
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 13246–13253
December 6-10, 2023 ©2023 Association for Computational Linguistics

IMU2CLIP: Language-grounded Motion Sensor Translation
with Multimodal Contrastive Learning

Seungwhan Moon∗ Andrea Madotto∗ Zhaojiang Lin Aparajita Saraf
Amy Bearman Babak Damavandi

Meta Reality Labs & FAIR, Meta

Abstract

We present IMU2CLIP, a novel pre-training
approach to align Inertial Measurement Unit
(IMU) motion sensor recordings with text and
video, by projecting them into the joint repre-
sentation space of Contrastive Language-Image
Pre-training (CLIP). The proposed approach al-
lows IMU2CLIP to translate human motions
(as measured by IMU sensors) into their cor-
responding textual descriptions and videos –
while preserving the transitivity across these
modalities. We introduce several new IMU-
based Wearable AI applications such as motion-
based media search, or an LM-based multi-
modal reasoning with motion sensor data – all
using text as the grounding platform. In addi-
tion, we show that IMU2CLIP significantly
improves downstream performances when fine-
tuned for each application, demonstrating its
universal usage as a new pre-trained resource.
Our code and models will be released publicly.

1 Introduction

With the growing popularity of smart glasses or
new-generation wearable devices, first-person or
egocentric videos have recently become prevalent
(Grauman et al., 2022; Damen et al., 2021; Lv et al.,
2022). These egocentric videos are often accom-
panied by the parallel head-mounted IMU sensor
readings, which record devices’ linear and rota-
tional movements and accelerations.

Given its low power consumption level, IMU is
regarded as an important modality for powering var-
ious always-on on-device models that require un-
derstanding of device wearer’s movement patterns
(e.g. exercise / activity recognition for health appli-
cations) – which would not work with more battery-
consuming camera sensors. The previous works
on IMU modeling typically focus on the purpose-
built datasets with manual annotations (Jiang et al.,
2022; Chen et al., 2021), which are limited in their
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Figure 1: Illustration of IMU2CLIP (I2C): (a) The
model aligns the parallel Video↔IMU↔Text data in
the joint space. Once trained, IMU2CLIP is used as a
retriever for both (b) IMU and (c) videos, or as a text-
based zeroshot classifier for downstream applications.

scale. Consequently, the utilization of IMU mod-
els in real-world scenarios has been confined to a
relatively small number of use cases.

On the contrary, for the modalities that are
widely studied (e.g. text, video), there are vast
large-scale resources such as BERT (Devlin et al.,
2018) and GPT (Radford et al., 2018) for text, or
CLIP4Clip (Luo et al., 2021) for videos. These
powerful pre-trained resources have driven the de-
velopment of many application-oriented models,
showing significant improvements when fine-tuned
for each respective task (Dodge et al., 2020). To our
knowledge, however, the study on the equivalent
resources for IMU signals has been lacking.

Inspired by the recent works studied for other
modalities, we present IMU2CLIP, a new ap-
proach to pre-train an IMU encoder by aligning
the parallel Video↔IMU↔Text data. Specifically,
we propose to use CLIP (Radford et al., 2021a),
which contains the video and language models pre-
trained on the large image-text parallel data. The
IMU encoder thus learns semantic representations
of various scenes transferred from other modalities.

Note that anchoring onto the joint text-vision
space essentially allows for translation across these
modalities. This new model capability opens up
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novel applications in the real-world Wearable AI,
such as IMU-based media search and LM-based
multimodal reasoning (Fig. 1) – serving as efficient
low-power alternatives to a more power-consuming
approach of video-based media retrieval, which
can operate under the strict on-device hardware
constraints of wearable devices. In our evaluation,
we provide an in-depth analysis on these newly
proposed applications, as well as its efficacy on the
downstream applications when fine-tuned.

