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Abstract

One of the main problems in speech translation
is the mismatches between different modali-
ties. The second problem, scarcity of paral-
lel data covering multiple modalities, means
that the end-to-end multi-modal models tend to
perform worse than cascade models, although
there are exceptions under favorable conditions.
To address these problems, we propose an end-
to-end zero-shot speech translation model, con-
necting two pre-trained uni-modality modules
via word rotator’s distance. The model retains
the ability of zero-shot, which is like cascade
models, and also can be trained in an end-to-
end style to avoid error propagation. Our com-
prehensive experiments on the MuST-C bench-
marks show that our end-to-end zero-shot ap-
proach performs better than or as well as those
of the CTC-based cascade models and that our
end-to-end model with supervised training also
matches the latest baselines.

1 Introduction

Speech translation (ST) requires knowledge trans-
fer among different modalities, whereas models
more often than not perform worse on cross-modal
tasks. The ST model in real-world applications is
usually a cascade approach that first uses an au-
tomatic speech recognition (ASR) system to tran-
scribe the speech into text and then uses a text ma-
chine translation (MT) model. Recent end-to-end
(e2e) ST models remove the need for an explicit
ASR, with several practical advantages over the
cascade models such as reduced latency, reduced
error propagation, and shorter pipeline.

However, e2e ST models are less competitive
than cascade models in practice (Zhang et al., 2019;
Sperber and Paulik, 2020; Dinh, 2021) because
end-to-end data are an order of magnitude less than
those for ASR or MT, especially for low-resource

∗equal contribution. Work was done during Jichen Yang’s
research internship at DAMO Academy, Alibaba Group.

† Corresponding author.

language pairs. Solutions have been proposed to
combat this data problem. In (Liu et al., 2020; Xu
et al., 2021), an adapter with additional parameters
is used during fine-tuning to combine the two pre-
trained models of different modalities. The new
module, however, only learns from ST data, which
is of a greatly reduced quantity. The alignment
in building cross-modal representations is also a
popular topic. Zhang et al. (2023) simply concate-
nates the representations of different modalities
and lets the self-attention learn the cross-modal
features. Some solutions deal with this problem
through mapping features into fixed-size represen-
tations (Reimers and Gurevych, 2019; Feng et al.,
2020; Han et al., 2021; Duquenne et al., 2022). The
squared error is generally used as the optimization
objective (Pham et al., 2019; Dinh et al., 2022).
They may suffer from information loss when repre-
sentations are compressed or constrained prior.

In order to overcome both the data and the length
problems, we propose a pre-trainable adapter that
connects two pre-trained modules. Specifically, we
adopt a popular cross-modal ST architecture that
can be generalized to many existing works. For
the alignment adapter, we employ as loss the Word
Rotator’s Distance (WRD) minimization (Yokoi
et al., 2020; Monge, 1781; Kantorovich, 1960;
Peyré et al., 2019), allowing the adapter to pro-
mote the cross-modal representations that match in
the space of the semantic encoder. Unlike previ-
ous works, this strategy allows us to pre-train the
adapter. Meanwhile, instead of mapping to a fixed
length, the CTC enables adjustment of the length
of the source modality representation dynamically.
This step can guarantee the cross-modal representa-
tions become features with a similar but not exactly
the same length, and then our proposed WRD ob-
jective with optimal transport (OT) solver can align
them properly.

Besides speech translation, our approach can be
naturally adapted into image translation. Unlike the
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Figure 1: Overview of our proposed framework. (a) The overall model architecture. (b) Data usage in zero-shot
setting and the possible supervised setting. (c) NMT pre-training. (d) Only the cross-modal encoder is trained with
ASR data, where the semantic encoder is freezing. (e) Fine-tuning if end-to-end data is available.

image assistant translation (Su et al., 2019; Yawei
and Fan, 2021), we attempt to translate the text
within the image. Our goal is also to align the
cross-modal representation between images and
texts (Li et al., 2022). The related discussion and
experiments can refer to the Appendix A.4.

The contributions of this paper are as follows:
(1) We adopt the WRD loss together with the shrink
mechanism to measure two feature sequences in
different lengths, enabling the adapter pre-training.
(2) The pre-trained adapter allows an end-to-end
zero-shot ST ability like cascade models.
(3) Experiments on the MuST-C demonstrate that
our end-to-end zero-shot model can match or be
slightly better than the CTC-based cascade model
(without intermediate post-processing). The results
of our end-to-end training can also match the recent
supervised ST baselines.

2 Main Method

We adopt a popular framework in Figure 1(a),
including a cross-modal encoder with a shrink
adapter and a semantic encoder/decoder pack.

