
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 13322–13334
December 6-10, 2023 ©2023 Association for Computational Linguistics

LogicAttack: Adversarial Attacks for Evaluating Logical Consistency of
Natural Language Inference

Mutsumi Nakamura∗ Santosh Mashetty∗ Mihir Parmar∗
Neeraj Varshney Chitta Baral

School of Computing and AI, Arizona State University
{mutsumi, smashett, mparmar3, nvarshn2, chitta}@asu.edu

Abstract

Recently Large Language Models (LLMs) such
as GPT-3, ChatGPT, and FLAN have led to
impressive progress in Natural Language Infer-
ence (NLI) tasks. However, these models may
rely on simple heuristics or artifacts in the eval-
uation data to achieve their high performance,
which suggests that they still suffer from logical
inconsistency. To assess the logical consistency
of these models, we propose a LogicAttack, a
method to attack NLI models using diverse log-
ical forms of premise and hypothesis, providing
a more robust evaluation of their performance.
Our approach leverages a range of inference
rules from propositional logic, such as Modus
Tollens and Bidirectional Dilemma, to generate
effective adversarial attacks and identify com-
mon vulnerabilities across multiple NLI mod-
els. We achieve an average ∼ 53% Attack Suc-
cess Rate (ASR) across multiple logic-based
attacks. Moreover, we demonstrate that incor-
porating generated attack samples into training
enhances the logical reasoning ability of the
target model and decreases its vulnerability to
logic-based attacks 1.

1 Introduction

Recently, LLMs have demonstrated impressive per-
formance on Natural Language Inference (NLI)
tasks (Raffel et al., 2020). Prior to the introduc-
tion of prompt paradigm, the top-performing NLI
systems relied heavily on pre-training, followed
by fine-tuning on labeled task-specific data (Nie
et al., 2020a). However, with the emergence of
prompt-based LLMs, these models have achieved
good performance (∼ 90%) on NLI tasks with
minimal training data (i.e., few-shot learning) (Liu
et al., 2023). These systems have demonstrated
robustness to variations on syntax and lexical level,
and the ability to generalize beyond training data

1Data and source code are available at https://
github.com/msantoshmadhav/LogicAttack

*Equal Contribution

(Brown et al., 2020). However, a crucial question
remains: do these models generate a logical output
on NLI, or do they rely on simple heuristics and
learn shortcuts to generate their results? Hence,
we believe that logical reasoning is a critical com-
ponent of NLI systems and should be subject to
evaluation.

Here, we aim to address an important question:
“Are widely used NLI models exhibit logical con-
sistency?” Although attempts have been made to
create adversarial attacks for NLI (Williams et al.,
2022; Chien and Kalita, 2020), and also to evaluate
the logical consistency of LLMs across a range of
tasks (Gaskell et al., 2022), they do not consider
logic-based attack generation2. To bridge this gap,
we propose LogicAttack, a method to create logic-
based adversarial attacks that utilize a variety of
inference rules from propositional logic (PL). Here,
we utilize PL since pre-training data (usually data
from the web or books) lacks sufficient explicit
relations (e.g., implies, and, not, or, etc.) between
propositions in different inference rules, making
it essential to evaluate reasoning ability of models
on such logic-based relationships. Specifically, we
employ six inference rules to generate attacks from
PL. Table 1 depicts example instances from the
SNLI (Bowman et al., 2015) on which the LogicAt-
tack technique is applied to create an adversarial
attack. In Table 1, we give examples of some per-
turbed (i.e., adversarial) samples created through
the application of logical rules. These samples
were generated using (premise, hypothesis) pairs
with “entailment” labels exclusively.

In this work, we evaluate range models, in-
cluding both fine-tuned models on NLI such as
RoBERTa (Liu et al., 2019a), and BART (Lewis
et al., 2020); and prompt-based models such as
GPT-4, GPT-3 (Brown et al., 2020), ChatGPT and
FLAN-T5 (Chung et al., 2022), using LogicAt-
tack. Experimental results show that the logic-

2Detailed related work is discussed in Appendix A
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Name Formal Expressions Attack Examples

Original 1 (p1 → h1)
Premise: An older man wearing a salon drape getting a haircut.
Hypothesis: A man gets a haircut.

Original 2 (p2 → h2)
Premise: The dog runs towards the ball.
Hypothesis: A dog runs.

Modus
Tollens ((p1 → h1) ∧ ¬h1) ⊢ ¬p1

Premise: If an older man wearing a salon drape getting a haircut, then a man gets a haircut.
No man gets a haircut.
Hypothesis: No older man wearing a salon drape is getting a haircut.

Constructive
Dilemma ((p1 → h1) ∧ (p2 → h2) ∧ (p1 ∨ p2)) ⊢ (h1 ∨ h2)

Premise: If an older man wearing a salon drape getting a haircut, then a man gets a haircut.
And if the dog runs towards the ball, then a dog runs. But either an older man wearing a salon
drape getting a haircut or the dog runs towards the ball.
Hypothesis: Either a man gets a haircut or a dog runs.