2 Related Work

Contrastive Learning is as an efficient self-
supervised framework applied across multiple do-
mains, which learns similar/dissimilar represen-
tations from paired data. For instance, SimCLR
(Chen et al., 2020) is a unimodal application of con-
trastive learning in the data augmentation setting,
which proposes to learn a vision encoder given a set
of perturbed images. As an example in multimodal
settings, Contrastive Language–Image Pre-training
(CLIP) (Radford et al., 2021a) learns visual rep-
resentations from natural language supervision us-
ing image and text pairs, achieving competitive
results in e.g. zero-shot image classification, im-
age retrieval via text, and image/caption generation.
Similarly, WAV2CLIP (Wu et al., 2022) proposes
to learn audio representation by distilling it from
CLIP. We extend this line of work to a unique mul-
timodal setting that utilizes IMU signals, which is
specific to a new generation of devices (such as
smart glasses) that are equipped with such sensors.
Pre-training Resources: There are numerous pre-
trained resources for well-studied modalities such
as text or image. Popular language models (LM)
include BERT (Devlin et al., 2018), GPT-2 (Rad-
ford et al., 2019), and GPT-3(Floridi and Chiriatti,
2020), which typically use self-superivsion tech-
niques such as next-word predictions or masked
token predictions, thus not requiring any explicit
task labels. Studies report that these pre-trained re-
sources achieve competitive zero-shot performance
(Radford et al., 2021a), and when fine-tuned, of-
ten outperform fully supervised models on several
downstream tasks (Dodge et al., 2020).

To our knowledge, the equivalent resource for
IMU is not made publicly available. We perform
large-scale pre-training for the unique wearble sen-
sor signals dataset, and show that such pre-training
significantly improves downstream performances.
Egocentric Datasets: We focus on egocentric
(first-person) datasets, for understanding of users’

activities from head-mounted devices. These
include Ego4D (Grauman et al., 2022), Epic-
Kitchens (Damen et al., 2021), and Aria (Lv et al.,
2022). Using these datasets, we propose various
sub-tasks that can effectively evaluate diverse ca-
pabilities of IMU2CLIP, and demonstrate the fea-
sibility of future applications. In addition, we im-
plement a universal multimodal dataloader to allow
for easy cross-modality and cross-domain studies.
IMU Modeling: IMU signals are used in various
motion recognition tasks, such as pose estimation
and walking speed estimation (Zihajehzadeh and
Park, 2017). Various architectures (Kim et al.,
2021; Ashry et al., 2020) have been explored for
modeling IMU in downstream tasks, including
Transformer-CNN based IMU models (Jiang et al.,
2022). Our work proposes a new IMU model ar-
chitecture, and conducts ablation studies over other
models above. Different from prior works that train
IMU models for specific tasks, however, our work
focuses on learning multimodal IMU representa-
tions by aligning IMU with text and image, which
can enable a wider set of downstream applications.

3 Methods
In a nutshell, we train an IMU encoder such that the
IMU representation of a given clip resembles the
representation of its corresponding textual descrip-
tions (narrations), or corresponding video frames.
Fig. 5 illustrates the overall approach.
Cross-modal Contrastive Learning. We consider
a batch of B ground-truth IMU↔Video↔Text
parallel windows: {(i1,v1, t1), ..., (iB,vB, tB)},
where the embeddings of each modality lies on
the unit hypersphere SD. Since they are unit-
normalized, the similarity can be calculated as
their inner products: sim(ii,vj) = ⟨ii,vj⟩ and
sim(ii, tj) = ⟨ii, tj⟩. We then train three fla-
vors of IMU2CLIP: (a) aligning IMU↔Text, (b)
IMU↔Video, and (c) IMU↔Video↔Text. Specif-
ically, we project the IMU representations into the
joint CLIP space (Radford et al., 2021a) to lever-
age the visual and textual knowledge already en-
coded in CLIP. Similar to (Luo et al., 2021; Rad-
ford et al., 2021a), we propose to minimize the
symmetric cross-modal contrastive loss (ablations
on loss choices in Appendix). For the IMU↔Text
alignment, we use the sum of IMU-to-Text (i2t)
and Text-to-IMU (t2i) cross-entropy losses:

Li2t = − 1

B

B∑

i=1

log
exp(sim(ii, ti))

1/γ

∑B
k=1 exp(sim(ii, tk))1/γ
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Dataset Statistics Tra. Val. Tst.