2.1 Semantic encoder-decoder training
A machine translation model is first pre-trained as
illustrated in Figure 1(c). Given a machine transla-
tion corpus Dmt = {(xt,yt)}, our aim is to obtain
a semantic encoder Enct(Etxt) = ht and a seman-
tic decoder Dect(ht) = P (yt|ht), where Et is the
source embedding matrix. The objective of the task
is defined as the cross entropy loss Lmt.

2.2 Zero-shot Translation Training

In this phase, we train a zero-shot translation model
by training the cross-modal encoder alone as shown
in Figure 1(d). As the tradition, we apply the recog-
nition task with ASR data Dcm = {(zs,xs)}, and
adopt a classical ASR architecture with CTC clas-
sifier, and optimize the CTC loss Lctc.

Besides the regular recognition task, we use
Word Rotator’s Distance (WRD) (Yokoi et al.,
2020) to supervise the encoder to generate encod-
ing results with less discrepancy across different
modalities. We expect to align different modali-
ties in the space of the semantic encoder, allowing
the seamless transition between the cross-modal
encoder and the semantic decoder. To be precise,
suppose the acoustic encoder output as hs and the
CTC distribution as dc = softmax(Wchs), a light-
weight adapter shrinks and integrates them. The
shrink mechanism (Yi et al., 2019; Tian et al., 2020;
Gaido et al., 2021) is widely employed to remove
the representations of blank and repeated tokens.
Thus, we consider using the CTC path via effi-
cient argmax as the guidance to remove the blank
tokens and average the representations of consecu-
tively duplicated tokens, as shown in Figure 1(a).

By denoting the shrunk hidden state and CTC
distribution as h̃s and d̃c, the adapter output is,

ha = Etd̃c +W⊤
a h̃s, (1)

where Wa is the trainable parameters in the adapter.
More details can refer to the implementation. Since
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Training Data En-De v2 En-De En-Fr En-Es
common he common he common he common he

WMT 28.59 27.45 28.62 27.44 40.79 37.54 32.38 38.14
WMT + MuST-C 33.13 31.99 32.99 31.90 44.14 39.97 36.96 42.04

Table 1: Performance of MT on MuST-C testset (BLEU↑). The input is the ground truth of the source transcription.

Model En-De v2 En-De En-Fr En-Es Average
common he common he common he common he Gap

Zero-Shot: MT is only trained on WMT corpus.

MultiSLT cascade / / 17.30 / 27.15 / 21.29 /
-13.79

zero-shot / / 6.77 / 10.85 / 6.75 /
Chimera zero-shot / / 13.5 / 22.2 / 15.3 / /

Ours cascade 22.85 22.27 22.45 22.30 32.60 31.65 26.14 31.55
+0.79

zero-shot∗ 24.00 23.04 23.41 22.94 33.65 32.25 26.48 32.32
Pseudo Zero-Shot: MT is trained on WMT and MuST-C parallel corpus.

Tight cascade / / 25.9 25.0 / / 30.2 37.6
-1.325Integrated† p. zero-shot / / 25.1 24.4 / / 28.7 35.2

Ours cascade 26.43 25.14 25.21 25.32 34.53 32.63 29.15 34.68
+0.78

p. zero-shot∗ 27.39 26.46 26.52 25.46 35.34 33.66 29.46 35.05

Table 2: Zero-Shot ST on MuST-C (BLEU↑). †Tight Integrated extends our ASR data to 2300 hours, and it used
27M En-De and 48M En-Es MT data.

the ASR performance greatly affects the quality of
CTC paths (Fan et al., 2020), our shrink method dif-
fers from previous approaches, where the adapter
merges the representations from both before and
after the CTC module to reduce error propagation.
ha can be regarded as the final audio representa-
tion which is ready to be fed into the semantic
encoder. To alleviate the cross-modal mismatch,
we optimize the WRD loss.

ea = Enct(ha) = {ea1, . . . , ean} (2)

et = Enct(ht) = {et1, . . . , etm} (3)

Lwrd = Dwrd(ea, et). (4)

The detailed WRD loss is defined as follows.

Dwrd(ea, et) = ⟨C,T∗⟩, Ci,j = 1−cos(eai , e
t
j)

where ⟨·, ·⟩ denotes the dot-product and cos(·, ·) is
the cosine similarity. T∗ is the optimal transport
(OT) plan from the following problem.