Destructive
Dilemma ((p1 → h1) ∧ (p2 → h2) ∧ (¬h1 ∨ ¬h2)) ⊢ (¬p1 ∨ ¬p2)

Premise: If an older man wearing a salon drape getting a haircut, then a man gets a haircut.
And if the dog runs towards the ball, then a dog runs. But either no man gets a haircut or
no dog runs.
Hypothesis: Either no older man wearing a salon drape is getting a haircut or
the dog does not run towards the ball.

Bidirectional
Dilemma ((p1 → h1) ∧ (p2 → h2) ∧ (p1 ∨ ¬h2)) ⊢ (h1 ∨ ¬p2)

Premise: If an older man wearing a salon drape getting a haircut, then a man gets a haircut.
And if the dog runs towards the ball, then a dog runs.
But either an older man wearing a salon drape getting a haircut or no dog runs.
Hypothesis: Either a man gets a haircut or the dog does not run towards the ball.

Transportation 1 ((p1 → h1) ⊢ (¬h1 → ¬p1) Premise: If an older man wearing a salon drape getting a haircut, then a man gets a haircut.
Hypothesis: If no man gets a haircut, then no older man wearing a salon drape is getting a haircut.

Transportation 2 (¬h1 → ¬p1) ⊢ ((p1 → h1)
Premise: If no man gets a haircut, then no older man wearing a salon drape is getting a haircut.
Hypothesis: If an older man wearing a salon drape getting a haircut, then a man gets a haircut.

Material
Implication 1 (p1 → h1) ⊢ (¬p1 ∨ h1)

Premise: If an older man wearing a salon drape getting a haircut, then a man gets a haircut.
Hypothesis: Either no older man wearing a salon drape is getting a haircut or a man gets a haircut.

Material
Implication 2 (¬p1 ∨ h1) ⊢ (p1 → h1)

Premise: Either no older man wearing a salon drape is getting a haircut or a man gets a haircut.
Hypothesis: If an older man wearing a salon drape getting a haircut, then a man gets a haircut.

Negate
Hypothesis (p1 → ¬h1)

Premise: An older man wearing a salon drape getting a haircut.
Hypothesis: No man gets a haircut.

Table 1: Example of all nine adversarial attacks generated by utilizing six inference rules from propositional logic
and negation. Here, Original 1 and Original 2 represent two data instances from the evaluation set of SNLI.

based attacks significantly reduce model perfor-
mance, achieving higher ASR of ∼ 50% on SNLI
and ∼ 55% on MNLI, indicating that these models
rely on simple heuristics rather than using desirable
reasoning processes. Additionally, we enhance the
robustness of RoBERTa by fine-tuning a limited
set of attack samples (∼ 9k) created from SNLI.
Results demonstrate that fine-tuning the model on
these samples maintains its accuracy on the original
evaluation set and significantly decreases the ASR
on SNLI. This indicates that LogicAttack is useful
for the robust evaluation of NLI models and for en-
hancing their logical capabilities. Furthermore, our
analysis of results leads to several interesting find-
ings. Overall, this study highlights that models still
rely on simple heuristics for generating outputs for
NLI, emphasizing the need to enhance their logical
reasoning capabilities.

2 LogicAttack

This section provides a detailed description of task
formulation, our attack strategies, and algorithm.

2.1 Task Formulation

NLI models train to learn f : (p, h) → y, where
p denoted premise, h denotes hypothesis, and y ∈
{entailment, contradiction, neutral}. Here, we
probe NLI models using an adversarial attack by

perturbing p, and h. We leverage various infer-
ence rules from the PL to perturb (p, h) pair hav-
ing entailment relation into (p′, h′) keeping the en-
tailment relationship, but being able to fool many
models to infer otherwise. The process of creating
(p′, h′) from (p, h) using different rules is denoted
as LogicAttack. By generating a set of diverse
perturbations (P where ∀(p′, h′) ∈ P), we aim to
maximize the likelihood of fooling the model.

2.2 Attack Strategies
In order to generate a diverse set of perturbations,
we carefully select six inference rules from PL: (1)
Modus Tollens, (2) Constructive Dilemma, (3) De-
structive Dilemma, (4) Bidirectional Dilemma, (5)
Transposition, and (6) Material Implication. Addi-
tionally, we investigate the potential for generating
adversarial attacks by negating the hypothesis (h)
(denoted as “Negate Hypothesis”). A formal repre-
sentation of each inference rule and corresponding
examples of generated adversarial attacks is pre-
sented in Table 1. Moreover, a detailed explana-
tion of each inference rule and negate hypothesis
method is presented in Appendix B.

2.3 Attack Algorithm
Here, we present Algorithm 1 that demonstrates
the procedural steps to perform LogicAttack using
Modus Tollens on any NLI model (M). The aim is
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to have (p, h) pair such that p entails h, then apply
Modus Tollens to generate perturbed (p′, h′) pair.
Note that, perturbations using inference rules such
as Modus Tollens will not alter its entailment label.

