrasonic distance sensor. ✓ ✓ ✓ ✓
I2C - Magnetic Read x/y/z components of magnetic field using an I2C magnetometer. ✓ ✗ ✓ ✓

Logic

Simon Create the popular memory game Simon, using 4 colors. ✓ ✓ ✓ ✗
Conway Create the popular Conway’s Game of Life, on an 8x8 LED matrix. ✓ ✓ ✗ ✗
Clock Create a clock on a 16x2 I2C LCD, with buttons for setting the time. ✓ ✓ ✓ ✗
Air Temperature Read the air temperature, display temperature on an RGB LED. ✓ ✓ ✓ ✓

Overall Performance 96% 96% 60% 76%

Table 2: Model performance (PASS@1) on the MICRO25 benchmark generation tasks, broken down by schematic
and code. Task descriptions are summarized for space, where full task descriptions can be found in APPENDIX E.

prompt containing 12 common errors (such as cor-
rectly supplying power to each component, explic-
itly enumerating each connection in the schematic,
and having code that functions as intended), and
allowed to iteratively reflect and improve output
until providing a specific stop token signifying that
the model has detected no further errors. The ini-
tial prompt requires 1884 tokens, and the reflec-
tion prompt requires 431 tokens. Additional model
details, including evaluation details and the full
prompt are provided in the APPENDIX.

Evaluation: Generated devices are broken down
into electrical (schematic) and code components,
each of which is separately evaluated using a binary
PASS@1 metric (i.e. functional or non-functional).

Because the schematic subsumes the bill of ma-
terials and component pinout information, we do
not evaluate the BOM or pinouts independently,
only the entire schematic – but do still include
generating the BOM and pinouts in the prompt to
facilitate chain-of-thought reasoning. Due to the
challenges of automatic evaluation in this domain,
evaluation was conducted manually by a domain
expert through inspection, simulation, and physical
circuit construction.

Results: The results of the device generation task
on the MICRO25 benchmark are shown in Table 2.
Across all tasks, model-generated code ranged
from a minimum of 13 lines to a maximum of 145
lines (average 38 lines per program). GPT-4 per-

12977

forms extremely well on the MICRO25 benchmark,
correctly generating schematics and code for 96%
of benchmark tasks. CLAUDE-V1 exhibits more
modest performance, achieving 60% for schematic
generation, and 76% for microcontroller code gen-
eration. Taken together, this shows that contempo-
rary language models have moderate-to-excellent
overall capacity for generating common electrical
circuits end-to-end, from bills of materials, pinouts,
and schematics, to paired microcontroller code that
accomplishes the desired functionality.

5 Experiment 3: Open Device Generation

While we’ve observed that language models have
the capacity to design comparatively simple de-
vices in Experiment 2, this result is tempered by
these benchmark tasks being representative of fairly
common skills and capacities that are frequently
taught in microcontroller-oriented curricula found
in books, internet tutorials, and blog posts – and
as such, the MICRO25 tasks likely exist in some
form in the voluminous (but closed) training data
of these models. Here, we examine how well the
best-performing model, GPT-4, can create compar-
atively more complex devices in a more realistic
and qualitative setting, where it is used as a de-
sign assistant like GITHUB COPILOT (Chen et al.,
2021) to create initial plans that are then vetted and
corrected by a domain expert before being physi-
cally constructed. To further increase task difficulty,
each of the device specifications in this experiment
were explicitly crafted to be highly unusual – ei-
ther using uncommon components, or combining
common components in unusual ways – such that
the likelihood of similar devices appearing in the
closed model training data is low. The six devices
are shown in Figure 4.

Methods: Initial specifications (in the form of a
natural language textual description of a device)
were created for all devices, and iteratively refined
several times to provide clarifications in response to
undesired or errorful model-generated output. Af-
ter several attempts at refining device descriptions,
any remaining errors were manually corrected by
a domain expert, then the devices were physically
manufactured. All devices were constructed by
a human, and physical aspects of the design (e.g.
printed circuit boards, 3D printed or laser cut com-
ponents) were designed by a human. Full device
description strings, model prompts, and detailed
qualitative descriptions of manual corrections re-

quired by a domain expert to reach functionality
are described in the APPENDIX.

Qualitative Challenges: Generation challenges
can be organized into two categories: prompt-
specific challenges, and hardware-specific chal-
lenges. With respect to prompts, device generation
is highly sensitive to the specific prompt, and small
(and seemingly helpful) changes in the prompt to
address an error can cause new errors to occur in
other aspects of the device that were previously gen-
erated correctly. Similarly, having many composite
requirements in the project (such as adding the re-
quirement for each key in the emoji keyboard to
generate its own musical tune) generally decreases
performance, and suggests that iteratively gener-
ating devices from the core requirements (such as
generating a functioning emoji keyboard) through
to more fine-grained details (like adding in musical
tunes) may reduce the inference load at each gener-
ation step, improving generation performance.

With respect to hardware, a number of pragmatic
issues occur. Electronic parts regularly reach end-
of-life cycles and are no longer manufactured or
easily available, yet the model frequently generates
these, likely due to the abundance of examples that
use these components in internet tutorials. Sim-
ilarly, the model frequently uses deprecated ver-
sions of libraries, or combines the features from
different versions of libraries. Finally, the model
generally performs poorly at generating low-level
device drivers for specific hardware (such as sen-
sors), and favors using existing device driver li-
braries. When an existing library isn’t available,
the model will either hallucinate one, or generate
a reasonable first-pass at a device library that re-
quires extensive modification to low-level details
(like clock timings) to function.

6 Challenges and Discussion

We identify the following challenges and oppor-
tunities in developing this capacity for automated
device design further:

Prompt Sensitivity: Currently, small changes in
the prompt can cause large changes in the output,
affecting overall performance. While this is evi-
dent from small changes in task description strings
producing novel errors in Experiment 3, this phe-
nomenon is also visible for simpler cases. For ex-
ample, the pinouts for some components – such as
the MLX90614 temperature sensor – are incorrect
when tested independently in Experiment 1, but

12978

Emoji USB keyboard that has keys for 9 common emojis.
Pressing an emoji types its ASCII string, just as if entered on a
normal keyboard. A short musical tune with similiar a�ect to
the emoji (e.g. a love song for the heart emoji) is also played.