Ego4D

# Media files 1444 161 688
Total Media Durations 540h 60h 265h
# IMU↔Text/Video Pairs 528K 68K 266K
# Windows for Labels 1552 760 241

Aria

# Media files 747 259 277
Total Media Durations 138h 43h 51h
# IMU↔Video Pairs 496K 157K 184K
# Windows for Labels 25K 138K 162K

Table 1: Dataset Statistics for Ego4D and Aria.

where Li↔t = 1/2 (Li2t + Lt2i), with Lt2i de-
fined symmetrically. The loss for IMU↔Video
alignment (Li↔v) can be defined similarly, and
consequently Li↔v↔t = Li↔v + Li↔t.
IMU Encoder Architectures. We propose an ar-
chitecture with a stack of 1D-CNNs and a RNN,
which performed the best in our ablation studies
(See Appendix. A.2). First, we perform Group-
Norm to normalize the Accelerometer (3D) and the
Gyroscope (3D) signals independently. We then
add a stack of N = 3 1D-CNNs, a Max Pooling
layer (kernel size 5), and another GroupNorm to
normalize the output features. We use GRU to
combine the CNN outputs as final representations.

4 Experiments

Dataset. We use Ego4D (Grauman et al., 2022)
and Aria (Lv et al., 2022) as the main datasets for
the experiments below, both of which feature large-
scale parallel video and IMU signals. For Ego4D,
a subset of the clips are also annotated with text
narrations. We split the data into train, validation,
and test sets (split by video IDs). The statistics of
the datasets are provided in Table 1.

4.1 Tasks

Note that the proposed pre-training approach en-
forces the alignment of the IMU, text, and video
representations, which allows for new and unique
cross-modal applications. We propose the fol-
lowing real-world downstream applications as the
novel tasks to evaluate the IMU encoders.
Task 1. Media Search via Text→IMU Retrieval,
where the goal is to retrieve a window of IMU sig-
nals given free-form textual queries. Once IMU
signals are retrieved, we can also retrieve their cor-
responding videos, thus allowing for a new and
power-efficient way of performing media retrieval
or online action detection. We evaluate on the held-
out test set (Recall@k and Mean Reciprocal Rank
(MRR)), using the text narrations as queries and
the IMU signals as the retrieval pool.

Figure 2: Media Search via Text→IMU Retrieval.
Given a free-form text query (e.g. “jumping"), (Left):
IMU2CLIP’s predictions of the semantically closest
IMU signals from Ego4D (top-2). (Right): correspond-
ing gold-parallel videos (as a reference). Retrieved re-
sults match the semantics of input queries.

Task 2. IMU-based Activity Recognition, where
the goal is to predict a discrete motion-based ac-
tivity label (e.g. hiking, running, walking, biking)
given a window of IMU signals, measured via F1.
Task 3. Question Answering on Sensor Logs,
where the goal is to respond to users’ memory re-
call queries with natural language, based on the
logs from ambient sensors (e.g. IMU, audio), as an
exploratory task. We leave the quantitative evalua-
tion of this task as future work.

4.2 Results

Table 2 shows the IMU↔Text and IMU↔Video
retrieval performance on the Ego4D test set, of
IMU2CLIP trained via different combinations of
modalities. Results on Aria are in Appendix A.3.
IMU-based media search with textual queries:
The Text→IMU column in Table 2 shows perfor-
mances on Task 1. Note that the CLIP embed-
dings already exhibit the Video↔Text alignment,
and thus IMU2CLIP trained using IMU↔Video
achieves a competitive zeroshot performance for
IMU↔Text retrieval as well. When text narra-
tions are used for pre-training, the model learns
IMU representations that are better aligned with
language, and thus achieves an even higher recall
performance. See Figure 2 for visualizations1.

To help contextualize the performances in Table
2, we also show (as a reference) the Text↔Video
retrieval performance of the CLIP video en-
coder. The narrow margins (e.g. MRR=0.143 for
Text→IMU vs. MRR=0.168 for Text→Video)
show that the IMU encoder could serve as a power-
efficient alternative for a video encoder in many
applications, where the memory and power usage
is restricted (e.g. on wearable devices).
Fine-tuned IMU2CLIP significantly outper-

1For better readability, we also provide the animated GIF
visualizations in the supplementary materials.
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Train Modalities IMU → Text Text → IMU IMU → Video

IMU Video Text R@1 R@10 R@50 MRR R@1 R@10 R@50 MRR R@1 R@10 R@50 MRR

✓ ✓ 4.86 18.75 48.26 0.104 4.17 15.62 43.06 0.084 9.06 43.13 78.75 0.2011
✓ ✓ 5.21 25.00 60.42 0.123 7.29 28.82 60.07 0.143 3.75 25.94 62.81 0.105
✓ ✓ ✓ 4.52 22.91 56.60 0.118 5.90 22.92 56.60 0.139 8.75 40.63 73.44 0.183

(Video → Text) (Text → Video)
-

(CLIP) ✓ ✓ 6.94 32.29 64.24 0.150 8.33 33.68 65.28 0.168

Table 2: Text↔IMU and Video↔IMU retrieval performances of the pre-trained IMU2CLIP models on Ego4D,
with different modalities used for training. The last row shows the video retrieval performance of OpenAI’s CLIP
model on the same test set.

