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Abstract
Negation is the fundamental component in a
natural language that reverses the semantic
meaning of a sentence. It plays an extremely
important role across a wide range of appli-
cations, yet they are under-represented in pre-
trained language models (LMs), resulting often
in wrong inferences. In this work, we try to
improve the underlying understanding of the
negation in the pre-trained LMs. To augment
negation understanding, we propose a language
model objective with a weighted cross-entropy
loss and elastic weight consolidation regular-
ization. For negated augmented models, we
reduce the mean top 1 error rate for BERT-
base to l.1%, BERT-large to 0.78%, RoBERTa-
base to 3.74%, RoBERTa-large to 0.01% on the
negated LAMA dataset that outperform the ex-
isting negation models. It minimizes the mean
error rate by a margin of 8% and 6% for orig-
inal BERT and RoBERTa models. We also
provide empirical evidences that negated aug-
mented models outperforms the classical mod-
els on original as well as negation benchmarks
on natural language inference tasks.

1 Introduction

Negation plays a pivotal role in many natural lan-
guage understanding tasks, such as sentiment anal-
ysis, question answering, Natural Language Infer-
ence (NLI) tasks, etc. While large language models
such as BERT have pushed state-of-the-art and are
being used widely across various domains, it fails
dramatically to understand negation.

Negation relates an expression e to another ex-
pression with a meaning that is in some way con-
trary to the meaning of the original sentence e.
Negation is ubiquitous in English language text and
comprises approximately 25% sentences with nega-
tion clues or genre in some form (Hossain et al.,
2020). Despite this fact, understanding of nega-
tion is under-represented in the language models.
The current Language Models (LMs) cannot distin-
guish between negated and non-negated forms of

masking tasks (Kassner and Schütze, 2020). For
example, when asked to predict the [MASK] to-
ken in the sentences: The capital of South Korea
is [MASK]. and The capital of South Korea is not
[MASK].; BERT often generates the same answer
as “Seoul”. The exercise gives evidence that LMs
do not appropriately model the distribution of nega-
tion sentences. LMs when fine-tuned on NLI tasks,
current pre-trained models tend to misclassify the
examples which contain negations as contradic-
tions when the true label is neutral or entailment.

In this work, we address the challenge of aug-
menting negation understanding of language mod-
els and alleviating the model bias. To enhance
negation understanding, we adopt a data-driven
approach by leveraging a large dataset extracted
from Wikipedia. The dataset serves as the founda-
tion for generating a diverse set of negated sen-
tences. Our approach incorporates dependency
parsing and tense morphological structure to sys-
tematically construct negated counterparts of the
original sentences. By explicitly introducing nega-
tion into the data, we aim to improve the model’s
ability to handle negated statements effectively.

The next step involves training the language
models using a paired set of affirmative-affirmative
and affirmative-negative sentence pairs. To effec-
tively capture the nuances of negation, we employ
a weighted loss function and an elastic weight reg-
ularizer during the training process. This combina-
tion enables the models to focus on learning from
both affirmative and negative instances, thereby
reducing any inherent model bias towards affirma-
tive statements. To evaluate the effectiveness of
our models, we conduct experiments on standard
datasets, specifically focusing on knowledge com-
pletion and NLI tasks.

The work presented here addresses the shortcom-
ings of negation understanding of LMs and makes
the following contributions:

1. We provide a methodology to automatically
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generate negated data from the original wiki
corpus using dependency parsing, providing a
diverse and representative source for negation
understanding.

2. We propose a pre-training framework with
Elastic Weight Consolidation (EWC) regular-
ization and weighted loss to overcome catas-
trophic forgetting that aids to augment the
negation knowledge in LMs.

3. We demonstrate that state-of-the-art trans-
formers are not robust to negation and provide
empirical evidence that negation augmented
LMs outperform the classical LMs on original
as well as negation datasets.

2 Related Work

Language models such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) have
achieved remarkable results in various natural lan-
guage understanding tasks such as question an-
swering, sentiment analysis, named entity recogni-
tion (Gillard et al., 2006; Naik et al., 2018), etc.
Their ability to capture contextual information,
leverage large scale pre-training and the incorpora-
tion of novel training techniques have contributed
to their impressive performance. These models also
learn broader range of factual and common-sense
knowledge (Akyurek et al., 2022). Despite these
abilities and performance, Kassner and Schütze
(2020) shows that these models fall short on under-
standing the negated factual sentences.

Various works investigate the linguistic knowl-
edge captured in these LMs. The authors (Warstadt
and Bowman, 2019) investigate the grammatical
knowledge of the LMs and conclude that these mod-
els have near human performance on simple sen-
tences and fail to make fine-grained grammatical
distinctions. Authors (Marvin and Linzen, 2018)
propose a dataset for evaluating the knowledge of
understanding grammatically correct as well as in-
correct sentences. The oLMpics work investigates
BERT and RoBERTa model on the reasoning tasks
which require comparison, conjunctions and com-
position. Other studies include diagnosing syntac-
tic heuristics in NLI tasks (McCoy et al., 2019), in-
ner workings of these models on (negative) polarity
items (Jumelet and Hupkes, 2018) and discovering
of NLP pipelines in BERT (Tenney et al., 2019).