Random number generator that uses an ambient radiation
sensor to continuously update the random seed. Random
numbers are generated every few seconds, and displayed on a
vintage nixie tube using a high-voltage driver.

Visible light spectrometer that measures spectra using a
Hamamatsu micro-spectrometer and displays the spectrum
on a 128x128 pixel OLED screen. Here, the device is shown
measuring the characteristic spectrum of a white LED.

Non-contact temperature sensor that displays the
temperature on a strip of 8 LEDs. Higher temperatures show as
red colors and illuminate more LEDs, while lower temperatures
show as blue colors and illuminate fewer LEDs.

Pill alarm assistive device that has alarms for three pills. When
it’s time to take a pill, the alarm continuously waives a physical
�ag saying “Take Pill X” back and forth using a servo motor to
get the users attention, until the button is pressed.

Ultrasonic glasses assistive device that uses an ultrasonic
distance sensor to measure the distance of the nearest object
in front of a person with a visual impairment. The distance is
converted into an audible tone of varying frequency.

Figure 4: Six devices designed using WORDS2WIRES in the open generation condition, then physically constructed.

correct when generated as part of a full circuit in
Experiment 2. This suggests that task performance
is not currently robust, and may benefit from creat-
ing and fine-tuning on a task-specific dataset.

Manual Evaluation: Like COPILOT, we have ob-
served that the electronic designs generated by lan-

guage models are rarely perfect and frequently have
errors. Currently these have to be discovered and
corrected by a human. Contemporary work in code
generation aims to use reflection (e.g. Shinn et al.,
2023) to iteratively run generated code in an ex-
ternal interpreter (like PYTHON), report any errors

12979

to the language model, then continue this process
until the generated code runs error-free. The lack
of electronic simulators with large libraries of sim-
ulated devices presents a significant barrier to this
form of automatic evaluation in the near-term. Ul-
timately this may be addressed by constraining
circuit generation to only parts available within
a given simulator, or pushing a focused effort to
developing more capable simulators with a larger
repertoire of components.

Generating devices with common-sense knowl-
edge: Language models contain a variety of
common-sense reasoning abilities (West et al.,
2022; Liu et al., 2022a), and leveraging these abil-
ities may enable new applications. For example,
in the context of assistive devices, GPT-4 is able
to infer that an ultrasonic sensor can be used to
create assistive glasses to aid the visually impaired
with navigation. Similarly, the model can use its
common-sense knowledge to design devices that
contain the most common emojis, or keys for all the
prime numbers up to 20 just as easily. Ultimately,
electronic devices may be distributed as templates,
that can be semi-automatically customized to a va-
riety of applications based on user preferences.

Quantifying time savings of automatic versus
human device design: Precisely quantifying the
benefits of automated coding assistants (such as
GITHUB COPILOT) is challenging, and currently
measured at least in-part with qualitative measures
(Ziegler et al., 2022). These assistants may provide
large time savings when they function correctly, but
likely increase debugging time when they gener-
ate problematic code, complicating measuring their
precise benefit. A similar situation likely exists
here for device generation, and we provide only the
following anecdotal account: the best-performing
GPT-4 model described in this work produces in
minutes what undergraduates in our course might
initially take hours to days to perform, as they learn
to adapt their existing computer science skills to the
electronics and microcontroller domain. As such,
in the near-term, systems such as WORDS2WIRES

might be viewed as productivity assistants that al-
low (for example) scientists with existing coding
skills but minimal electronics knowledge to quickly
design instrumentation (such as data loggers) or
other customized devices that are relatively mod-
est in scope and complexity with a minimal time
investment.

7 Conclusion

This study empirically characterizes the previously
unknown potential of contemporary language mod-
els to move from words to wires – that is, to gen-
erate working electronic device designs from high-
level text descriptions. Our analysis demonstrates
these models have moderate-to-high proficiency
in generating component-level knowledge on the
PINS100 benchmark, while GPT-4 significantly
outperforms CLAUDE-V1 at generating 25 fully-
functional devices from the MICRO25 benchmark,
reaching near-perfect performance. When used as
a design assistant for generating six more complex
devices, language models can generate devices that
nearly meet specifications, but still require moder-
ate correction by domain experts to function. While
this novel application of language models inspires
the democratization of electronic device creation,
further development is currently tempered by the
lack of simulators to automatically evaluate de-
signs, and the highly manual nature of this process.

8 Limitations

This work has a number of limitations, including:

Device scope: The devices generated in this work
are small in scope, with limited functionality – typi-
cally a small number of components, fewer than 50
lines of code, and controlled by ARDUINO micro-
controllers which are frequently limited to only 2K
of memory. This work does not address designing
moderate or complex devices such as phones, per-
sonal computers, or other devices that are orders of
magnitude more complex in terms of component
counts and code length. For context, being able to
successfully design all the devices in the MICRO25
benchmark would be equivalent to the performance
of a particularly strong undergraduate student af-
ter having taken a first course in microcontroller
design at our institution.

Generation accuracy: While the simple devices in
Experiment 2 can reach high generation accuracy,
particularly with GPT-4, nearly all devices in the
more complex open generation condition in Experi-
ment 3 contained errors, and required correction by
a domain expert. In the open generation, three of
six devices (emoji keyboard, non-contact tempera-
ture sensor, ultrasonic glasses) were generated in
essentially functional forms in their base conditions
(i.e. before adding additional requirements, such as

12980

playing music when keys are pressed). A detailed
error analysis is provided in APPENDIX D.

Physical design and manufacture: The physical
manufacturing of the devices – including building
circuits on prototyping breadboards using jumper
wires, designing printed circuit boards, or design-
ing physical 3D printed or laser cut enclosures, was
entirely manual and completed by a human. While
technologies (such as autorouting) exist to auto-
mate some of these aspects, they were not used in
this work. Similarly, while language models have
been shown to have some capacity for generating
3D object models (e.g. Nichol et al., 2022), that
capacity has not yet developed to where it would be
possible to generate enclosures or other mounting
hardware required for physical device construction.