Algorithm 1 LogicAttack using Modus Tollens
1: Input: NLI ModelM : f(p, h)→ y, Evalua-

tion set T
2: Output: A (Attack Success Rate)
3: Function: Negation(s) (returns negation of

sentence s)
4: for (p, h, y) ∈ T do
5: if y == Entailment then
6: if f(p, h) == Entailment then
7: premise(p, h) = ((p → h) ∧

Negation(h))
8: hypothesis(p, h) = Negation(p)
9: p′ ← premise(p, h)

10: h′ ← hypothesis(p, h)
11: M : f(p′, h′)→ ŷ
12: if ŷ != Entailment then
13: InCorrect← InCorrect+1

14: A ← InCorrect
length(T )

In Algorithm 1, (p, h, y) denotes the original pair
of premise, hypothesis, and label; (p′, h′) denotes
perturbations; and ŷ denotes model generated label
for (p′, h′). Additionally, Algorithm 1 incorporates
the function Negation(s), which is responsible
for generating the negation of any given sentence
(s). In this work, we prompt GPT-3 to generate
negations. Note that, generating the negation of
logical sentences can be complicated, hence, it is
important to provide multiple in-context examples
of how negated sentences should be generated for
different logical forms. To get a better sense of the
correctness of our method, 500 random sentences
from SNLI were negated using Negation(s) and
reviewed by an author. The precision for these
negations is ∼ 98%. The prompt used for generat-
ing negation is presented in Appendix C.

In Algorithm 1, premise(p, h) and
hypothesis(p, h) play a crucial role in cre-
ating logic-based attacks. To illustrate this, let’s
consider an example where p is “An older man
wearing a salon drape getting a haircut.”, h is
“A man gets a haircut.”, and y is “Entailment”,
thus (p → h). Now, we apply the Modus Tollens
(formally expressed as ((p→ h)∧¬h) ⊢ ¬p), and
get a (p′, h′). The resulting p′ is “If an older man
wearing a salon drape getting a haircut, then a man

gets a haircut. No man gets a haircut.”, and h′ is
“No older man wearing a salon drape is getting a
haircut.” Algorithm 1 provides a demonstration of
LogicAttack using the Modus Tollens. However, a
similar algorithm applies to generate attacks for
other inference rules illustrated in Table 1.

3 Experiments and Results

3.1 Experimental Setup

Dataset To generate attacks (Algorithm 1), we
utilize the evaluation set of SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018a). In par-
ticular, we only generate attacks for the premise
and hypothesis pairs with the “Entailment” label.
In addition, we use 1k entailment instances from
the SNLI train set to generate attack samples for
training purposes.

Models We evaluate models on three different
configurations: (i) single-task, (ii) multi-task, and
(iii) prompting. For single-task, we evaluate the
RoBERTa-large fine-tuned on the SNLI and MNLI,
respectively. For multi-task, we evaluate two mod-
els: RoBERTa-large, and BART-large fine-tuned on
SNLI, MNLI, FEVER-NLI (Thorne et al., 2018),
and ANLI (Williams et al., 2022). For prompt-
based models, we evaluate GPT-4, GPT-3, Chat-
GPT, and FLAN-T5 using zero-shot and few-shot
prompts. Appendix C provides prompts and few-
shot results are presented in Appendix D.

Experiments Here, we conduct two experiments:
(i) evaluation of models using LogicAttack, and (ii)
fine-tuning with attack instances. In (i), we evalu-
ate each model on the evaluation data of SNLI and
MNLI, and identify the samples where the model
generates the correct label. Subsequently, we apply
Algorithm 1 to these selected samples to create at-
tacks, which are then used to evaluate the model’s
performance. In (ii), we aim to investigate the im-
pact of incorporating logic-based attack sentences
into the training set. To explore this, we generate
9k attack instances by randomly selecting 1k pairs
from the training set of SNLI. We perform fine-
tuning on the RoBERTa (large) model using both
the attack samples and the original SNLI training
set. More details about experiments are presented
in Appendix E.

Metric As defined in (Gaskell et al., 2022), we
are evaluating the performance of LogicAttack on
each model using Attack Success Rate (ASR) and
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Dataset Attack Type Single-Task Multi-Task Prompting F1 value
RoBERTa RoBERTa BART FLAN-T5 GPT-3 ChatGPT GPT-4

SNLI

Modus Tollens 99.7 94.1 45.5 99.9 97.8 96.3 50.6 61.0
Constructive Dilemma 34.7 3.9 0.1 0.6 34.7 11.3 9.0 60.4
Destructive Dilemma 93.6 30.2 24.9 87.3 90.4 46.7 18.8 57.9

Bidirectional Dilemma 73.4 67.0 22.5 15.6 63.5 16.3 11.7 59.1
Transposition 1 99.7 82.5 99.1 82.0 79.6 25.0 22.7 58.6
Transposition 2 95.4 40.0 94.4 94.2 46.2 44.0 16.2 58.6

Material Implication 1 98.6 85.8 94.8 94.5 54.6 25.5 11.1 59.8
Material Implication 2 85.6 93.5 46.1 33.0 35.4 12.9 29.8 59.8