Some recent work studies negation understand-
ing in the area of negation detection (Khandelwal
and Sawant, 2020), negation scope detections (Fan-

cellu et al., 2016; Morante and Daelemans, 2009;
Li and Lu, 2018), attention analysis in negation
scope (Zhao and Bethard, 2020) and focus detec-
tion (Shen et al., 2019). Authors (Naik et al., 2018)
study linguistic phenomenons such as antonyms,
negation, and spelling mismatch and find that these
models rely on syntactic clues to make the NLE
inferences. Hossain et al. (2020) proposes a bench-
mark for natural language inference tasks in a form
of a text-hypothesis pair in which negation plays a
critical role. Also, the authors find that the current
state-of-the-art transformers struggle to understand
negation which often results in wrong inferences.
Noji and Takamura (2020) shows the utilities of
explicit negative examples to improve the syntactic
abilities of models for the NLI tasks.

The studies (Hossain et al., 2020; Laverghetta Jr.
and Licato, 2022) show that these state-of-the-art
transformer models struggle to understand the nega-
tion and there exists the need to inject negation un-
derstanding in these models. These works investi-
gate the negation understanding of LMs. However,
only a few works try to fix this negation bias in
LMs. Hosseini et al. (2021) augments negation un-
derstanding in BERT by modelling objectives with
an unlikelihood based on negated generic sentences.
The proposed method successfully injects knowl-
edge into BERT-base, however, fails in BERT-large
model.

3 Dataset

In order to effectively augment negation, we need a
dataset for affirmative and negative sentences com-
patible with LM’s input requirements. However,
a publicly available dataset with such characteris-
tics is not available. An alternative approach is
undertaken to extract the wiki-raw-text corpus and
negate the sentences.

3.1 Wiki-raw-text corpus

Each page within the wiki-raw-text corpus (Mer-
ity et al., 2016) is analysed and the first two lines
of text from each page is selected. The rationale
behind the selection is that the first line typically
provides an introductory overview or summary of
the page’s content, whereas the second line serves
as a continuation or a follow-up statement. By uti-
lizing this approach a collection of sentence pairs
are obtained, where the first line represents an an-
chor sentence and the second line serves as the
follow up sentence.
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To prepare the dataset for training, pre-
processing and cleaning steps are performed to
ensure the dataset’s quality and consistency. One
specific step involves the removal of pronunciations
and respelling keys. These keys are often found in
text derived from the wikipedia corpus and provide
phonetic indications for pronunciation variations.
These keys are eliminated to ensure that the focus is
solely on the textual content, without the inclusion
of phonetic annotations or pronunciation indicators.
Through this meticulous process, a comprehensive
dataset of 25000 sentence pairs is generated. Next,
we describe the method for negating an affirmative
sentence.

3.2 Negation

Consider an affirmative sentence that needs to be
converted into its negated form. We generate the
negated form of a sentence using the dependency
parsing tree and syntactical rules. The methodol-
ogy for negating a sentence is as follows.
Part of Speech tagging: In order to analyse the
sentence structure and facilitate further linguistic
processing for tense extraction, the Part-of-Speech
(POS) tags of the given sentence are obtained using
a POS tagging algorithm1. POS tagging assigns
specific grammatical labels to each word in a sen-
tence which indicates its syntactic category and
functions within the sentence. By labelling the
words with their respective POS tags, the sentence
is represented in the form of word/POS tag pairs,
allowing for a structured representation of the sen-
tence’s linguistic patterns.
Tense Patterns: To accurately determine the tense
of each sentence a systematic approach is employed
involving the utilization of POS tags represented
in the form of word/POS pairs. To achieve this,
a set of predefined patterns for each tense type is
specified. These patterns are designed to capture
specific linguistic structures associated with dif-
ferent tenses. For instance, to identify past tense
verbs, a pattern such as "\w+VBD" is defined, where
"\w+" represents one or more word characters and
"VBD" corresponds to the POS tag for past tense
verbs. Similarly, other tense patterns are devised,
such \w+VBP for present tense verbs and \w+MD for
modal verbs. We provide in Appendix A.1 the full
list of patterns for each tense. Subsequently, by uti-
lizing regular expressions (regex), the predefined
patterns are matched to the word/POS tag pairs of

1https://spacy.io/usage/linguistic-features/

each sentence, which allows for the extraction of
the corresponding tense. For example, if the sen-
tence contained the word/POS pair "walked/VBD",
it would match the pattern for past tense sentences.
This approach is generalized and facilitates the au-
tomated identification of the tense in sentences,
enabling subsequent linguistic analysis and sup-
porting the various other NLP tasks such as tem-
poral information, extraction, text summarization,
sentiment analysis and more.
Conversion: Following the detection of the tense
in each sentence, a negation transformation process
is implemented to convert the sentences into their
negated forms. This transformation involves the
addition, replacement and lemmatization of words
within the sentence to convey a negated meaning.
To introduce the negation cues, specific modifi-
cations are made to the sentence structure. For
instance, in the case of past tense the main verb is
first lemmatized and the negation cues are added
before it. Consider an example "She walked to the
park." After negation transformation, it becomes
"She did not walk to the park." where "did not"
serves as the negation cue inserted before the lem-
matized main verb "walk". This effectively negates
the original positive assertion. Additionally, we
consider special keywords such as "somewhere",
which are transformed into "nowhere" to express
negation. We provide the list of special keywords
in Appendix A.1. By applying these negation trans-
formations systematically, the original sentences
are modified to represent the negated statements,
facilitating the analysis of negation and its impact
on the semantic content and context of the text.

We illustrate below some of the examples in Ta-
ble 1. In addition, to evaluate the negation, we man-
ually verify 100 random negated sentences. The
evaluation is made by English native speakers re-
sulting in an overall precision of 96%. In general,
the method can also be applied to other cases to
generate negative samples.