Models Ego4D Aria

F1 Acc. F1 Acc.

Vanilla IMU Encoder 23.23 49.92 56.35 76.11

IMU2CLIP
(i ↔ v)

+ Zeroshot 19.39 23.08 18.46 21.52
+ Probing 40.55 61.46 62.52 83.54

+ Fine tuning 43.07 65.87 61.77 82.31

IMU2CLIP
(i ↔ t)

+ Zeroshot 31.89 36.38
N/A+ Probing 45.12 58.01

+ Fine tuning 45.15 63.14

Table 3: IMU-based activity recognition on Ego4D and
Aria datasets, comparing the randomly initialized model
(vanilla) and the pre-trained IMU2CLIP models, with
IMU↔Video, and IMU↔Text. Bold denotes the best
performance for each metric: F1 and Accuracy (Acc).

forms the vanilla model with the same archi-
tecture trained from scratch, on downstream
tasks. Table 3 shows the activity recognition re-
sults on Ego4D and Aria. For all experiments, we
use the same IMU architecture (Stacked CNN).
For zeroshot experiments, we encode the surface
names of each activity (e.g. hiking) with the CLIP
text encoder, and use the nearest-neighbor classi-
fier on the projected IMU embeddings (thus with-
out any supervision labels). Probing adds a linear
layer on top of the IMU encoder while keeping its
parameters frozen, and for fine-tuning we allow
all parameters to be trainable. The consistent im-
provements in the fine-tuning performances (e.g.
∼16 points absolute improvement in accuracy for
Ego4D, comparing the randomly initialized model
vs. fine-tuned model) show that IMU2CLIP can
learn high quality representations for IMU signals.

Comparing the pre-trained models trained via
various combinations of modalities again shows
that IMU2CLIP preserves the transitivity among
modalities (video ↔ text ↔ IMU).
Qualitative Analysis: Multimodal Reasoning
with Ambient Sensors. Further exploring the ben-
efit of IMU2CLIP that translates sensor signals

Figure 3: Demonstration of LM-based multimodal rea-
soning via IMU2CLIP, using two ambient sensors:
IMU and audio. Given the sensor logs (translated in text)
and the question, LM generates responses grounded on
the multimodal context (More examples in the Suppl.).

into text, we present the following demo (Figure 3).
Specifically, we run IMU2CLIP (and an equiva-
lent model trained for audio) as zeroshot tagging
models on Ego4D, to predict textual descriptions of
the ambient sensor readings (IMU+Audio). Using
text as a grounding platform, we condition a large
LM (GPT-3 (Floridi and Chiriatti, 2020)) on the
sensor logs to answer summarization questions (e.g.
“What can you tell me about the user activity?”)
or memory recall prompts (e.g. “When did I start
biking?”) The LM then generates a response via
causal language inference, demonstrating zeroshot
reasoning capabilities. Unlike the similar approach
by (Zeng et al., 2022), the proposed approach does
not rely on video signals at all – which incur much
higher power consumption – thus operating better
under real-world on-device constraints.

5 Conclusions

With the growing popularity of wearable devices
of diverse form factors (e.g. smart glasses), it is im-
perative to study ambient motion sensors such as
IMU. We thus make the following contributions:
1) We propose a large-scale pre-training method for
IMU↔Text, and release the pre-trained multimodal
encoders for future research. (2) We provide an in-
depth empirical analysis for both upstream and fine-
tuning tasks. (3) Most importantly, we demonstrate
the feasibility of many multimodal NLP applica-
tions for ambient sensors via their translation to
text, which can spur future research.
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6 Limitations

We discuss the current limitations of our work:
(1) While we used the two of the largest egocen-

tric multimodal datasets (Ego4d (Grauman et al.,
2022) and Aria (Lv et al., 2022)) that are publicly
available, the transferability of this work to an un-
seen data (e.g. from other publicly available wear-
able devices, or of different activity domains) re-
mains unanswered. We do note, however, that the
hardware specifications of most IMU sensors and
video sensors are standardized across the industry,
hence posing limited risks.