Safety: Constructing electronic devices has real
dangers and potential harms, including but not lim-
ited to the risk of fire, electrical shock, and equip-
ment damage, and should not be attempted by non-
experts. The development environment is notori-
ously hostile to components, and even experienced
electrical engineers frequently face safety chal-
lenges or accidentally destroy components. Gener-
ated devices should always be vetted by a domain
expert, and not used for safety-critical applications,
or applications where harmful unintended effects
may be possible.

Scope of Component Knowledge: Popular elec-
tronics distributors in the US currently stock mil-
lions of different electronic components. Though
many of those components belong to particular
component classes that largely share pinout in-
formation (for example, DIGIKEY, a popular US-
based distributor, lists approximately 1.5 million
specific resistors, each with two pins), many of
these – such as the 194,000 sensors currently avail-
able – do not generally share common pinouts or
functions. The 100 common electronic components
used in the PINS100 benchmark are representative
of common components found on electronics tu-
torial websites, and that are frequently required to
build basic digital microcontroller-controlled cir-
cuits – but are by no means an exhaustive set of
the possible components available to construct elec-
tronic circuits.

Speeding electronic design: Just as coding as-
sistants such as GITHUB COPILOT can increase
human productivity for coding tasks (Ziegler et al.,
2022), the use of a suite of electronic design assis-

tants may similarly increase productivity in elec-
tronic device design, reducing the design process
from days to hours (or, minutes). Currently, lan-
guage models make a variety of errors on complex
devices, and these errors are not always easy to
predict. As such, the utility of language models as
design assistants may be tempered in the near-term
by the time required to manually review every as-
pect of a design for accuracy. As simulators and
other automated evaluation methods become avail-
able, some of this burden of manual design review
will decrease.

Acknowledgements

We thank Peter Clark, Ashish Sabharwal, and the
4 anonymous reviewers for helpful comments on
this work, as well as the Allen Institute of Artificial
Intelligence (AI2) for funding this work.

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Massimo Banzi and Michael Shiloh. 2022. Getting
started with Arduino. Maker Media, Inc.

Jason Blocklove, Siddharth Garg, Ramesh Karri, and
Hammond Pearce. 2023. Chip-chat: Challenges
and opportunities in conversational hardware design.
arXiv preprint arXiv:2305.13243.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Daniel Flam-Shepherd and Alán Aspuru-Guzik. 2023.
Language models can generate molecules, materi-
als, and protein binding sites directly in three di-
mensions as xyz, cif, and pdb files. arXiv preprint
arXiv:2305.05708.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:
A generative model for code infilling and synthesis.
In The Eleventh International Conference on Learn-
ing Representations.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps. NeurIPS.

12981

https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL

Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu,
Mingyuan Ma, Zhaoyang Shen, Juejian Wu, Yuanfan
Xu, Hengrui Zhang, Kai Zhong, et al. 2021. Ma-
chine learning for electronic design automation: A
survey. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 26(5):1–46.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. Ad-
vances in Neural Information Processing Systems,
32.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen-tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:
A natural and reliable benchmark for data science
code generation. arXiv preprint arXiv:2211.11501.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. Starcoder: may
the source be with you!

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Jiacheng Liu, Skyler Hallinan, Ximing Lu, Pengfei He,
Sean Welleck, Hannaneh Hajishirzi, and Yejin Choi.
2022a. Rainier: Reinforced knowledge introspector
for commonsense question answering. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 8938–8958,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Zejie Liu, Xiaoyu Hu, Deyu Zhou, Lin Li, Xu Zhang,
and Yanzheng Xiang. 2022b. Code generation from
flowcharts with texts: A benchmark dataset and an
approach. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 6069–
6077, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Zhichao Liu, Ruth A Roberts, Madhu Lal-Nag, Xi Chen,
Ruili Huang, and Weida Tong. 2021. Ai-based lan-
guage models powering drug discovery and develop-
ment. Drug Discovery Today, 26(11):2593–2607.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. In Proceedings
of the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1384–1403, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela
Mishkin, and Mark Chen. 2022. Point-e: A system
for generating 3d point clouds from complex prompts.
arXiv preprint arXiv:2212.08751.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations.

OpenAI. 2023. Gpt-4 technical report.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. 2022. Hierarchical text-
conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning.

Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Ham-
mond Pearce, Benjamin Tan, Ramesh Karri, Brendan
Dolan-Gavitt, and Siddharth Garg. 2023. Bench-
marking large language models for automated ver-
ilog rtl code generation. In 2023 Design, Automation
& Test in Europe Conference & Exhibition (DATE),
pages 1–6. IEEE.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023.
Codet5+: Open code large language models for
code understanding and generation. arXiv preprint
arXiv:2305.07922.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena
Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu,
Sean Welleck, and Yejin Choi. 2022. Symbolic
knowledge distillation: from general language mod-
els to commonsense models. In Proceedings of the
2022 Conference of the North American Chapter of

12982

http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
https://aclanthology.org/2022.emnlp-main.611
https://aclanthology.org/2022.emnlp-main.611
https://aclanthology.org/2022.findings-emnlp.449
https://aclanthology.org/2022.findings-emnlp.449
https://aclanthology.org/2022.findings-emnlp.449
https://aclanthology.org/2022.emnlp-main.90
https://aclanthology.org/2022.emnlp-main.90
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.18653/v1/2022.naacl-main.341

the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4602–4625, Seat-
tle, United States. Association for Computational
Linguistics.

Albert Ziegler, Eirini Kalliamvakou, X Alice Li, An-
drew Rice, Devon Rifkin, Shawn Simister, Ganesh
Sittampalam, and Edward Aftandilian. 2022. Pro-
ductivity assessment of neural code completion. In
Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming, pages 21–29.