3.3 Sample Generation

Based on the extracted two lines (first sentence,
follow-up sentence) from each page of the wiki-
raw-text corpus, two types of data are created. The
first type retains the original format, where the
sentence pairs consist of the affirmative sentence
accompanied by the corresponding follow-up or
continuous statement. The data serves as a control
group for training the model with affirmation sen-
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Derived Tense #Sentences Example Affirmative Sentence Converted Negative Sentence
Simple Past 11186 The episode premiered on the Fox network on October 7. The episode did not premiere on the Fox network on October 7.

Simple Present 1397 Brockton is located approximately 25 miles of Boston. Brockton is not located approximately 25 miles of Boston.

Modular verb 493
Searching a specific search tree according to a binary
key can be recursively or iteratively programmed.

Searching a specific search tree according to a binary key
cannot be recursively or iteratively programmed.

Table 1: Summary of few derived tense category from the dataset of 25000 sentences, number of sentences along
with examples of affirmative and their corresponding converted negated sentences.

tences. The second type of data involves negating
the second sentence using the techniques described
earlier. It allows for the examination of the effects
of negation on the overall meaning and context
of the sentence pairs. The first sentence remains
unchanged as the affirmative statement, while the
second sentence is now represented as the negated
form of the original follow-up statement. The ap-
proach facilitates the creation of two distinct types
of datasets: one representing the original unaltered
sentence pairs and the other representing the orig-
inal sentence with negated follow-up statements.
We present the process in Figure 1.

4 Model

In this section, we describe the training sample
generation and the model details.

4.1 Training Samples

The training data consists of the following samples:
1. ⟨Sa, Sf ⟩ are unaltered sentence pairs where

Sa is the affirmative sentence and Sf is the
follow-up sentence.

2. ⟨Sa, Sfn⟩ where Sa is the affirmative sentence
and Sfn is the negated sentence of Sf .

Masking: In each pair, we mask the tokens in the
follow-up sentence (second sentence). The first sen-
tence acts as an anchor sentence and gives context
while predicting the MASK token in the second
sentence.

The strategy for masking involves replacing ei-
ther the object or subject of a sentence with special
token "[MASK]", to indicate that the entity has
been masked. The technique allows for a more fo-
cused analysis on the impact of negation on specific
components of the sentence.

When masking the object of a sentence, the
direct object is identified and replaced with the
"[MASK]" token. For example, consider the origi-
nal sentence "John ate an apple". In this case, the
object "apple" is masked resulting in the modified
sentence "John ate an [MASK].". This masking
allows us to isolate the effect of negation on the
object component of the sentence while keeping
the rest of the sentence intact.

However, in situations where the object is not
explicitly mentioned or unavailable, the subject of
the sentence is masked instead. For instance, con-
sider the sentence "Cat is sleeping". Since there is
no explicit object in the sentence, the subject "Cat"
is masked, leading to the transformed sentence
"[MASK] is sleeping". The masking technique
enables the examination of the effect of affirma-
tion as well as negation on the subject component.
Overall, masking helps to understand the seman-
tic meaning and interpretation of a sentence. Note
that, we do not mask any token of Sa. It acts as
grounding (context) for the next sentence.
Next Sentence Prediction: In certain models, that
incorporate the Next Sentence Prediction (NSP)
task, specific labelling is required to indicate the
relationship between pairs of sentences. To address
this requirement, the following labelling scheme is
implemented:
1. For pairs of affirmative sentences ⟨Sa, Sf ⟩, a la-
bel 0 is assigned. It indicates that the two sentences
are affirmative and are contextually related.
2. For pairs consisting of an affirmative and a neg-
ative sentence ⟨Sa, Sfn⟩, a label of 1 is assigned.
This label signifies that the two sentences have a
contrast in meaning or sentiment.
The labelling scheme enables the NSP task to effec-
tively capture the relationship and context between
pair of sentences. It helps in training and evalu-
ating the model’s ability to capture the semantic
relationship and contextual nuances between sen-
tences, particularly in scenarios involving negation.
We explicitly imply the model for the following
learning: (a) Given an affirmative sentence Sa as
context, predict the [MASK] token of the next af-
firmative sentence Sf such that Sf is the actual
sentence that follows Sa. (b) Given an affirmative
sentence Sa as context, predict the [MASK] token
of Sfn (negated sentence of Sf ) such that negated
sentence is not the actual sentence that follows the
sentence Sa.

4.2 Regularization
Fine-tuning language models is the most critical
part of the transfer learning. The aggressive fine-
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Figure 1: Data generation affirmative-affirmative, affirmative-negation pairs followed by training models.

tuning causes catastrophic forgetting, eliminating
the knowledge of the information captured through
previous learnings. On the other hand, too cautious
fine-tuning leads to slow convergence and leads
to overfitting. To eliminate these challenges, we
deploy the strategies of freezing the layers and con-
trolled change in the set of biases and weights θ to
optimize performance and learning. Rather than
fine tuning all the layers, we first propose to update
only the top layers in models. Secondly, we apply
EWC, a regularization technique to control forget-
ting specifically by constraining the model weights
that are important for previous tasks. The sensitiv-
ity of the model with respect to its weight θi can
be estimated by looking at the curvature of the loss
surface along the direction of change in θi. The
high curvature signifies the slight θi change, result-
ing in sharp change in loss. To stop the weights of
the model deviating from the original base model,
we constrain the parameters using elastic weight
consolidation (Kirkpatrick et al., 2017). Learning a
task, consists to adjust the diagonal of Fisher Infor-
mation matrix F , which signifies the second deriva-
tive of the loss near minimum. The kthdiagonal
element in F denotes the importance of weight
θi. The intuition is to move the important weights
(from the actual model) as little as possible, when
the model is fine-tuned on the negation learning
task. It is achieved by adding a regularization term
to the loss function and is shown below.