Negate Hypothesis 1.1 3.2 1.9 0.6 35.0 15.4 9.7 95.2

Avg. 76.1 56.2 48.7 56.4 59.7 32.7 20.0 63.4

MNLI

Modus Tollens 96.6 81.1 68.1 94.8 94.6 96.1 72.3 62.3
Constructive Dilemma 23.8 2.8 0.7 7.0 26.9 4.6 0.0 62.2
Destructive Dilemma 90.5 58.4 64.0 86.9 96.5 94.8 63.2 60.4

Bidirectional Dilemma 85.6 68.9 52.8 49.4 70.1 58.4 30.6 61.3
Transposition 1 96.5 87.1 91.5 78.1 67.1 57.3 47.1 60.5
Transposition 2 90.4 74.1 92.3 95.4 33.6 32.7 42.9 60.5

Material Implication 1 88.9 70.4 72.9 78.6 45.6 53.1 40.7 61.4
Material Implication 2 75.8 79.3 64.9 43.2 18.9 7.6 69.9 61.4

Negate Hypothesis 8.8 11.0 10.0 5.9 11.6 9.1 5.6 94.2

Avg. 73.5 59.9 58.3 59.9 51.7 46.0 41.4 64.9

Table 2: Evaluation of different models in terms of ASR (%) using SNLI and MNLI. Higher ASR is better.

Figure 1: Performance of baseline (fine-tune with SNLI)
and proposed (fine-tune with SNLI + attack samples)
models. Higher accuracy and lower ASR is better.

F1 sentence overlap score (F1). To demonstrate the
similarity between generated and original instances,
we also incorporate SimCSE (Gao et al., 2021) and
BERTScore (Zhang* et al., 2020) (results presented
in the Appendix F).

3.2 Results and Analysis

Here, Table 2 represents ASR of each model evalu-
ated using LogicAttack, and Figure 1 shows Accu-
racy and ASR of baseline and proposed models.

ASR values tend to become higher when F1 val-
ues are lower. From Table 2, we can observe
that LogicAttack achieves a high ASR for the most
of PL inference rules. Their F1 value averages

are between 58% and 62% and their difference
is relatively small. However, the LogicAttack by
“Negated Hypothesis” was unsuccessful on all mod-
els, and the average F1 value is ∼ 95%, meaning
that sentences that have a high overlapping rate
with the original sentences, yet just by negating the
hypothesis, the models predict correctly on them.
However, we do not seek to minimize F1 since
low F1 is bad (“adversarial” implies minimal per-
turbations), and F1 value ∼ 60% is preferable for
effective attacks (Gaskell et al., 2022).

# of negations vs. ASR ASR tends to become
higher when the ratio of (# of negated sentences
/ # of original sentences) is larger, i.e., the num-
ber of negated sentences in the premise/hypothesis
is higher. Constructive, Destructive, and Bidirec-
tional Dilemma utilize the same number of logical
AND, logical OR, implications (→), and original
sentences, yet they have different ASR because of
difference in the number of negations and where
their negations appear, in the premise or hypothesis.
Destructive Dilemma uses the maximum number
of negations (four) in one pair of premise and hy-
pothesis, among these logic rules, and also has the
highest ASR. Modus Tollens also has a high ASR,
however, Modus Tollens uses only four sentences
from the SNLI test set while Destructive Dilemma
uses eight sentences. Appendix G.1 presents statis-
tics of negations in each inference rule.
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Larger model are less prone to attacks. From
Table 2, it is evident that as the size of the prompt-
ing model and the amount of pre-training data in-
crease, ASR decreases. Moving from GPT-3 to
GPT-4, there is a drop in ASR, where GPT-3 shows
59.7%, whereas GPT-4 shows 20.0% for SNLI, and
51.7% and 41.4% for MNLI, respectively. To in-
vestigate the improvements in mitigating ASR by
GPT-4 compared to GPT-3, we randomly selected
20 instances in which GPT-4 succeeded while GPT-
3 failed and applied the chain-of-thought prompt-
ing technique to analyze their reasoning steps for
predicting the final answer. While evaluating the
reasoning chain generated by GPT-4, we observed
its ability to establish logical relations between the
premise and hypothesis, thus performing logical in-
ference to generate final answer. In contrast, GPT-3
simply compares premise and hypothesis (without
any logical connections in majority of cases) for
generating final answer, leading to a lack of logi-
cal consistency and, in some cases, contradictory
results instead of entailment. Thus, GPT-4 has im-
proved performance (low ASR) compared to GPT-
3. However, GPT-4 still exhibits a relatively low
ASR for certain inference rules (e.g., <50% for
Modus Tollens). Further discussion (i.e., prompt
and examples) is presented in Appendix G.2.