A Experiment Hyperparameters

Models (GPT3.5, GPT-4, CLAUDE-V1) used sim-
ilar hyperparameters through all experiments, with
precise configurations and APIs available on the
GITHUB repository. Models used greedy decod-
ing (temperature = 0) to make experiments near-
deterministic, though due to hardware-level imple-
mentation and other issues abstracted away though
vendor APIS, model output still can change be-
tween successive runs. As such, specific (cached)
model output for each experiment is provided in
the GITHUB repository.

B Additional Experiment Details

B.1 PINS100 Benchmark Evaluation
Two additional considerations complicate evalua-
tion, which are addressed here. First, the same
electrical component may come in different pack-
ages, or be built by different manufacturers – for
example, the power pin (e.g. VCC) on a given com-
ponent might be on pin 3 in one package, and pin 5
on a different package. As such, evaluation requires
only that the pin name be correct (e.g. "VCC"), but
does not require producing pin numbers, which
are typically matched when choosing a particular
component package during the circuit board de-
sign phase. Second, the specific names for pins are
often described differently – and frequently with
only single letters. For example, a pin with a re-
set functionality might be described variously as
"RESET", "RST", or even simply "R" in different
sources of text, such as official part datasheets or
web tutorials, with each label being correct. As
such, model-generated output is evaluated fully
manually by a domain expert, who requires either
generated pin names to match official documenta-
tion, obvious short forms, or (in the case of large
differences) alternative part naming conventions
found through a web search. This alignment pro-
cess mirrors the actual electronics design process,
where a reference schematic for a circuit may use

different pin names than an official datasheet, and
these pins need to be manually aligned by a domain
expert by searching through a variety of reference
materials.

B.1.1 Example of a non-critical pin
The permissive scoring metric for the PINS100
benchmark allows for missing or incorrect infor-
mation for non-critical pins. A non-critical pin in
this context is defined as a pin that is not, strictly
speaking, required for basic use of a component.
An example of a non-critical pin is the DRDY
(data-ready) pin on an HMC5883L magnetometer.
The magnetometer is an I2C device that nominally
requires only 4 wires to function (if wired on a
breadboard): SDA, SCL, VDD, and GND. The
DRDY pin is marked as optional (not required) on
the datasheet, as connecting the DRDY pin primar-
ily allows faster polling rates by signifying when
measurements are ready to be read by the host mi-
crocontroller.

B.2 MICRO25 Benchmark Evaluation

Automatic evaluation of full devices faces a num-
ber of challenges, including that many different
solutions are possible for each task, and existing
simulators typically lack many of the possible com-
ponents a model might generate in a solution. As
such, evaluation was conducted manually by a do-
main expert. The schematics and code were manu-
ally inspected for functionality. When non-trivial
or uncommon solutions were generated, the circuits
were evaluated by constructing them in a simula-
tor (AUTODESK TINKERCAD, shown in Figure 3)
when possible, or physically building the circuits
when not possible. When circuits used difficult
to source or obsolete components, evaluation oc-
curred through manual inspection, and comparing
the generated schematics and code to reference ma-
terials. For a schematic to be considered correct, it
must contain all relevant components, and be wired
correctly in a way where code could be written to
accomplish the desired task. For code to be con-
sidered correct, it must correctly perform the task
given the generated schematic – or for cases where
the schematic was incorrect, be able to accomplish
the task as-is were the schematic corrected.

B.3 Description of Human Evaluator

The domain expert used for evaluating this work is
an author of this work, with the following qualifi-
cations: The evaluator is an award-winning science

12983

educator, and prolific internationally-recognized
open source hardware author with approximately
50 articles describing their open source hardware
work in popular international news media such as
Reuters, Forbes, and the Washington Post. The
benchmarks described in this work were both au-
thored and evaluated by the domain expert as reflec-
tive of the content of a popular full-term (4 month)
undergraduate course in rapid prototyping and mi-
crocontroller design intended for computer science
and information students, typically undertaken in a
student’s final year of undergraduate studies at an
R1 ("very high research activity") university in the
United States. The domain expert has delivered this
course approximately 10 times to approximately
500 undergraduate students.

B.4 Representation of Full Devices

Additional information on device representation in
Figure 3: The bill of materials format expresses
canonical information typical in the design pro-
cess, including the component type (e.g. "resistor"),
component name in the schematic (e.g. "R1"), com-
ponent value (e.g. "10k ohms"), as well as a note
on the purpose of the component (e.g. "current
limiting resistor for LED"). The pinouts are ex-
pressed as a dictionary containing lists of pins for
each part, as in Experiment 1. Code is expressed
between MARKDOWN code blocks to ease extrac-
tion. Schematics are expressed as “netlists”, which
are a common storage format frequently adapted by
electronic design tools. This format is analogous to
an undirected graph, where edges represent a given
connection from one component pin (such as the
anode of an LED) to another component pin (such
as one terminal of a current-limiting resistor).

B.5 Description of 6 Open-Generation Devices

Six devices, crafted to use uncommon components,
or common components in uncommon ways. The
six devices are:

1. Random number generator: a random num-
ber generator, using two uncommon compo-
nents: (a) a radiation sensor to help provide
a random seed based on ambient radiation
levels, and (b) a high-voltage nixie tube (or
cold-cathode display), similar to a vacuum
tube, to display randomly generated digits.
Nixie tubes were manufactured and used in
the 1950s and 1960s before light-emitting
diodes became common.

2. Emoji keyboard: a USB keyboard that only
contains keys for common emoji characters.

3. Spectrometer: a visible light spectrometer
using the uncommon Hamamatsu microspec-
trometer, and that displays the spectrum on an
organic LED (OLED) display.

4. Non-contact temperature: a device that mea-
sures the temperature of an object using a com-
mon infrared-based non-contact temperature
sensor, but displays the temperature in an un-
common way: as a color-changing bar graph
on an LED display.

In addition, two assistive devices were explored:

5. Pill alarm: a common pill-alarm, that dis-
plays the current time on an LCD display. The
alarm is presented in an uncommon way: by
using servo motors to physically waive flags
that say “take pill X” for hearing-impaired
users, until they press a reset button.