LEWC = Lθ +
λ

2

∑
Fi(θi − θ′i)

2

Here Lθ denotes the loss, θi denotes the original
model weights, θ′i denotes the new model weights
while training and λ is the importance factor.

4.3 Loss

Next Sentence Prediction (NSP) and Masked Lan-
guage Modelling (MLM) are the two most popular
modelling tasks. To leverage the strengths of both
the NSP and MLM tasks, we propose a weighted

loss functions that combines the objective of both
tasks. The idea is to assign appropriate weights to
each task’s loss component based on their respec-
tive importance and impact on model performance.
It enables the model to capture both sentence-level
representation and word-level representation lead-
ing to improved language understanding and gener-
ation capabilities.

Let LNSP be the loss associated with the NSP
task and LMLM denotes the loss associated with
the MLM task. We introduce the weighting factor
α ∈ [0, 1] to balance the contributions of each loss
component. We denote the total loss with Lθ and
is defined below.

Lθ = αLMLM + (1− α)LNSP

We augment negation in BERT and RoBERTa lan-
guage models with the above defined regularization
and loss function. We describe the full training pro-
cess in Figure 1.

5 Experiments

5.1 Evaluation Dataset
Language Model Analysis (LAMA): We use the
LAMA probe (Petroni et al., 2019) in our experi-
ments, which has emerged as a valuable dataset
for evaluating factual knowledge. The evalua-
tion dataset is a collection of cloze-style questions
about real-world facts. The statements are facts
or common-sense knowledge generated from ei-
ther subject-relation-object triples (X, rel, Y) or
question-answer pairs. LAMA leverages the mask
set-up, where the model presented with a statement
is required to predict the MASK token with a single
token answer. The statements are generated by fol-
lowing a template for each relation, which include
place-holders X and Y. Here, X is the subject and Y
is replaced by the MASK token. For example, for
triples ⟨iOS, developed, Apple⟩, the statement
is iOS is developed by Apple. After masking,
the statement iOS is developed by [MASK]
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and is fed into the model to predict the MASK
token with the ground truth value being Apple.
LAMA is composed of various datasets. Google-
RE2 consists of three relations, namely "place-
of-birth", "date-of-birth" and "place-of-death". T-
REx (Elsahar et al., 2018) is a subset of wikipedia
data triples which consists of 41 relations. Con-
ceptNet consists of 16 relations from conceptNet
knowledge base (Li et al., 2016). Squad is a sub-
set of 305 context-insensitive questions manually
rephrased as cloze style questions (Rajpurkar et al.,
2016). We summarize the LAMA dataset in Ap-
pendix A.3.1.
Negated LAMA: Negated LAMA (Kassner and
Schütze, 2020) was created by manually inserting
the negation cues in the template of the LAMA
dataset.
Natural Language Inference Dataset: We eval-
uate the pre-trained models on RTE (Dagan
et al., 2005; Giampiccolo et al., 2007; Bentivogli
et al., 2009) , SNLI (Bowman et al., 2015) and
MNLI (Williams et al., 2018) datasets. As nega-
tion is under-represented (Table 16 in Appendix for
reference) in these datasets, we also consider the
negation dataset of these tasks from Hossain et al.
(2020).

5.2 Experiment Setups

We aim to investigate the effects of augmenting
negation in BERT and RoBERTa models of vari-
ous sizes. Prior research (Hosseini et al., 2021),
indicates that incorporating negation understand-
ing into models with different sizes can present
challenges and may yield varying results.

In our experiments, we employed state-of-the-
art transformers BERT and RoBERTa models of
varying sizes, namely BERT-base, BERT-large,
RoBERTa-base and RoBERTa-large.

By including models of different sizes, we aim to
study how the size of the underlying large language
models affects the performance and adaptability
of the negation augmentation technique. Note that
the training approach requires careful calibrations
as the objective is not only to augment the nega-
tion knowledge in these language models but also
to preserve the previous learnings on affirmation
sentences. We do the experiments with several set-
tings and conclude to train the pre-trained models
for 2 epochs with 5000 examples. We update top
5 layers of base models and top 10 layers of the

2
https://github.com/google-research-datasets/relation-extraction-corpus

large models. We choose a maximum length of
128 and use AdamW as an optimizer with a linear
rate scheduler. We apply EWC regularization, to
conserve the previous learning as well as constrain
the deviation from the original pre-trained weights.
In addition, we use the weighted loss to train the
models as explained in Section 4.3. We manually
experiment with different sets of hyperparameters
in the experiments and refer readers to Table 17 in
Appendix for the detailed final list of hyperparame-
ters. All the models are trained on two 24 GB P40
GPUs.

5.3 Results

Can the negated augmented transformers, outper-
form and solve the LAMA, negated-LAMA and
the text-hypothesis pairs including negation as com-
pared to the original models? Yes, they can.
Knowledge Base Completion: We evaluate the
knowledge base completion task on LAMA and
negated-LAMA datasets. In order to evaluate the
proposed negation augmentation, we first evaluate
the models on negated LAMA datasets. Follow-
ing Hosseini et al. (2021), we report precision at k
= 1 (higher is better) for original LAMA queries
and mean top error rate for negated LAMA queries
(lower is better). We report the results for the
negation cases for BERT-base and BERT-large in
Tables 3 and Table 5. NBERT and NRoBERTa
denotes the negated augmented language models
(NLMs). We make the following observations.