Effect of Fine-tuning with Attack Samples
From Figure 1, it becomes evident that the model,
when fine-tuned using a small set of attack samples
(∼ 9k), achieves a lower ASR (0.7%) compared to
the baseline (56.1%). Additionally, the proposed
model maintains its performance on the original
SNLI evaluation set (91.6%). This observation
highlights that incorporating a small number of at-
tack samples during training does not hinder the
model’s capacity to effectively perform the NLI
task on the original (premise, hypothesis) pairs.

4 Conclusions

We introduce LogicAttack, a novel method for gen-
erating logic-based attacks to assess the robustness
of NLI models. We evaluate a range of models
on NLI, considering single-task, multi-task, and
prompting. Experimental results demonstrate that
these models are vulnerable to logic-based adver-
sarial attacks, as evidenced by their higher ASR.
Additionally, we investigate the impact of fine-
tuning models with attack samples and observe
a significant improvement in their logical reason-
ing capabilities, leading to a substantial decrease in

ASR. Overall, our findings suggest that LogicAt-
tack provides a valuable framework for conducting
logically consistent evaluations of models.

Limitations

In this work, we explore six inference rules from
propositional logic, however, this study can be ex-
tended further to incorporate more inference rules
to create logic-based attacks. Furthermore, we
plan to extend our work to evaluate more models
and also a range of other NLI datasets. In addi-
tion, this work only provides the logical consistent
evaluation of NLI, however, this method can be
extended to other natural language understanding
tasks such as question-answering, and other reason-
ing tasks. Furthermore, the scope of this work is
limited in terms of logical conjunctions and disjunc-
tions where we use simple word "and" for conjunc-
tions and "or" for disjunctions in our experiments.
To this end, different ways to create logical con-
junctions and disjunctions can be explored since it
can be more complicated in the case of logic.
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A Related Work

Natural Language Inference (NLI) is extensively
studied in NLP and many datasets and models have
been proposed to effectively perform NLI tasks
(Camburu et al., 2018; Soares et al., 2023; Tal-
man et al., 2021; Liu et al., 2022; Bowman et al.,
2015; Williams et al., 2018b; Poliak, 2020). Varsh-
ney et al. (2022a) proposed a number of sentence
transformations to procedurally create NLI train-
ing instances. To evaluate the robustness of these
NLI models, one thread of work evaluates these
models on out-of-domain datasets (Varshney et al.,
2022b; Yang et al., 2023). Another thread aims at
creating different adversarial attacks on NLI mod-
els (Williams et al., 2022; Chien and Kalita, 2020;
Chan et al., 2020; Thorne et al., 2018). For in-
stance, Adversarial NLI (Nie et al., 2020b) is one
of the first attempts that introduces a dataset of
carefully crafted adversarial examples to evaluate
and assess the robustness and generalization capa-
bilities of language models in the context of NLI
tasks. Chien and Kalita (2020) highlights creat-
ing adversarial datasets to challenge NLI models
which revealed failure in generalizing on unseen
examples. Moreover, Chan et al. (2020) introduced
poison attack technique to find vulnerability in NLI
system.

However, these adversarial attack techniques do
not consider logic-based techniques to create attack
since logical reasoning is critical component of NLI
system and subject to evaluation. Previous efforts
have been made to assess the logical consistency of
LLMs on range of other tasks. Most recent study by
Gaskell et al. (2022) introduced a framework called
LAVA which aims to address a problem of logical
inconsistency by combining an adversarial and gen-
erative process for Soft Theorem-Proving (STP).
However, Gaskell et al. (2022) do not utilize any
logic-based inference rules to create adversarial at-
tacks. Motivated by this, we propose LogicAttack,
a framework to evaluate logical consistency of NLI
models by creating logic-based attacks.

B Attack Strategies

Detailed explanation of inference rules employed
to generate attacks3. Table 1 (main paper) provides
examples of generated attack corresponding to each
rule. To provide a more in-depth understanding of

3Part of the information in this section is adapted
from https://en.wikipedia.org/wiki/
Propositional_calculus

each attack, we introduce some notations: p→ h,
where p represents the premise, h represents the hy-
pothesis, and→ denotes the “Entailment” relation
between p and h. Here, to generate attack using
modus tollens, transposition, material implication,
and negate hypothesis, we use only one (p, h) pair
to generate attacks. However, we use two (p1, h1)
and (p2, h2) pairs to generate attack for construc-
tive, destructive, and bidirectional Dilemma.

Modus Tollens Modus Tollens is described as:
“If p then h; not h; therefore not p”. Using this rule,
we generate new premise, p′: p → h ∧ ¬h, and
new hypothesis, h′: ¬p.

Transposition Transportation is described as: “If
p then h is equivalent to if not h then not p”. We
split this rule to two parts since it involves the
equivalency: (i) Transportation1: using this rule,
we generate new premise, p′: p → h, and new
hypothesis, h′: ¬h→ ¬p, and (ii) Transportation2:
using this rule, we generate new premise, p′: ¬h→
¬p, and new hypothesis, h′: p→ h.