6. Ultrasonic glasses: common components (an
ultrasonic distance sensor and piezo buzzer)
used for an uncommon purpose – to create a
pair of glasses for the visually-impaired. The
glasses audibly notify the user of the distance
to objects in front of them using a tone whose
frequency varies with distance.

C Prompts

The full prompt for Experiment 1 (component
pinouts) is provided in Table 3, while the full
prompt for Experiments 2 and 3 (device genera-
tion) is provided in Table 6. All prompts are static
– that is, the same format/n-shot examples shown
here are also shown in every generation request –
with the exception of the task strings ({bolded} in
the tables), which are substituted with task-specific
strings (representing the specific user-requested de-
vice to generate) at runtime. For Experiment 1,
this is limited to the component name to generate
pinout information for (e.g. “DC motor”). For
experiments 2 and 3, this is limited to the target
microcontroller platform (e.g. “Arduino Uno”)
and plain-text device description (e.g. “create a
USB keyboard that only has buttons for the 9 most
popular emojis on it”.

12984

Your task is to generate a description and pinout for an electronic component.
The specific electronic component to generate this output for is: {componentName}
The output format is JSON, between code blocks, as shown in the example below:
'''
{

"7479": {
"description": "Dual D positive-edge triggered flip flop, asynchronous preset and clear",
"pinout:"["#R1", "D1", "CLK1", "#PR1", "Q1", "#Q1", "VSS", "#Q2", "Q2", "#PR2", "CLK2", "D2", "#R2", "VDD"]

}
}
'''

Table 3: The prompt for Experiment 1 (component pinout generation) on the PINS100 benchmark. The specific
1-shot example in the format prompt (the the 7479 FLIP FLOP) is used across every experimental run – only the
string representing the target device to generate pinout information for ({componentName}, e.g. “DC MOTOR”)
changes.

D Error Analysis: Modifications to Open
Generation Devices

D.1 High-level Qualitative Challenges

Overall high-level qualitative challenges in design-
ing the six case study devices are described briefly
below, where a detailed description of errors and
corrections for each of the six devices is provided
in APPENDIX D.2.

Sensitivity to prompt: Small and seemingly help-
ful changes in the device description or prompt can
cause large changes in generation. For example,
for the random number generator, including a re-
minder that the radiation sensor required a pull-up
resistor appeared to cause the model to forget to
include a high-voltage supply for the nixie tube.

Many requirements can create poor perfor-
mance: Adding many composite requirements to
a project, even when they are individually easy,
can create low performance. For example, for the
emoji keyboard, adding the requirement to play a
relevant musical tune when each key is pressed
generally produced only scaffolds for music gener-
ation code without actually including the melodies.
A subsequent call to GPT-4 asking it only to fill
in this music scaffold was required to generate the
melodies.

Device drivers: The model performs best for
straight-forward circuits where the coding portion
of interfacing with external components (such as
sensors) is abstracted to existing libraries. When
writing a low-level device library is required, the
model commonly either hallucinates a non-existent
library, or generates a reasonable first-pass at a de-
vice library that requires extensive modification
to function. For example, the microspectrometer
device driver the model generated had the essen-
tial conceptual-level components – i.e. that data

needed to be clocked out of the spectrometer and
read by an analog-to-digital converter after sending
a start pulse to the spectrometer – but the generated
code had incorrect clock timings, logic levels, and
other fine-grained details which made it unable to
function without correction.

Deprecated or mismatched libraries: Hardware
libraries are frequently updated to support new fea-
tures, but the ARDUINO ecosystem lacks Makefiles
or a build manager with explicit library version
numbering, making specific library versions un-
known for a given code example. During manu-
facture, this frequently required searching through
old versions of a library (such as the Bounce but-
ton input library for the emoji keyboard) to find a
version that matched the specific API generated by
the model. Similarly, observing examples of dif-
ferent APIs across different library versions causes
the model to occasionally mix APIs from older
and newer versions of libraries, or from different
libraries with similar functions (such as combining
the APIs of several LCD display libraries for the
spectrometer).

End-of-life parts: Electronic components regu-
larly reach end-of-life cycles, and are no longer
manufactured or easily available. The model oc-
casionally generated circuits that used unavailable
parts, and had much less competency generating
circuits for newer part variants, particularly those
that were released near GPT-4’s knowledge cutoff
date of September 2021 (OpenAI, 2023).

D.2 Device-Specific Errors

The devices generated in the open generation exper-
iment generally required modification to function
as intended. Here we provide a list of the major
design changes required to reach functionality:

12985

D.2.1 Random number generator
Both the radiation sensor (Radiation Watch Type 5)
and the nixie tubes (IN-12A) are highly uncommon
components, and are likely to have limited exam-
ples available in existing documentation. Gener-
ally, across several iterations of device description
prompts, either the radiation sensing circuit was
correct, or the nixie tube circuit was correct, but
not both. The radiation detector requires a pull-up
resistor to function, and is pulled low when a high-
energy particle strikes it. The nixie tube requires
an external high-voltage driver, which was usually
generated correctly, but when generated incorrectly
it was typically powered by USB voltage (5V) in-
stead of the required high-voltage (170V). Across
device descriptions, the method used in the code to
set the random seed based on the radiation sensor
varied – some useful, some largely incorrect.

D.2.2 Emoji keyboard
The base emoji keyboard was largely generated
without issue, though did mix up the version for the
button input library, and failed to mention the spe-
cial programming requirements for the Teensy mi-
crocontroller to place it in human-interface-device
(HID) mode to act as a USB keyboard. The specific
emojis were chosen by the model, adding only the
requirement that they must be high-frequency, and
at least one must be the heart emoji. Adding many
requirements generally reduced design quality – for
example, adding the requirement that some of the
emojis needed to be at least 5 ASCII characters
long was not generally successful (and, the model
occasionally generated emojis that were unicode,
which is generally easily supported by the USB
HID standard, or occasionally generated only sin-
gle characters instead of full emojis). Similarly,
adding the requirement for a short musical tune
to play upon pressing an emoji, where the tune
should have a similar affect to the emoji (e.g. a
love song for the heart emoji, a happy song for the
happy emoji, etc.) generally produced only harsh
single tones, or the scaffold for generating the mu-
sic without actual musical tones for each emoji.
This scaffold was provided to GPT-4 on its own
in a post-generation step, and the resultant code
added to the original code.