T∗ = argmin
T≥0

⟨C,T⟩ s.t.,T1m = p,T⊤1n = q

where p,q are the normalized ea, et. Particularly,
we represent them as two vectors [p1, . . . , pn]⊤ and
[q1, . . . , qm]⊤.

pi =
∥eai ∥2∑n
i=1 ∥eai ∥2

, qj =
∥etj∥2∑m
j=1 ∥etj∥2

.

WRD emphasizes the semantic similarity be-
tween two sequences better than Euclidean dis-
tance. The common solution is to implement the
Inexact Proximal point method for Optimal Trans-
port (IPOT) algorithm (Xie et al., 2020) as shown in
Appendix A.1. Because of CTC prediction errors,
it is possible that m ̸= n, but the loss Lwrd can
circumvent the length discrepancy for alignment.
The final loss of the cross-modal training is,

Lasr = λctcLctc + λwrdLwrd (5)

where λctc and λwrd are hyper-parameters. To keep
the semantic encoding intact, the semantic encoder
including the embedding matrix is frozen, leading
to a zero-shot translation system naturally from the
ASR training.

2.3 End-to-End Translation Training
Once we have the triplets supervision dataset
DTri = {(z,x,y)} such as speech-transcription-
translation, it is possible to proceed for the fine-
tuning phase as shown in Figure 1(e). Since the
zero-shot training loss Eq. (5) is still valid in this
phase, we can integrate it into the final end-to-end
ST training objective L = Lst(z,y) + Lasr.

3 Experiments

3.1 Datasets and Settings
ST We conduct our experiments on the three popu-
lar language pairs in MuST-C (Cattoni et al., 2021):
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Model Num. En-De v2 En-De En-Fr En-Es
Params common he common he common he common he

MTL† (Tang et al., 2021b) 31M / / 23.9 / 33.1 / 28.6 /
FAT-ST (Zheng et al., 2021) 58M / / 25.5 / / / 30.8 /
JT-S-MT# (Tang et al., 2021a) 74M / / 26.8 / 37.4 / 31.0 /
Chimera (Han et al., 2021) 165M / / 27.1 / 35.6 / 30.6 /
XSTNET (Ye et al., 2021) 155M / / 27.8 / 38.0 / 30.8 /
STEMM (Fang et al., 2022) 155M / / 28.7 / 37.4 / 31.0 /
FT from zero-shot∗ 95M 29.22 29.07 28.22 28.22 39.00 37.06 31.96 38.83
FT from p. zero-shot∗ 95M 29.12 29.74 28.17 28.19 39.05 37.21 32.03 38.89

Table 3: Supervised ST on MuST-C (BLEU↑ with beam=5) with additional Librispeech and WMT data. † MTL
uses the hidden dimension 256. # JT-S-MT only uses WMT data. ∗ FT from our models marked with ∗ in Table 2.

English-German (En–De) V1 and V2, English-
French (En–Fr), and English-Spanish (En–Es).

ASR The 960h LibriSpeech English ASR dataset
(Panayotov et al., 2015) is mainly used for pre-
training the ASR in the zero-shot training stage.

MT For En-De and En-Fr, we collect the WMT
2014 data with about 4.5M and 36M parallel sen-
tences respectively as in Vaswani et al. (2017). For
En-Es, we collect the WMT 2013 data of size 28M.

Model Details The audio inputs are pre-
processed as 80-channel log Mel filterbank coeffi-
cients as fairseq1. The cross-modal encoder con-
tains two 1D convolutional subsampler layers (Syn-
naeve et al., 2019) and 12 transformer encoder lay-
ers with hidden dimension 512. The MT model is a
standard transformer-based architecture (Vaswani
et al., 2017). The individual vocabulary includ-
ing 10K sub-word units is learned by Sentence-
Piece (Kudo and Richardson, 2018). All hyper-
parameters such as λ are tuned on En-De V2 and
directly applied to other datasets. Additional de-
tails can refer to the Appendix A.2.

3.2 Main Results

Zero-shot ST Recent works (Dinh, 2021; Escolano
et al., 2021) indicate that when large amounts of
ASR and MT data dominate the training, the cas-
caded ST is better than the direct end-to-end ST.
In our proposed second phase, the desired ASR
training can easily facilitate the building of a zero-
shot ST model. The MT model is pre-trained with
the WMT data alone, preventing the model from
accessing the in-domain data of MuST-C. For the
ASR training, we combine the Librispeech data and
the speech-transcription pairs in MuST-C to give a
comparable amount of ASR data as in the practical
cascade system. Particularly, we set λctc = 1 and

1
https://github.com/facebookresearch/fairseq/tree/main/

examples/speech_to_text

λwrd = 10.
In Table 1, we list the BLEU scores of our pre-

trained MT models of the first training stage, in
both zero-shot and pseudo zero-shot settings. Our
main results of zero-shot ST are illustrated in Ta-
ble 2. We compare our model with the pioneering
zero-shot ST method MultiSLT (Escolano et al.,
2021), achieving the zero-shot translation via ASR
training with an adapter as well. We compare to
another cross-modal alignment method Chimera
(Han et al., 2021), which is initially designed for su-
pervised ST training but also suitable for zero-shot
ST. Clearly, our system can achieve a minimum
gap between the cascade and the end-to-end setups
in zero-shot scenario, and our end-to-end zero-shot
ST on average performs +0.79 higher than that of
the cascade system.