Material Implication Material Implication is de-
scribed as: “If p then h is equivalent to not p or
h”. Similar to transposition rule, we split this rule
to two parts since it involves the equivalency: (i)
Material Implication1: using this rule, we generate
new premise, p′: p → h, and new hypothesis, h′:
¬p ∨ h, and (ii) Material Implication2: using this
rule, we generate new premise, p′: ¬p∨h, and new
hypothesis, h′: p→ h.

Negate Hypothesis Since we have pairs of two
sentences p and h, where “if p then h”, we negated
its conclusion so that it will be “if p then ¬h” and
see if we can obtain the contradiction label. Here,
we generate a new premise to be p′: p and a new
hypothesis to be h′: ¬h.

Constructive Dilemma Constructive Dilemma
is described as: “If p1 then h1; and if p2 then h2;
but p1 or p2; therefore h1 or h2”. Using this rule,
we generate new premise, p′: (p1 → h1) ∧ (p2 →
h2) ∧ (p1 ∨ p2), and new hypothesis, h′: h1 ∨ h2.

Destructive Dilemma Destructive Dilemma is
described as: “If p1 then h1; and if p2 then h2; but
not h1 or not h2; therefore not p1 or not p2”. Using
this rule, we generate new premise, p′: (p1 →
h1)∧(p2 → h2)∧(¬h1∨¬h2), and new hypothesis,
h′: ¬p1 ∨ ¬p2.
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Bidirectional Dilemma Bidirectional Dilemma
is described as: “If p1 then h1; and if p2 then h2;
but p1 or not h2; therefore h1 or not p2”. Using
this rule, we generate new premise, p′: (p1 →
h1)∧(p2 → h2)∧(p1∨¬h2), and new hypothesis,
h′: h1 ∨ ¬p2.

C Prompts

C.1 Negation Prompt

In order to create negated sentences, we have done
multiple evaluations with GPT-3, Vicuna (Chiang
et al., 2023) and Llama (Touvron et al., 2023) based
models. According to the initial experiments, we
found that GPT-3 was giving much better results.
We handcrafted some negated sentence examples
and included them as part of a prompt in GPT-3 to
generate negated sentences. We sampled over 500
generated negated sentences and found their accu-
racy to be around around 98%. For negation gener-
ation, the parameters used for GPT-3: temperature
= 0.7, max-tokens = 512, top-p = 1, frequency-
penalty = 2, presence-penalty = 2.

The following is the prompt used to generate
negated sentences:

sentence: A dog loves to play in the
park.
negation: No dog loves to play in the
park.
sentence: An apple is red.
negation: No apple is red.
sentence: Some dogs like to sleep on the
grass.
negation: No dog likes to sleep on the
grass.
sentence: Everybody is playing.
negation: Somebody is not playing.
sentence: Everyone likes sunny days.
negation: Someone does not like sunny
days.
sentence: Every school has a math class.
negation: Some schools do not have a
math class.
sentence: Every apple is sweet.
negation: Some apples are not sweet.
sentence: Jill is having a hot soup.
negation: Jill is not having a hot soup.
sentence: We don’t watch the movie.
negation: We watch the movie.
sentence: He was there not long ago.
negation: He was not there not long

ago.
sentence: It was so not good.
negation: It was not so not good.
sentence: She presented not very
confidently.
negation: She did not present not very
confidently.
sentence: It was a not great contribution.
negation: It was a great contribution.
sentence: They need a food that is bitter.
negation: They don’t need a food that is
bitter.
sentence: The children are playing.
negation: The children are not playing.
Provide a negation of the next sentence
by following the examples above:

C.2 Prompts for Experiments
Zero-Shot Prompt The following is the format
of a prompt used for the experiments using GPT-3,
ChatGPT, and GPT-4 with zero-shot:

In this task, you are given two sentences
(Premise and Hypothesis). Your task is to
identify the Label (relation) between the
given Premise and Hypothesis. If both
sentences agree with each other then
return "entailment"; if both sentences
indicate opposite view from each other
then return "contradiction"; and there
is no relation between two sentences or
relation can not be identified then return
"neutral".

Format:
Premise: (Premise is a sentence that
describes a condition on which a logical
argument is based)
Hypothesis: (Hypothesis is a sentence
which is a plausible conjecture or
explanation which can be proved or
disproved)
Label: entailment/contradiction/neutral

Identify the Label (relation) between the
following Premise and Hypothesis -
Premise: this church choir sings to the
masses as they sing joyous songs from
the book at a church
Hypothesis: the church is filled with
song
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Label:

3-Shots Prompt The following is the format of
a prompt used for the experiments using GPT-3,
ChatGPT, and GPT-4 with 3-shots:

In this task, you are given two sentences
(Premise and Hypothesis). Your task is to
identify the Label (relation) between the
given Premise and Hypothesis. If both
sentences agree with each other then
return "entailment"; if both sentences
indicate opposite view from each other
then return "contradiction"; and there
is no relation between two sentences or
relation can not be identified then return
"neutral"

Format:
Premise: (Premise is a sentence that
describes a condition on which a logical
argument is based)
Hypothesis: (Hypothesis is a sentence
which is a plausible conjecture or
explanation which can be proved or
disproved)
Label: entailment/contradiction/neutral