D.3 Visible Spectrometer
This code had two central challenges: generating
a device driver for an uncommon component (the
Hamamatsu C12666MA micro-spectrometer), and

using a library for a common component (a dis-
play with a common controller). Using different
device descriptions, the model either hallucinated
non-existent libraries for interfacing to the spec-
trometer, or generated its own libraries that had
the high-level procedure correct (e.g. sending a
start pulse to the spectrometer, then continuously
sending a clock pulse while reading data using an
analog-to-digital converter to read out each of the
256 spectral channels) – though the specifics of
the device driver, such as timing or logic levels
were typically incorrect and needed to be manu-
ally corrected. With respect to the display, three
OLED and TFT displays with common display con-
trollers were attempted, and the most successful
(the 128x128 OLED using a SSD1351 controller)
was used. There were only two small errors in the
display code: the initial call to the display had re-
versed the order of the arguments, and the last call
to the display (swapping the backbuffer) was for a
different library, and not required here.

D.4 Non-contact temperature sensor

This device consisted of two common components
(an MLX90614 non-contact temperature sensor,
and an 8-pixel neopixel RGB LED strip). The
device generated without issue, and was only mod-
ified slightly to reverse the direction the LED bar
graph displayed from (to accommodate the mount-
ing constraints of the specific LED strip used).

D.5 Pill alarm assistive device

This device consisted of three common compo-
nents: an 16x2 LCD with an I2C interface, three
hobby servos, and a single pushbutton. The
schematics generated largely without issue. The
code generally had a number of logic errors that
needed correction when the added requirement of
oscillating the flags back-and-forth was added, in-
cluding that the code would oscillate all flags, re-
gardless of which alarm (e.g. pill 1, pill 2, or pill
3) was active. Different generated instances of this
device in response to different specifications either
kept track of time internally, or used an external
realtime clock module for more accurate timekeep-
ing – but all generated devices failed to provide
any means of setting the initial time of the device
other than manually in code, which is an important
usability feature of a clock not explicitly mentioned
in the prompt.

12986

Category Task Description String

Digital - Button Create a device with a single push button, that turns on an I/O pin when the button is pressed, and turns off that same I/O pin when
the button is not pressed.

Digital - Multiple Create a device with 4 push buttons, that turns on an I/O pin when exactly 2 of the buttons button are pressed, and turns off that same
I/O pin otherwise.

Analog Create a device that reads the analog input from a potentiometer configured as a voltage divider and sourced by 5V. When the input
is greater than or equal to 2.5V, it should turn on an I/O pin, while if the input is below 2.5V it should turn off the I/O pin.

Protocols

Serial/UART Create a device that reads the Serial port at 9600 baud. Whenever the string "hello" is transmitted to the device, it will respond
by sending "world".

Serial/SPI Create a device that connects to another device using SPI. Whenever the string "hello" is transmitted to the device, it will respond
by sending "world".

I2C Create a device that reads a value from an I2C device, and displays that value to the serial port every second. The device address
is 0x50, the register to read is 0x15, and the value is 8 bits long. The value should be displayed in base 10.

SD Card Create a device that opens a file called "out.txt" on an SD card, and and every 10 seconds, randomly prints one of the following
animal names (as well as a newline character): cat, dog, mouse, parrot.

Output

Motor - DC Create a device that oscillates between spinning a DC motor one direction then the other direction every 5 seconds.
Motor - Stepper Create a device that oscillates the output of a stepper motor clockwise then counterclockwise 45 degrees, every 5 seconds.
Motor - Servo Create a device that contiuously moves a hobby servo back and forth from 45 degrees to 135 degrees every 5 seconds.
LED - Blink Create a device that blinks an LED every 500 milliseconds.
LED - Sequence Create a device with 4 LEDs, that blink in sequence, one after the other, every 500 milliseconds. When the end of the sequence

is reached, the pattern should reset, and continue indefinitely.
LED - 7 Segment Create a device that counts from 0 to 9 on a 7 segment display, indexing numbers every 500 milliseconds. When the end of the cycle

is reached, it should start again.
LED - Neopixel Create a device with a neopixel (WS2812) that slowly and continuously cycles a rainbow of colors.
Relay Create a device that turns a relay on for 2 seconds, then off for 5 seconds, continuously. The relay coil takes 500 milliamps

of current to engage.
LCD Create a device that prints the phrase "Hello World" on a 16x2 LCD. Use a HD44780 compatible 16x2 LCD, configured normally

(i.e. without an I2C, Serial, or other simpler connection).
Sound - Buzzer Create a device that continuously plays a high, medium, then low tone on a Piezo Buzzer, changing tones every second.
Analog Output Create a device that produces a sawtooth wave, ramping up from 0V to 5V every 50 milliseconds.

Sensors

Resistive - CDS Create a device that reads the value from a CDS cell, and outputs it to the Serial port every second.
Manual Protocol Create a device that reads the distance from a HC-SR04 ultrasonic distance sensor, and outputs the distance (in centimeters) to the

Serial port every second.
I2C - Magnetic Create a device that reads the current magnetic field readings using a HMC5883L magnetometer. The readings (x, y, z, and total field

strength) should be output to the Serial port every second.

Logic

Simon Create a device that implements the popular memory game simon, where users enter progressively longer sequences of colors. It should
have 4 possible colors, and include sound when the button is touched, as well as when winning/losing. The game should timeout if
the user doesn’t enter input after 5 seconds.

Conway Create a device that implements the popular Conway’s Game of Life, on an 8x8 LED matrix. The game steps should cycle every
500 milliseconds. If the board is empty, it should randomly initialize the game again. There should be a pushbutton that allows
randomly resetting the game.

Clock Create a device that implements a clock that prints the current time on a 16x2 character LCD display with an I2C interface. It should
have three buttons to help set the time in a user frieldly way: one to increment hours, one to increment minutes, and one to increment
seconds. The timekeeping should be performed by the Arduino, and not an external real-time clock.