Following Tight Integrated (Dalmia et al.,
2021; Bahar et al., 2021), we also conduct a pseudo
zero-shot ST experiment. In this case, even though
each training phase does not directly consume any
speech-translation pairs, the overlapped MuST-C
transcription data could be seen by both ASR and
MT models. The gap between cascade and end-to-
end remains unchanged (+0.79 → +0.78) for our
model. It is an indication of the stability of our
approach to bridging the modality gap.
Supervised ST In this experiment, we evaluate
the performance of our third training phase. We
compare our approach only in the unconstrained
scenario with the recent end-to-end ST methods
that used similar datasets, and the results are sum-
marized in Table 3.

3.3 Analysis

For zero-shot ST setting, the average gap is 0.79,
and the breakdown difference is visualized in the
middle panel of Figure 2. The cascade system only
has more sentences falling in BLEU interval [0, 10].
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Figure 2: En-De v2. Left: BLEU v.s. WRD. Middle: Distribution of BLEU scores. Right: Ablation study of loss.

Model Module En-De v2
Acoustic Encoder† Adaptor Semantic Enc/Dec∗ common

trainable trainable trainable 29.22
trainable trainable frozen 25.14
frozen trainable trainable 28.94

Table 4: Ablation study on the model parameters for supervised training phrase. All models are fine-tuned from the
zero-shot ST model with BLEU 24.00 in Table 2. †Acoustic encoder includes the CTC layer.

We also plot the relation between BLEU and WRD
for each sentence in the tst-CMMON set of En-
De v2 (left panel of Figure 2). The overall trend
indicates the BLEU score decreases with increasing
word rotator’s distance.

To achieve the zero-shot speech translation, the
two losses in ASR training are both required. So
the ablation study in the right panel of Figure 2
explored the effect of each loss in final end-to-end
supervised training. All models are fine-tuned from
the zero-shot ST model with BLEU 24.00 in Ta-
ble 2. The CTC loss cannot be directly removed
since the WRD depends on a reasonable CTC path.
Therefore, we optimize the supervised loss with-
out CTC loss by freezing the acoustic encoder and
CTC layer.

In Table 4, we have another ablation study on
whether the model parameters are trainable for the
supervised training phase. The result becomes
much worse if the semantic encoder/decoder is
frozen. The main reason we hypothesize is that
since the NMT teacher is frozen, the in-domain
MT data is not used. So it’s difficult for the NMT
decoder to adapt to the supervised ST data, i.e., the
decoder is not a good language model.

4 Conclusion

In this paper, we present a zero-shot architecture
that takes better advantage of cascade models,
bridging the gap between cascade and end-to-end
translation models. By leveraging differentiable
shrink adapter and WRD loss, our approach is a

direct end-to-end ST model in the zero-shot setup
that matches the cascade system without additional
post-processing, e.g., rescoring via an additional
language model. Our method can also achieve com-
parable results to recent supervised ST models.

Limitations

The accuracy of IPOT depends on the number of
loops. Since we unroll the IPOT similar to RNN
training and apply automatic differentiation on the
IPOT algorithm in the back-propagate stage, the
iterative process will consume more computing
resources than directly calculating the Jacobian ma-
trix of the OT plan. Besides, though our model is
able to work on different translation tasks such as
image translation and speech translation, the hyper-
parameters, especially the weights of WRD loss
and CTC loss, would be varied on each task. The
CTC loss and WRD loss are sometimes conflict-
ing, which also requires us to set a pair of proper
weights via deep hyper-para searching.
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A Appendix

A.1 WRD based IPOT

Algorithm 1: WRD based IPOT
Input: Maximum iterations T = 50,

encoded sequences
{eai }ni=1, {etj}mj=1.

1 Initialize p with pi =
∥eai ∥2∑n
i=1 ∥eai ∥

2 Initialize q similar to p.
3 Initialize C as Ci,j = 1− cos(eai , e

t
j).