Premise: A person on a horse jumps
over a broken down airplane.
Hypothesis: A person is training his
horse for a competition.
Label:neutral
Premise: A person on a horse jumps
over a broken down airplane.
Hypothesis: A person is at a diner,
ordering an omelette.
Label:contradiction
Premise: A person on a horse jumps
over a broken down airplane.
Hypothesis: A person is outdoors, on a
horse.
Label:entailment

By understanding the above exam-
ples, give the Label (relation) between
the following sentences -
Premise: this church choir sings to the
masses as they sing joyous songs from
the book at a church
Hypothesis: the church is filled with
song
Label:

6-Shots Prompt The following is the format of
a prompt used for the experiments using GPT-3,
ChatGPT, and GPT-4 with 6-shots:

In this task, you are given two sentences
(Premise and Hypothesis). Your task is to
identify the Label (relation) between the
given Premise and Hypothesis. If both
sentences agree with each other then
return "entailment"; if both sentences
indicate opposite view from each other
then return "contradiction"; and there
is no relation between two sentences or
relation can not be identified then return
"neutral"

Format:
Premise: (Premise is a sentence that
describes a condition on which a logical
argument is based)
Hypothesis: (Hypothesis is a sentence
which is a plausible conjecture or
explanation which can be proved or
disproved)
Label: entailment/contradiction/neutral

Premise: A person on a horse jumps
over a broken down airplane.
Hypothesis: A person is training his
horse for a competition.
Label:neutral
Premise: A person on a horse jumps
over a broken down airplane.
Hypothesis: A person is at a diner,
ordering an omelette.
Label:contradiction
Premise: A person on a horse jumps
over a broken down airplane.
Hypothesis: A person is outdoors, on a
horse.
Label:entailment
Premise: Children smiling and waving
at camera
Hypothesis: They are smiling at their
parents
Label:neutral
Premise: Children smiling and waving
at camera
Hypothesis: There are children present
Label:entailment
Premise: Children smiling and waving
at camera
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Hypothesis: The kids are frowning
Label:contradiction

By understanding the above exam-
ples, give the Label (relation) between
the following sentences -
Premise: this church choir sings to the
masses as they sing joyous songs from
the book at a church
Hypothesis: the church is filled with
song
Label:

D Few-shot Results

We have also experimented using GPT-3, ChatGPT,
and GPT-4 with 3-shots and 6-shots, in addition
to using zero-shot. Table 4 provides the results of
few-shot experiments.

Giving examples of NLI as a few shots in a
prompt of GPT-3, ChatGPT, and GPT-4 can en-
hance each model’s ability to understand their tasks
better, can improve their logical abilities, and re-
sulted in lowering their ASRs (shown in Table 4).
One thing to note is that changing from zero-shot
to 3 shots improved each model’s performance sig-
nificantly, but changing from 3 shots to 6 shots did
not. In some cases, it degraded their performance
slightly. Another point is that the models seem
to perform better for inference rules with longer
premises and hypothesis (Constructive Dilemma,
Destructive Dilemma, Bidirectional Dilemma).

E Experimental Setup

Here, we provide additional details about the ex-
periments.

Experiment (i) All models in this experiment are
used from Huggingface except GPT-family models.
For single-task, the model we used is RoBERTa-
large fine-tuned on the SNLI4. For multi-task, the
two models we used are: RoBERTa-large, and
BART-large fine-tuned on SNLI, MNLI, FEVER,
and ANLI5. For prompt-based models, the mod-
els used are: GPT-3 and GPT-46, ChatGPT 7, and

4https://huggingface.co/pepa/
roberta-large-snli

5https://huggingface.co/ynie/
roberta-large-snli_mnli_fever_anli_R1_
R2_R3-nli

6https://platform.openai.com/
7https://chat.openai.com/

FLAN-T5 8 using zero-shot and few-shot prompts.
To perform adversarial attacks on GPT4, GPT3,
and ChatGPT, the following were the parameters
used: temperature = 0, max-tokens = 128, top-p
= 1, frequency-penalty = 0, presence-penalty = 0.
These parameters were used for all of GPT4, GPT3
and ChatGPT.

Experiment (ii) During the fine-tuning process
of RoBERTa (large)9 (Liu et al., 2019b), the model
is trained for 10 epochs, with a batch size of
16 and an initial learning rate of 5e-6. The ex-
periments were conducted using NVIDIA GPUs,
specifically the A6000 and A100 models. To estab-
lish a baseline for comparison, we also fine-tune
the RoBERTa (large) model on the original train-
ing set with a similar configuration. Both models
are then evaluated on the original evaluation set of
SNLI, as well as the corresponding attack samples.

Here is a detailed explanation of the metrics used
for evaluation:

• Attack Success Rate (ASR) This represents
the attacker’s performance: ASR = # success-
ful attacks / # total attacks

• F1 Sentence Overlap Score (F1) F1 value
was for each attack sample, an overlap score
between the original (premise, hypothesis)
pair and their corresponding perturbation gen-
erated by LogicAttack.