(2) Our demonstration of the multimodal rea-
soning model (Figure 3) is currently at a qualita-
tive level, due to the lack of a benchmark dataset
on this newly proposed task. While our analysis
shows promising results, a quantitative evaluation
is required to further determine the feasibility of
this task and to track progress in the field. How-
ever, we emphasize that the purpose of this work
is to explore potential applications that the pro-
posed approach brings forth, and to inspire future
research in a fast-growing application domain that
uses smart glasses.

7 Ethics and Broader Impacts

We hereby acknowledge that all of the co-authors
of this work are aware of the provided ACL Code
of Ethics and honor the code of conduct. We state
the ethical considerations and the potential impact
to the community as follows.

Datasets. The datasets we use to train our model
(Ego4D, Aria) are the commissioned data that are
released publicly. Both of the datasets note that the
consent forms and/or release forms are collected
for all videos, and that the majority of videos and
data are de-identified pre-release.

In our code release, we provide the pre-
processing scripts for the 3rd party datasets above
(along with the links to download these datasets).
We note that the pre-processed data (ready for train-
ing) would not contain any of the meta information
that is not needed for the purpose of this work –
such as date or location of the recordings.

Applications. The models we train and the tasks
that we propose are inherently made for on-device
use cases – where the model operates on the data
that are already publicly released (such as the pub-
lic datasets above) or with an explicit consent, thus
posing minimal risks.

Techniques. We train the proposed IMU2CLIP
model leveraging other large-scale pretrained lan-
guage and multimodal models (e.g. CLIP (Radford
et al., 2021a), OPT (Zhang et al., 2022), GPT-3
(Floridi and Chiriatti, 2020)), and thus any bias or
contextual information from these models might
be carried over to our model as well (de Vassi-
mon Manela et al., 2021). Given the nature of the
datasets we use, however, we do not anticipate that
our models would produce any harmful outputs, es-
pecially towards vulnerable populations, after the
models are trained on our tasks.
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A Additional Experiments

A.1 Ablation Studies over Loss Functions

We survey the performance of the modality align-
ment via different loss functions: InfoNCE con-
trastive loss (used throughout our main experi-
ments), Triplet loss with random sampling for neg-
ative pairs, and Mean-Squared Error loss (MSE).

A.2 Ablation Studies on IMU Architecture

We survey the performance of IMU encoders with
varying architectures (see Section 2 for the list of
IMU baselines in the literature), and use the best
architecture throughout the rest of the experiments.

As seen in Table 5, our proposed 1D-CNN-RNN
stacked model outperforms other baselines in the
main target task (IMU to Text retrieval). See Sec-
tion 3 for the detailed description of the model.

A.3 IMU↔Video Retrieval

We propose an auxiliary task of Video Retrieval
based on IMU, specifically targeted for Aria data,
which does not have text narrations annotated. The
goal for the task is to retrieve videos based on IMU
signals, allowing for an intuitive way of analyzing
motion signals data. We measure the performance
on the held-out test set, using the IMU signals as
queries and the videos as the retrieval target.
We can search for videos, given IMU record-
ings. Table 6 shows the performances on the
IMU↔Video retrieval task on Ego4D and Aria
datasets. We observe higher recall performances in
general for both datasets, showing that the IMU sig-
nals and videos have a higher compatibility. When
the model is trained on all three modalities, we ob-
serve competitive results across all tasks, while the
best performances are from the bi-modal models
aligned with each respective task.

Fig. 4 shows illustrative examples, which demon-
strate that the videos retrieved based on IMU are
visually and semantically similar to the gold video.

B Implementation Details

B.1 Training Details

Model Freezing. To preserve the text-vision align-
ment that CLIP already exhibits, we freeze the
parameters of the image and text CLIP encoders
during training. See Fig. 5 for an illustration.
Memory Constraints. To expedite the training,

Loss Function MRR R50

InfoNCE loss 0.123 60.42
Triplet Loss 0.118 59.53
MSE Loss 0.101 48.55

Table 4: Ablation studies with varying loss functions
on the IMU→Text Retrieval task. Model: Stacked 1D-
CNN-RNN. Bold denotes the best performance.