Air Temperature Create a device that reads the current air temperature, and displays it as a color on a neopixel (WS2812). The color should be fully blue
at 0C, fully red at 30C, and an interpolation of blue and red between those temperatures.

Table 4: The full (i.e. not truncated or summarized) task strings used for the MICRO25 benchmark. The target
platform for each is the ARDUINO UNO microcontroller.

D.6 Ultrasonic glasses assistive device

This device generated with only small issues. The
device requirements specified using a specific
battery-powered ESP32 microcontroller board, but
the schematic used digital pin numbers that were
unavailable on this specific microcontroller board –
these were assigned to other pins trivially. The li-
brary the model used for sound generation (TONE)
is famously available for most Arduino devices
except the ESP32, and was modified to use a dif-
ferent function specific to the ESP32 with a similar
signature, but with two added initialization and ter-
mination calls. The specific audio frequency range

generated by the model was also modified to a re-
duced range and more fitting for human ears, as the
original included high-frequency tones that, while
audible, were uncomfortable and resembled a fire
alarm.

E Device Descriptions: 25 Benchmark
Tasks and 6 Open-generation Devices

The full device task description strings for the MI-
CRO25 benchmark are shown in Table E. A set
of iterated task description strings for the open-
generation condition (Experiment 3) are provided
in Table 5. These and additional task descriptions
are provided in the GITHUB repository.

12987

Device Task Description String

Random number generator Radioactive dice: a device that uses the radiation rate from a radiation watch type 5 sensor (which outputs a digital signal,
active low, depending on whether a high-energy particle has struck it at that moment or not) to determine the random seed
for an electronic dice. The device should continually read the radiation sensor, accumulate the count, and use it to help
change the random seed periodically. Every 3 seconds, the device should display the roll of a 6 sided dice on a Nixie tube.
It should use an IN-12 nixie tube, and K155ID1 driver.

Emoji USB keyboard Create a keyboard that plugs in as a USB device, but instead of a full keyboard it has only a small number of buttons. The
keyboard should only have buttons for 9 popular emojis, expressed as ASCII characters, not unicode. One emoji should be
a heart. There should be an LED that’s on all the time, but blinks off for 500 milliseconds when a button is pressed.
There should also be a piezo buzzer, that plays a brief tune that is of the same affect as the emoji being pressed –
for example, a love song for the heart emoji, a happy song for a happy emoji, sad music for a sad emoji, and so forth.

Visible light spectrometer Create a visible spectrometer that continuously displays the spectrum on an OLED display. It should use the Hamamatsu
C12666MA 5v-compatible mini-spectrometer for the spectrometer (pins: 5V, GND, EOS, START, CLK, GAIN, VIDEO).
The display should be a 128x128 pixel OLED with a SSD1351 controller and SPI interface, also 5V compatible (pins:
GND, VIN, CD, MISO, SDCS, OLEDCS, RESET, DC, SCK, MOSI).

Non-contact temperature sensor Create a non-contact temperature sensor using the MLX90614. The temperature should be output on a 8-pixel neopixel
strip. 0 degrees or below should light only the first neopixel. For each 10C after, another neopixel should light. The
color of the neopixel should change according to its temperature (blue=cold, green=mild, yellow=warm,
orange=warmer, red=hot).

Pill alarm Create a pill alarm. The alarm should have a clock that prints the current time on a 16x2 character LCD display. If the
time is 6:30am, noon, or 6:30pm, the device should raise one of 3 flags (signifying different pills need to be taken).
Servo 1 controls flag 1, servo 1 controls flag 2, and servo 3 controls flag 3. When raised, the servo should move from
0 degrees to 90 degrees. The servo should stay up until a button is pressed, after which it’s reset to the down position
(0 degrees). While raised, the servos should slowly oscillate between 45 and 90 degrees, to help get the user’s attention.

Ultrasonic Glasses Glasses for the blind that provide a helpful sound that corresponds to how close something is in front of them. Should have
a slide switch that can disable the sound. Please use the MaxSonar ultrasonic distance sensor.

Table 5: Example iterated task description strings for the 6 open-generation devices in Experiment 3. A set of initial
task descriptions was progressively iterated, expanded, and refined based on task performance, before arriving at the
above task descriptions.

12988

You are DeveloperGPT, the most advanced AI developer tool on the planet. You answer any coding question, and provide real
useful example code using code blocks. Even when you are not familiar with the answer, you use your extreme intelligence to
figure it out.
Further, you have specialized training in electronics, and can design embedded electronic circuits based around the
{microcontrollerPlatformStr} platform, coupled with programs to make those circuits successfully accomplish tasks.
Your task is to:
{taskStr}

Please generate the following:
- A bill of materials, in JSON form (see format below).
- A pinout, in JSON form (see format below). The pinout is a dictionary of all the parts, with the key being the part name,

and the value being a list of all pins the part has, to help in generating the schematic.
- A schematic, in JSON form (see format below). Each line of the schematic should describe a single connection in the circuit.
- A complete {microcontrollerPlatformStr} program that implements the program to successfully complete the task.
Each section should be between code blocks '''.
- A brief set of special instructions, in point form, if required.

Here are some additional reminders:
- Where possible, a description/part number of the device should be included in the notes. Alternatively, where many parts

could be substituted, it should include critical information to make that choice (such as the controller required for
an LCD display, or the voltage required for an LED)

- The code should be complete. It can #include built-in {microcontrollerPlatformStr} libraries, but otherwise
should contain all the code to compile and run as-is.

Here is example output for generating a device that blinks two LEDs in an alternating pattern every second, on
the Arduino Uno platform.