The augmented negation model for Bert-base
outperforms the original BERT model by a margin
of 8% and Hosseini et al. (2021) by a margin of 2%.
For BERT-large models, the method outperforms
the original BERT-large and the state-of-the-art
model by 8%. As there exist no previous works on
the augmentation of negation in RoBERTa models,
we compare only the original models in Table 7 and
Table 9. The proposed methodology outperforms
the original Roberta-base model by 4% and the
original Roberta-large model by 9%. Note that, the
previous approaches BERTNOT (Hosseini et al.,
2021) were not able to augment negation in larger
models. However, the proposed technique effec-
tively augments negation understanding in the base
as well as large models. We also report the re-
sults for the affirmation cases in BERT-base, BERT-
large, RoBERTa-base and RoBERTa-large in Ta-
bles 2, 4, 6 and 8. We find that augmenting negation
understanding in these models has a subtle effect on
affirmative LAMA queries and in most of the cases
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Model/LAMA SQuAD ConceptNet TREx GoogleRE
BERT-base 13.53 15.65 29.10 10.24
BERTNOT-base-KL[3] 13.64 15.64 29.28 10.27
BERTNOT-base [3] 13.97 15.49 29.25 10.31
NBERT-base 11.14 14.27 30.02 10.44

Table 2: Mean precision at k=1(p@1) for origi-
nal LAMA queries (higher is better) of proposed
NBERT-base model with baselines.

Model/NegLAMA SQuAD ConceptNet TREx GoogleRE
BERT-base 8.61 2.24 21.42 3.76
BERTNOT-KL[3] 4.97 1.19 21.77 3.99
BERTNOT [3] 2.10 0.73 11.86 1.10
NBERT-base 1.31 0.66 2.39 0.06

Table 3: Comparision of Mean top 1 error rate for
negated LAMA queries (lower is better) of proposed
NBERT-base model with baselines.

Model /LAMA SQuAD ConceptNet TREx GoogleRE
BERT-large 16.83 19.26 30.76 10.93
BERTNOT-large [3] 14.19 19.14 32.09 11.02
NBERT-large 17.04 18.33 32.37 10.33

Table 4: Mean precision at k=1(p@1) for origi-
nal LAMA queries (higher is better) of proposed
NBERT-large model with baselines.

Model /NegLAMA SQuAD ConceptNet TREx GoogleRE
BERT-large 7.95 1.67 22.97 4.13
BERTNOT-large [3] 8.28 1.87 23.49 4.22
NBERT-large 0.98 1.62 0.53 0.01

Table 5: Comparison of Mean top 1 error rate for
negated LAMA queries (lower is better) of proposed
NBERT-large model with baselines.

Model /LAMA SQuAD ConceptNet TREx GoogleRE
RoBERTa-base 11.51 5.16 16.44 4.38
NRoBERTa-base 9.86 4.78 19.74 3.51

Table 6: Mean precision at k=1(p@1) for origi-
nal LAMA queries (higher is better) of proposed
NRoBERTa-base model with baselines.

Model /NegLAMA SQuAD ConceptNet TREx GoogleRE
RoBERTa-base 8.55 2.04 17.75 1.20
NRoBERTa-base 4.27 1.49 9.19 0.02

Table 7: Comparison of Mean top 1 error rate for
negated LAMA queries (lower is better) of proposed
NRoBERTa-base model with baselines.

Model /LAMA SQuAD ConceptNet TREx GoogleRE
RoBERTa-large 18.09 6.91 21.17 3.94
NRoBERTa-large 16.77 7.28 24.03 3.37

Table 8: Mean precision at k=1(p@1) for origi-
nal LAMA queries (higher is better) of proposed
NRoBERTa-large model with baselines.

Model /NegLAMA SQuAD ConceptNet TREx GoogleRE
RoBERTa-large 11.51 2.14 21.03 1.49
NRoBERTa-base 0.0 0.04 0.01 0.0

Table 9: Comparison of Mean top 1 error rate for
negated LAMA queries (lower is better) of proposed
NRoBERTa-large model with baselines.

Sentence Top-3 Prediction by BERT Top-3 Prediction by NBERT
The capital of South Korea is [MASK]. Seoul, Tokyo, Korea Seoul, South, Ha

The capital of South Korea is not [MASK]. Seoul, Known, listed disputed, Olympics, merged
Charles Nodier died in [MASK] Paris, Rome, Office Paris, Rome, Office

Charles Nodier did not die in [MASK] Paris, Rome, Office Poverty, France, death

Table 10: Example showcasing the prediction of BERT-base and NBERT-base. The wrong prediction by BERT is
highlighted in bold.

Test Pairs
RTE SNLI MNLI

MB BERT-base NBERT-base MB BERT-base NBERT-base MB BERT-base NBERT-base
Original

dev 52.7 66.1 71.14 33.8 89.9 90.65 35.5 83.2 83.4
dev neg 51.2 63.4 56.1 54.4 89.4 90.78 50.2 83 82.8

New w/ neg.
Tneg-H 80.2 65.2 72.8 62 32.6 38 45.8 65.6 64.2
T-Hneg 91 39.2 84.6 41 58.8 60.6 47.6 62.4 65.6

Tneg-Hneg 65.6 68.4 56 69.8 41.8 35.8 47 63.6 61.4
All 78.9 57.6 71.14 57.6 44.4 44.8 46.8 63.9 63.8