F SimCSE and BERTScore

We have also evaluated the resemblance between
original and attack <premise, hypothesis> pairs
using BERTScore10 and SimCSE 11. From Table 3,
we can observe that BERTScore and SimCSE are
90% and 88% for all attack strategies (the score
for each attack is average overall dataset samples).
This shows the quality of generated perturbations.

G Qualitative Analysis

G.1 Effect of Negations
Because all propositional logic rules used for logic
attacks were generated from the same set of sen-
tences in the SNLI test data set, we have checked
their sentence structures to see what makes their

8https://huggingface.co/docs/
transformers/model_doc/flan-t5

9https://huggingface.co/roberta-large
10https://github.com/Tiiiger/bert_score
11https://github.com/princeton-nlp/

SimCSE
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Dataset Attack Strategies SimCSE BERTScore

SNLI

Modus Tollens 0.839 0.919
Constructive Dilemma 0.935 0.908
Destructive Dilemma 0.869 0.906

Bidirectional Dilemma 0.909 0.906
Transposition 1 0.866 0.912
Transposition 2 0.848 0.904

Material Implication 1 0.901 0.917
Material Implication 2 0.880 0.910

Negate Hypothesis 0.868 0.967

Avg. 0.879 0.917

MNLI

Modus Tollens 0.846 0.926
Constructive Dilemma 0.937 0.914
Destructive Dilemma 0.892 0.914

Bidirectional Dilemma 0.914 0.914
Transposition 1 0.864 0.920
Transposition 2 0.864 0.911

Material Implication 1 0.905 0.925
Material Implication 2 0.891 0.918

Negate Hypothesis 0.879 0.963

Avg. 0.888 0.923

Table 3: SimCSE and BERTScore between original and attack <premise, hypothesis> pairs from SNLI and MNLI.

ASR different. Their main differences are the num-
ber and the location (premise or hypothesis) of
certain logical words such as "and", "or", and "if
.. then .." (implication), and also the number of in-
cluded sentences from the SNLI test data. The num-
ber of negated sentences is also an important factor
because they are modified from the original sen-
tences, and can lower F1 values. The information
in the Table 5 was used for the ASR analysis. In
terms of their location, i.e., whether they appear in
the premise or hypothesis, it also affects their ASRs.
Between Transposition 1 and Transposition 2, or
Material Implication 1 and Material Implication
2, only their premise and hypothesis are swapped,
however, their ASRs differ. The main difference
caused by swapping them is that in Transposition
2 and Material Implication 2, negated sentences
appear in their premise instead of hypothesis.

G.2 Prompt for GPT-4 vs. GPT-3

We conducted an analysis of the drop in ASR per-
formance between GPT-4 and GPT-3, investigating
the reasoning process employed by each model to
provide answers. To achieve this, we utilized the
following chain-of-thought prompt for our study:

This is a Natural Language Inference
task. Given the premise and hypothesis
that contains rules of logical reasoning

in natural language, perform step-by-
step reasoning to predict one of three
labels: Entailment, Contradiction, or
Neutral. Please use the below format:

Premise: [natural language text
for premise]
Hypothesis: [natural language text for
hypothesis]
Reasoning steps: [generate step-by-step
reasoning]
Answer: Entail-
ment/Neutral/Contradiction

Premise:
Hypothesis:
Answer:
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Inference Rules GPT-3 ChatGPT GPT-4

3-shots 6-shots 3-shots 6-shots 3-shots 6-shots

Modus Tollens 69.4 67.2 90.9 92.8 12.3 11.4
Constructive Dilemma 2.4 4.2 3.7 3.6 5.3 5.8
Destructive Dilemma 15.9 15.6 14.7 17.7 13.8 13.6

Bidirectional Dilemma 4.3 6.5 5.4 6.1 8.3 8.6
Transposition 1 71.5 68.7 4.7 5.3 13.2 10.0
Transposition 2 11.5 16.1 10.3 11.7 12.8 11.1

Material Implication 1 5.1 6.5 3.7 4.1 5.6 5.9
Material Implication 2 4.1 7 3.7 3.7 23.5 15.9

Negate Hypothesis 4.4 5.6 7.9 8.7 5.7 6.4

Avg. 19.5 20.8 16.1 17.1 11.2 9.9

Table 4: Evaluation using GPT-3, ChatGPT, GPT-4 with 3 shots and 6 shots w.r.t. ASR (%)

Inference Rules # of
negations

# of
logical AND

# of
logical OR

# of
implications

# of
contained
original

sentences

Modus Tollens 2 1 0 1 4
Constructive Dilemma 0 2 2 2 8
Destructive Dilemma 4 2 2 2 8

Bidirectional Dilemma 2 2 2 2 8
Transposition 1 2 0 0 2 4
Transposition 2 2 0 0 2 4

Material Implication 1 1 0 1 1 4
Material Implication 2 1 0 1 1 4

Negate Hypothesis 1 0 0 0 2

Table 5: Statistics of generated sentences in terms of various characteristics w.r.t. inference rules.
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