IMU Encoder Architecture MRR R50

Stacked 1D-CNN-RNN (proposed) 0.123 60.42
1xCNN+Attention+RNN 0.112 57.18

Patch Transformer 0.109 54.15
Patch Bi-RNN 0.112 56.21

Patch RNN 0.104 50.83

Table 5: Ablation studies for varying IMU encoder archi-
tectures on the IMU→Text Retrieval task. Bold denotes
the best performance.

Figure 4: Video Retrieval based on IMU (IMU→Video).
(Left): IMU signals and (Top): their corresponding
ground-truth video. (Bottom): IMU2CLIP ’s model
prediction of their corresponding video from the Ego4D
test set (top-1), given the IMU signals. It can be seen
that the videos retrieved based on IMU are visually and
semantically similar to the gold video.

we pre-process each media to have equal-sized par-
allel windows (IMU ↔ Video ↔ Text). The data
module retrieves the parallel data of a requested
window size at a given timestamp, and caches them
for faster training. In addition, to accommodate
the memory constraints, we pool the negative sam-
ples within the same batch (randomly shuffled),
reducing the load on each GPU.

B.2 Hyperparameters

Table 7a and 7b report the hyper-parameters used
in this work for model training and their search
bounds, respectively. We optimize the parameters
with Adagrad (Duchi et al., 2011) with epsilon
10−8, and decay 0.1.
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Train Modalities IMU → Video Video → IMU

Ego4D

IMU Video Text R@1 R@10 R@50 MRR R@1 R@10 R@50 MRR

✓ ✓ 9.06 43.13 78.75 0.2011 12.19 45.31 80.00 0.226
✓ ✓ 3.75 25.94 62.81 0.105 3.75 24.06 56.88 0.098
✓ ✓ ✓ 8.75 40.63 73.44 0.183 11.56 42.19 75.94 0.213

Aria

✓ ✓ 7.58 40.62 83.92 0.181 7.58 45.08 83.92 0.194

Table 6: Video↔IMU retrieval performances of the pre-trained IMU2CLIP models on Ego4D (top) and Aria
(bottom), with different modalities used for training. The last row shows the video retrieval performance of OpenAI’s
CLIP model on the same test set.

Figure 5: Illustration of the proposed multimodal contrastive learning for IMU2CLIP. CLIP (Radford et al., 2021b)
is used to align IMU↔Video (left), and IMU↔Text (right). : the parameters of the encoder are frozen during
training.

Models Batch Size Initial LR # Epochs Gradient Accu- # Paramsmulation Steps

Stacked 1D-CNN-RNN (IMU+Text) 16 2× 10−4 10 1 1.7M
Stacked 1D-CNN-RNN (IMU+Video) 16 5× 10−4 16 1 1.7M
Stacked 1D-CNN-RNN (IMU+Text+Video) 16 5× 10−4 16 1 1.7M

(a) Hyperparameters for Pre-training

Type Batch Size Initial LR # Training Epochs Gradient Accumulation Steps

Bound (lower–upper) 4–32 5× 10−5–5× 10−3 6–10 1–1

Number of Trials 5 5 5 1

(b) Search Bounds

Table 7: (a) Hyperparameters in this work: Initial LR denotes the initial learning rate. All the models are trained with
Adagrad optimizers (Duchi et al., 2011). We include the number of learnable parameters of each model in the column: # params.
(b) Search bounds for the hyperparameters of all the models.

B.3 Code Base & Hardware

The implementations of the transformer-based mod-
els are extended from the HuggingFace2 code
base (Wolf et al., 2020) and other cited authors’
released code-bases. Our entire code-base is im-
plemented in PyTorch (Paszke et al., 2019). All
models in this work are trained on a varying num-
ber of Nvidia A100 3 GPUs (1-8 depending on the

2https://github.com/huggingface/transformers
3https://www.nvidia.com/en-us/data-center/a100/

availability) on a Ubuntu 20.04.2 operating system.

C Supplementary Materials

We also provide the animated GIF visualizations
(as a zipped file) for all of the illustrative tasks men-
tioned in this manuscript, as part of the uploaded
supplementary materials.
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