Table 11: Comparison of state-of-the-art models trained with the original training split for each benchmark and
evaluated with - the original development split (dev), pairs in the original development split containing negation
(dev neg), and the new pairs containing negation (New w/neg). MB stands for the majority baseline, BERT-base is
the original base model and NBERT-base model is the proposed negated augmented BERT-base model.
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Model /LAMA SQuAD ConceptNet TREx GoogleRE
NBERT-base 11.14 14.27 30.02 10.44
Without EWC 11.47 14.00 28.54 9.42
L2 Regularization 11.47 13.93 26.93 9.01
MLM 10.16 13.99 28.12 8.49
MLM + NSP 12.13 13.78 28.55 9.43
Train data-size - 10000 12.78 14.79 27.97 7.07
Train datasize - 20000 10.16 14.77 28.95 7.38
All layers updates 11.47 13.93 26.93 9.01

Model /negLAMA SQuAD ConceptNet TREx GoogleRE
NBERT-base 1.31 0.66 2.39 0.06
Without EWC 0.98 0.52 1.96 0.09
L2 Regularization 1.31 0.66 1.83 0.06
MLM 0.98 0.42 1.30 0.03
MLM + NSP 1.97 0.79 2.78 0.09
Train data-size - 10000 3.94 1.35 12.37 0.20
Train datasize - 20000 4.60 1.68 14.95 0.17
All layers updates 1.31 0.66 1.83 0.06

Table 12: Ablation study signifying the impact of the regularizers namely EWC and L2, different loss functions,
data size and all layers update. The left table shows the results on original LAMA queries (Higher is better) and the
right table shows the result on negated LAMA queries (Lower is better).

performs at par with the original models. We ob-
serve that RoBERTa-large model is more adaptable
to negation understanding as compared to other
models. We also showcase a few examples of the
comparative results between BERT and NBERT
for the knowledge base completion task. As show-
cased in Table 10, the BERT model is not able
to understand negation and predicts wrong com-
pletion whereas the NBERT predicts the tokens
correctly.
Natural Language Inference: We also evaluate
the proposed models on RTE, MNLI and SNLI
tasks. We fine-tune the models on original devel-
opment splits and the new splits from Hossain
et al. (2020) which consists of negation for each
task. We use the same set of hyper-parameters
from Hossain et al. (2020) to fine-tune models
for BERT-base and RoBERTa-base. We summa-
rize the results for BERT-base models in compar-
ison to state-of-the-art models in Table 11. The
fine-tuned NBERT-base model achieves superior re-
sults on original dev splits on RTE and SNLI tasks
as compared to BERT-base and majority baseline.
For negative dev splits, we observe the NBERT-
base model outperforms the original models on
SNLI tasks and performs poorly on RTE and on-
par on MNLI datasets. For the new negation pairs,
the NBERT-base model outperforms the original
BERT-base-model on RTE and SNLI tasks and
almost at par on MNLI tasks. We also evaluate
BERT-large, RoBERTa-base and RoBERTa-large
models and illustrate the results in Appendix A.4.2.
We find similar observations for Roberta models.
The experiment shows that the augmentation of
negation understanding outperforms the original
models in most of the downstream tasks.

5.4 Ablation Study
To test the effectiveness of our approach, we ab-
late the individual cases with a fixed set of other
parameters. As shown in Table 12, our training
approach setting is effective as compared to other

variations. We make the following observation. In
individual cases such as without using EWC reg-
ularization, L2 regularization, only MLM, equal
weight for MLM and NSP (same as original BERT)
and updating all the layers, we find that the ac-
curacy drops for LAMA queries. Whereas, using
greater data sizes namely 10000 and 15000 leads to
an increase in error for negated LAMA queries. It
is intuitive, as a larger number of negation samples
may bias the models towards negation and lead to
forgetting of affirmation understanding. The study
signifies the importance of optimization to mini-
mize the deviation from the original model as well
as augment negation understanding in the model.

6 Conclusion

Negation is ubiquitous in a language and plays a
crucial aspect in language understanding. We in-
troduce a negation aware technique that addresses
the negation bias of the existing LMs. We modified
the training data by augmenting it with explicitly
negation data and trained the model with EWC reg-
ularization with weighted loss. By incorporating,
explicit negation cues during training, the proposed
approach enables the model to better capture the
subtle nuances of negation, thus resulting in im-
proved contextual understanding and more accu-
rate language completion. The results demonstrate
that NLMs significantly improve the LMs perfor-
mance in understanding and representing negated
contexts, leading to more accurate predictions in
knowledge completion and NLI tasks.

In the future, we plan to augment negation in
cross-lingual and generative models. Augment-
ing negation in these models involves several
challenges such as different syntactic and lexical
cues, inherent difficulty of aligning and training
paradigms.
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Limitations

While our approach yields promising results in
improving negation understanding and mitigating
modelling bias, we acknowledge a limitation in
the case of tiny models. The tiny models are low-
capacity models with limited parameters, designed
to be lightweight and efficient in terms of computa-
tional nuanced understanding of a language model.
Due to the constrained architecture, these mod-
els struggle to effectively capture and generalize
the negation augmented tiny model on LAMA and
negated LAMA dataset summarized in Table 23
and Table 24. We find that augmenting negation
not yields substantial improvements in their perfor-
mance.

Also, we limit our work to encoder-based mod-
els. However, there requires further exploration to
understand the embedding of negation knowledge
in GPT-based generative models. By addressing
these limitations, future work pave the way for a
more comprehensive and effective understanding
of negation in language models.