4 T = 1n1
⊤
m.

5 σ = 1
m1m, Gi,j = e−Ci,j .

6 for t = 1, 2, . . . , T do
7 Q = G⊙T
8 δ = p

Qσ , σ = q
Q⊤δ

9 T = diag(δ)Qdiag(σ)

10 return ⟨C,T⟩

IPOT replaces the Bregman divergence
Dh(x,y) =

∑n
i=1 xi log

xi
yi
−∑n

i=1 xi+
∑n

i=1 yi
with the proximal point iteration, i.e., substitutes
the following iterative update for the original
optimization problem.

T(t+1) = argmin
T≥0

⟨C,T⟩+ β(t)Dh(T,T(t)) (6)

Algorithm 1 shows the detailed implementation
of IPOT, where diag(δ) represents the diagonal
matrix with δi as its i-th diagonal element, and ⊙
and (·)

(·) denote the element-wise matrix multipli-
cation and division respectively. The algorithm
outlines the forward-propagation steps only. Since
each iteration of the algorithm only involves dif-
ferentiable operators, we can utilize the automatic
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differentiation packages (e.g., PyTorch) to back-
propagate the gradients like an unrolled RNN. The
corresponding implementation can refer to the sub-
mitted software.

A.2 Additional Training Details

As model design in Figure 1, the embedding layer
in the adapter shares the weights with the seman-
tic source embedding. The beam size is 5 during
inference, and we use SacreBLEU in fairseq as
evaluation metrics.

For the third phase, supervised ST training, we
have multiple tasks in the final objective. For the
ST task Lst, some previous works may leverage
the MT model and the Librispeech transcription to
construct pseudo translation sentences. However,
we only use the audio and translation pairs from
MuST-C. For the ASR task Lctc, we only use the
audios and transcriptions from MuST-C. For the
MT task Lmt, we optimize it on both the MuST-C
parallel corpus and WMT data, making the decoder
a better language model. En-De WMT only has
4.5M sentence pairs and the entire training is still
manageable. However, for En-Fr/Es, optimizing
the large end-to-end ST model with a huge amount
of trainable parameters will be cumbersome be-
cause the size of WMT data overwhelmingly slows
down the training. Therefore, we randomly sample
a 10M corpus from the original WMT En-Fr/Es
data to train the final supervised loss.

A.3 Additional Experimental Results of ST

In Figure 3, we plot the WER scores of the sec-
ond training stage, in both zero-shot and pseudo
zero-shot settings. The ASR of the cascade sys-
tem (i.e., trained with CTC loss only and without
semantic encoder) has a clearly higher WER than
our proposed ASR training with additional WRD
loss. However, the in-domain MuST-C data do not
appear to make a significant difference as indicated
by the orange and the green bars in Figure 3.

A.4 Generalization and Visualization

We also conduct an experiment on zero-shot Image
Translation using only OCR data and NMT data
to further test the effectiveness of our framework.
It is also convenient to visualize with image data.
The NMT model (i.e. the semantic encoder and
decoder) is pre-trained on the WMT 2018 Zh-En
data (20M) parallel sentences in the news domain.
We crop 2M text-line images from Chinese OCR

data 2. The test set has 2,000 images with Chinese
transcriptions and English translations. The BLEU
on the test set for the pre-trained NMT is 15.87,
which is not high due to the domain shift.

In particular, we set different weights λwrd =
0, 1, 5, 10, 20, 50 to investigate the effectiveness of
the WRD loss, where the model with λwrd = 0
reduces to a cascade model. The results of the
zero-shot Image Translation are shown in Figure 4.
It illustrates the intuition of how to tune the im-
portance of WRD loss. In Figure 5, we visualize
the transport plan T∗ and cost matrix C of some
examples.

2
https://github.com/YCG09/chinese_ocr and https://taobao.com
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Figure 3: The performance of the ASR as zero-shot ST systems.
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Figure 4: The performance of OCR and zero-shot image
translation over different weights λwrd.
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Figure 5: Left Column: visualization of transport plan T∗. Right Column: visualization of cost matrix C. The
WRD with OT solver can align cross-modal features with different lengths. y-axis represents the shrunk features,
and x-axis represents the transcription features. Since the actual shrunk tokens only represent a 4-pixel wide part of
an image, we cut images along blank tokens as a schematic representation. The real shrunk tokens are usually in the
middle of the images on y-axis. For the cost matrix, the smaller elements are mainly distributed on the diagonal
block regions. It could be the incorrect shrinking segments sometimes aligning with more than one character. For
the transport plan matrix, the larger elements are mainly distributed on the diagonal. In this way, their products will
remain small.
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