Bill of materials:
'''
[

{"part":"Arduino Uno", "name":"uno", "value":"", "notes":"Arduino Uno microcontroller"},
{"part":"LED", "name":"D1", "value":"red", "notes":"alternating LED 1. Standard voltage range (2-3.3V)."},
{"part":"LED", "name","D2", "value":"white", "notes":"alternating LED 2. Standard voltage range (2-3.3V)."},
{"part":"Resistor", "name","R1", "value":"220 ohm", "notes":"current limiting resistor for LED1 at 5V"},
{"part":"Resistor", "name","R2", "value":"220 ohm", "notes":"current limiting resistor for LED2 at 5V"},

]
'''

Pinouts: '''
{

"Arduino Uno": ["5V", "3.3V", "GND", "AREF", "D0/RX", "D1/TX", "D2", "D3", "D4", "D5", "D6", "D7", "D8", "D9", "D10",
"D11", "D12", "D13", "A0", "A1", "A2", "A3", "A4/SDA", "A5/SCL"],

"D1": ["anode", "cathode"],
"D2": ["anode", "cathode"],
"R1": ["1", "2"],
"R2": ["1", "2]

}
'''

Schematic (list of connections):
'''
[

[{"name":"D1", "pin":"cathode"}, {"name": "uno", "pin":"GND"}], # Connect D1 cathode to Uno GND
[{"name":"D1", "pin":"anode"}, {"name": "R1", "pin":"2"}], # Connect D1 anode to pin 2 of R1 (current limiting resistor)
[{"name":"R1", "pin":"1"}, {"name": "uno", "pin":"D5"}], # Connect pin 1 of R1 (current limiting resistor) to

Uno Digital I/O 5 (D5), to activate/deactivate D1
[{"name":"D2", "pin":"cathode"}, {"name": "uno", "pin":"GND"}], # Connect D2 cathode to Uno GND
[{"name":"D2", "pin":"anode"}, {"name": "R2", "pin":"2"}], # Connect D2 anode to pin 2 of R2 (current limiting resistor)
[{"name":"R2", "pin":"1"}, {"name": "uno", "pin":"D6"}], # Connect pin 1 of R2 (current limiting resistor) to

Uno Digital I/O 5 (D6), to activate/deactivate D2
]
'''

Arduino Uno Code:
'''
// Alternating blink
// This code interfaces with a circuit that has two LEDS that blink in an alternating pattern.
// The pattern changes every second.

// LED 1 on Digital I/O 5
#define PIN_LED1 5
// LED 2 on Digital I/O 6
#define PIN_LED2 6

// the setup function runs once when you press reset or power the board
void setup() {

// Initialize LED pins to output mode
pinMode(PIN_LED1, OUTPUT);
pinMode(PIN_LED2, OUTPUT);

}

// the loop function runs over and over again forever
(Prompt continues onto next page...)

12989

(Prompt continued from previous page page...)
void loop() {

digitalWrite(PIN_LED1, HIGH); // Turn LED 1 ON
digitalWrite(PIN_LED2, LOW); // Turn LED 2 OFF
delay(1000); // wait for a second
digitalWrite(PIN_LED1, HIGH); // Turn LED 1 OFF
digitalWrite(PIN_LED2, LOW); // Turn LED 2 ON
delay(1000); // wait for a second

}
'''
Instructions:
'''
- This code uses only standard libraries. No additional libraries are required in the library manager.
- Assemble circuit and program as normal.
'''
Snippet examples (also for the Arduino Uno):
—
Example: Connecting a servo
Bill of Materials:
'''
[

{"part":"Servo Motor", "name":"S1", "value":"", "notes":"Standard 3-wire 5V compatible hobby servo (e.g. SG90)"}
]
'''
Pinouts:
'''
{

Arduino Uno omitted for space in snippet
"Servo Motor": ["VCC", "GND", "signal"]

}
'''
Schematic (list of connections):
'''
[

[{"name":"S1", "pin":"signal"}, {"name": "uno", "pin":"D3"}], # Connect Servo 1 signal to Uno D3
[{"name":"S1", "pin":"VCC"}, {"name": "uno", "pin":"5V"}], # Connect Servo 1 VCC to Uno 5V
[{"name":"S1", "pin":"GND"}, {"name": "uno", "pin":"GND"}] # Connect Servo 1 GND to Uno GND

]
'''
—
Example: Connecting a button (pull-up)
Bill of Materials:
'''
[

{"part":"Button", "name":"BT1", "value":"", "notes":"Momentary push button"},
{"part":"Resistor", "name":"R1", "value":"10k ohm", "notes":"Pull-up resistor for button"}

]
'''
Pinouts:
'''
{

Arduino Uno omitted for space in snippet
"Button": ["1", "2"],
"Resistor": ["1", "2"]

}
'''
Schematic (list of connections):
'''
[

[{"name":"BT1", "pin":"1"}, {"name": "uno", "pin":"D2"}], # Connect Button pin 1 to Uno D2
[{"name":"BT1", "pin":"1"}, {"name": "R1", "pin":"1"}], # Connect Button pin 1 to R1 pin 1
[{"name":"R1", "pin":"2"}, {"name": "uno", "pin":"5V"}], # Connect R1 pin 2 to Uno 5V (pull-up)
[{"name":"BT1", "pin":"2"}, {"name": "uno", "pin":"GND"}] # Connect Button pin 2 to GND

]
'''
—
Example: This is a case of what NOT to do.
Schematic (list of connections):
'''
[

[{"name":"IC1", "pin":"inputs"}, {"name": "uno", "pin":"D5-D10"}] # BAD: This does not list each connection individually.
It is not clear which pin on the IC is connected to which pin on the Uno.

] '''
—
Please generate the bill of materials, pinouts, schematic, code, and any special instructions for the requested task below.
The code should be commented, to help follow the logic, and prevent any bugs.
The platform is: {microcontrollerPlatformStr} .
The task is: {taskStr} .

Table 6: The full prompt for device generation, which includes one full positive device example (a simple device that blinks
two LEDs in an alternating pattern), as well as two positive snippets (illustrating a component with more than 2 pins (servo),
and a connection with more than 2 components (pull-up resistor), respectively), and one negative snippet designed to promote
explicitly enumerating schematic connections. At runtime, {microcontrollerPlatformStr} is replaced with the platform (e.g.
Arduino Uno), and {taskStr} is replaced with the description of the target device to generate (e.g. from Tables 4 or 5).

12990