Ethics Statement

The research work complies with the EMNLP
ethics policy and does not raise any ethical con-
cerns.
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A Appendix

We provide the details on tense patterns and the cor-
responding actions to convert affirmative to nega-
tive sentences in Section A.1. Section A.2 gives the
details of hyperparameters to train the model and to
fine-tune the model on NLI tasks. We give more de-
tails on the evaluation dataset for knowledge com-
pletion and NLI tasks in Section A.3. Section A.4
provides more examples from knowledge base com-
pletion tasks and benchmarks on NLI tasks for
BERT-large, RoBERTa-base and RoBERTa-large.

A.1 Tense Patterns

We summarize the pre-defined tense patterns for
each tense in Table 14. We also give operations
for each tense type to convert an affirmative to a
negative sentence along with some examples. In
Table 13, we provide the list of special words and
their corresponding negated form. We replace the
special words with the negated form to convert a
sentence to its negated form.

Tokens Negated Form Tokens Negated Form
Ever Never Anybody Nobody

Anyone Noone Anything Nothing
Anywhere Nowhere Someone Noone
Somebody Nobody Someone None

Always Never Either Neither

Table 13: List of special tokens and their negated form.
The tokens are replaced by the negated form to convert
the affirmative sentence to negative sentence.

A.2 Reproducibility

A.2.1 Hyper-parameters for augmenting
negation

Table 17 lists all the hyper-parameters used in our
fine-tunings approach for different models and size.

A.2.2 Hyper-parameters for NLI tasks
evaluation

We list the hyperparameters to fine tune the models
on NLI tasks in Table 18.

A.3 Evaluation Dataset
A.3.1 LAMA dataset
We summarize the LAMA dataset in Table 15.
LAMA consists of datasets from various sources
namely Google-RE, TREx, ConceptNet and Squad.

A.3.2 Natural Language Inference dataset
We provide below summary of percentage of nega-
tion in NLI benchmarks (Hossain et al., 2020).

A.4 Additional Results
We provide some more examples of knowledge-
base completion tasks for the BERT-large model.
We also summarize the evaluation for NLI tasks on
BERT-large, RoBERTa-base and RoBERTa-large
models. Note that, for the RoBERTa-base model,
we compare our results with state-of-the-art models.
In the case of BERT-large and RoBERTa-large, we
compare the negated augmented models with the
original models.

A.4.1 More Examples - Knowledge Base
Completion tasks

We provide below some more examples for the
BERT-large model in Table 19. Observe that the
original BERT-large model predicts the same token
for affirmative and negative sentences. The wrong
predictions are highlighted in bold. The negated
augmented NBERT-large model predicts the cor-
rect tokens.

A.4.2 Benchmarks models on NLI tasks
We also benchmark the negation augmented trained
models namely RoBERTa-base, NBERT-base and
RoBERTa-large on RTE, SNLI and MNLI tasks on
original splits as well as negation splits. We find
that the proposed NBERT-large model outperforms
the original BERT-large in all three tasks on orig-
inal and negation splits and is shown in Table 20.
For RoBERTa-base and large model, the negated
augmented model performs as par as the original
models and is shown in Table 21 and Table 22.

A.4.3 Benchmark of BERT-tiny on LAMA
and neg-LAMA datasets.

We also tried out the methodology to augment nega-
tion in BERT-tiny. We find that augmenting nega-
tion in the tiny model is challenging and the mod-
els augmented with negation perform poorly on
LAMA as well as negated-LAMA queries. We
summarize the results in Table 23 and Table 24
below. The work requires further investigations.
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Sentence Type Pattern Operation Pattern Match Example

Modular Verb \w+/MD, \w+/MD + \w+/PRP Add negation cues "not" after modular verb wou;d/MD
In the late 1950s he would also serve briefly on
the board of directors of another major , MGM.

Non-3rd person Present Tense \w+/VBP Add negation cue "do not" before verb. use/VBP
They use cameras , camcorders and audio recorders
to conduct overt surveillance of the public.

3rd person Present Tense \w+/VBZ Add negation cue "does not" after verb. links/VBZ
The route links Interstate 10 midway between the
Coachella Valley and Blythe on the California

Past Tense \w+/VBD Add negation cue "not" after verb. was/VBD
Built in 1840 , it was part of Little Rock ’s
first military installation

Past Participle \w+/VBN Add negation cue "did not" before lemmatized verb. qualified/VBN
Through their performance in the Twenty20 Cup , the
qualified for the Champions League Twenty20.

Verb base form \w+/VB Add negation cue "not" before verb. use/VB
Several companies , mostly retailers , use the company ’s
services to showcase products

Proper Singular, Plural \w+/NN[P]? + /w+/NNS Add negation cue "does not" after verb. production/NN stars/NNS
The Rainforest Films production stars Idris Elba ,
Beyoncé , and Ali Larter

Table 14: Examples of pre-defined tense patterns for various sentence type. The operation signifies the different
actions based on sentence type to convert a affirmative to negative sentence. The Pattern Match column indicates
the matched pattern from the example column.

Corpus Relation Statistics
Facts Relations

Google-RE

birth-place 2937 1
birth-date 1825 1

death-place 765 1
Total 5527 3

T-REx

1-1 937 2
N-1 20006 23
N-M 13096 16
Total 34039 41

ConceptNet Total 2996 16
Squad Total 305 -

Table 15: Statistics of LAMA dataset.

NLI Benchmarks #Sentences % w/ negation
RTE 16389 7.16
SNLI 1138598 1.19
MNLI 883436 22.63

Table 16: The proportion of sentences contain-
ing negation is lower than English language cor-
pora(approximately 25%) in existing natural lan-
guage inference benchmarks. This is particularly
true for the RTE and SNLI datasets.

Parameters BERT-base-cased BERT-large-cased RoBERTa-base-cased RoBERTa-large-cased Bert-tiny
Batch Size 64 64 64 64 64

Epoch 2 2 2 2 2
Max Tokens 256 256 256 256 256

#Training Samples 5000 5000 5000 5000 5000
#EWC Samples 30000 30000 30000 30000 30000

EWC Importance 1e-16 1e-16 1e-16 1e-16 1e-16
# Layer Freeze 5 10 5 10 1
Learning Rate 1e-4 5e-5 3e-4 1e-5 5e-5
Adam Epsilon 1e-8 1e-8 1e-8 1e-8 1e-8

Clip Grad Norm 1.0 1.0 1.0 1.0 1.0
α 0.8 0.8 - - 0.8

Table 17: Hyperparameters for fine-tuning LMs to augment negation understanding.

Hyperparameters RTE SNLI MNLI
BERT-base/
BERT–large

RoBERTa-base/
RoBERTa-large

BERT-base/
BERT-large

RoBERTa-base/
RoBERTa-large

BERT-base/
BERT-large

RoBERTa-base/
RoBERTa-large

Batch size 8 16 32 32 32 32
Learning Rate 2e-5 2e-5 1e-5 1e-5 2e-5 2e-5

Epochs 50 10 3 3 3 3
Weight decay 0.0 0.0 0.1 0.1 0.0 0.0

Table 18: Hyperparameters for fine-tuning models on RTE, SNLI, and MNLI tasks.
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Sentence Top-3 prediction by BERT Top-3 prediction by NBERT
A teacher is most likely teaching at a [MASK]. school, university, college school, university, college
A teacher is not most likely teaching at a [MASK]. school, university, college age, school, funeral
Marcel Oopa died in the city of [MASK]. Paris, Warsaw, Helsinki Paris, Liège, Ljubljana
Marcel Oopa did not die in the city of [MASK]. Paris, Warsaw, Helsinki age, friendly, the
Bible is a [MASK] text. religious, sacred, complete religious, sacred, Christian
Bible is not a [MASK] text. religious, sacred, complete new, friendly, novel

Table 19: The prediction of BERT-large and NBERT-large, wrong predictions are highlighted in bold.

Test pairs
RTE SNLI MNLI

BERT-large NBERT-large BERT-large NBERT-large BERT-large NBERT-large
Original

dev 58.27 72.26 52.4 91.69 66.87 65.4
dev neg 46.34 51.21 60.2 91.24 55 70

New w/ neg.
Tneg-H 65.6 78.4 48.6 47.6 64.8 65.4
T-Hneg 40.4 80.4 62.8 60.6 70 70

Tneg-Hneg 68.8 64 45.8 42.8 65.8 64.8
All 55.2 74.2 52.4 50.3 66.9 66.7

Table 20: Comparison of BERT-large models trained with the original training split for each benchmark and
evaluated with - the original development split (dev), pairs in the original development split containing negation
(dev neg), and the new pairs containing negation (New w/neg).

Test Pairs
RTE SNLI MNLI

MB RoBERTa-base NRoBERTa-base MB RoBERTa-base NRoBERTa-base MB RoBERTa-base NRoBERTa-base
Original

dev 52.7 75.8 73.58 33.8 91.6 91 35.5 87.9 88
dev neg 51.2 78.1 79.1 54.4 91.7 91.3 50.2 88 87.2

New w/ neg.
Tneg-H 80.2 70.8 80 62 46.4 42.8 45.8 66.2 65.4
T-Hneg 91 51.4 91 41 63.6 65.4 47.6 70.4 69.2

Tneg-Hneg 65.6 65.4 66.2 69.8 45.8 44.2 47 63.6 64.2
All 78.9 62.5 79.0 57.6 51.9 50.8 46.8 66.7 66.27

Table 21: Comparison of RoBERTa-base models trained with the original training split for each benchmark and
evaluated with - the original development split (dev), pairs in the original development split containing negation
(dev neg), and the new pairs containing negation (New w/neg).

Test Pairs
RTE SNLI MNLI

RoBERTa-large NRoBERTa-large RoBERTa-large NRoBERTa-large RoBERTa-large NRoBERTa-large
Original

dev 85.8 88.4 63.8 91.5 55.5 89
dev neg 73.17 80.49 64.4 92.3 60.2 89.2

New w/ neg.
Tneg-H 88 93.4 45.4 50.4 67.8 67.4
T-Hneg 87.6 90.6 66 70.4 73.6 74.2

Tneg-Hneg 81.8 81.2 44.2 48.8 67 67.2
All 85.8 88.4 51.9 56.5 69.5 69.6

Table 22: Comparison of RoBERTa-large models trained with the original training split for each benchmark and
evaluated with - the original development split (dev), pairs in the original development split containing negation
(dev neg), and the new pairs containing negation (New w/neg).

Model /LAMA SQuAD ConceptNet TREx GoogleRE
BERT-tiny 1.96 2.58 9.84 3.91
NBERT-tiny 1.38 2.04 1.25 0.0

Table 23: Mean precision at k=1(p@1) for original
LAMA queries (higher is better) of proposed BERT-
tiny model with baselines.

Model /NegLAMA SQuAD ConceptNet TREx GoogleRE
BERT-tiny 1.97 0.93 8.58 2.00
NBERT-tiny 1.38 0.30 0.94 0.0

Table 24: Comparison of Mean top 1 error rate for
negated LAMA queries (lower is better) of proposed
BERT-tiny model with baselines.
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