
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 1291–1302
December 6-10, 2023 ©2023 Association for Computational Linguistics

Syntax-Aware Retrieval Augmented Code Generation

Xiangyu Zhang1 Yu Zhou1∗ Guang Yang1 Taolue Chen2∗
1 Nanjing University of Aeronautics and Astronautics

2 Birkbeck, University of London
{zhangx1angyu, zhouyu, yang.guang}@nuaa.edu.cn

t.chen@bbk.ac.uk

Abstract

Neural code generation models are nowadays
widely adopted to generate code from natural
language descriptions automatically. Recently,
pre-trained neural models equipped with token-
level retrieval capabilities have exhibited great
potentials in neural machine translation. How-
ever, applying them directly to code generation
experience challenges: the use of the retrieval-
based mechanism inevitably introduces extra-
neous noise to the generation process, result-
ing in even syntactically incorrect code. Com-
putationally, such models necessitate frequent
searches of the cached datastore, which turns
out to be time-consuming. To address these is-
sues, we propose kNN-TRANX, a token-level
retrieval augmented code generation method.
kNN-TRANX allows for searches in smaller
datastores tailored for the code generation task.
It leverages syntax constraints for the retrieval
of datastores, which reduces the impact of re-
trieve noise. We evaluate kNN-TRANX on
two public datasets and the experimental re-
sults confirm the effectiveness of our approach.

1 Introduction

Neural code generation aims to map the input natu-
ral language (NL) to code snippets using deep learn-
ing. Due to its great potential to streamline soft-
ware development, it has garnered significant atten-
tions from both natural language processing and
software engineering communities. Various meth-
ods have been explored to facilitate code genera-
tion (Yin and Neubig, 2018; Wang et al., 2021; Guo
et al., 2022). Recent progress in neural machine
translation (NMT) shows that the non-parametric k-
nearest-neighbour machine translation (kNN-MT)
approach may significantly boost the performance
of standard NMT models (Khandelwal et al., 2021)
and other text generation models (Kassner and
Schütze, 2020; Shuster et al., 2021) by equipping

∗Corresponding author.

NL Check if object obj is a string.
kNN-MT all(isinstance(obj)

The correct one isinstance(obj, str)

Table 1: An example code generated by kNN-MT.

the models with a token-level retriever. In par-
ticular, this neural-retrieval-in-the-loop approach
facilitates the integration of external knowledge
into the pre-trained model and provides a simple
yet effective method to update the model by switch-
ing the retrieval datastore, without fine-tuning the
model parameters.

Can such neural-retrieval-in-the-loop approach
benefit neural code generation? Our preliminary
experiments reveal three main issues (cf. the exam-
ple in Table 1) if it is adopted outright. Firstly, the
model performance may be negatively affected by
the noise in the retrieved knowledge. For example,
"all" does not match the intention of the descrip-
tion, but it is recognized as the target token by the
retriever, resulting in the generation of incorrect
code. Secondly, the code generated by kNN-MT
cannot guarantee syntactic correctness, as demon-
strated by the mismatching parentheses in the given
example. Thirdly, the token-level retrieval method
requires similarity search of the entire datastore
at each time step of inference, which hinders the
deployment of such approach.

In this paper, we propose a novel code gener-
ation approach, i.e. kNN-TRANX, to overcome
the limitations of the neural-retrieval-in-the-loop
paradigm for code generation tasks. The basic idea
is to integrate symbolic knowledge to ensure the
quality of the generated code and expedite the re-
trieval process. To achieve this, we leverage the
sequence-to-tree (seq2tree) model to generate ab-
stract syntax tree (AST), which is a hierarchical
tree-like structure used to represent the code, rather
than generate target code snippet directly. This en-
ables us to use AST construction rules to guarantee
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the syntactic correctness of the generated code and
filter out retrieval noise.

We design kNN-TRANX as a two-step process
(cf. Figure 2). In the first step, we construct two
separated datastores, i.e., the syntactic datastore
and the semantic datastore, based on the type of
AST nodes. This allows us to determine the type
of the next node to be predicted according to the
grammar rules and query a specific datastore. In
the second step, we utilize syntactic rules to filter
out irrelevant knowledge and convert the similarity
retrieval results of the current target token into a
probability distribution, i.e., the kNN probability.
This probability, together with probability from the
neural network, yields the probability of the ac-
tion to be used for AST generation via a learnable
confidence parameter. It can help to minimize re-
trieval noise and dynamically exploit combinations
of the two probabilities, resulting in improved code
generation performance.

To evaluate the effectiveness of kNN-TRANX,
we perform experiments on two publicly avail-
able code generation datasets (i.e., CoNaLa and
Django). The experimental results show a 27.6%
improvement in the exact match metric on the
CoNaLa dataset and a 4.2% improvement in the
BLEU metric on the Django dataset, surpassing
five state-of-the-art models under comparison. Ad-
ditionally, we conduct an experiment on model
canonical incremental adaptation, which updates
kNN-TRANX by switching the datastore. The
experimental results demonstrate that our model
can achieve performance comparable to fully fine-
tuned models and reduce the trainable parameters
by 7,000 times.

2 Background

In this section, we provide an overview of the kNN-
MT paradigm and the seq2tree model.

2.1 kNN-MT

The kNN-MT paradigm (Khandelwal et al., 2021)
is a translation mechanism that enhances the qual-
ity of model generation by incorporating an ad-
ditional translation retriever. This allows NMT
models to benefit from the retrieved knowledge.
The paradigm comprises two main parts, namely,
datastore building and model inferring.
Datastore Building. The datastore consists of a
set of key-value pairs, where the key is the decoder
hidden state and the value is the corresponding

target token. Formally, given a bilingual sentence
pair (x, y) from the training corpus (X ,Y), a pre-
trained NMT model fNMT (·) generates the i-th
context representation hi = fNMT (x, y<i), then
the datastore D is constructed as follows.

D = (K, V ) =
⋃

(x,y)∈(X ,Y)

{(hi, yi), ∀yi ∈ y}

Model Inferring. During inference, at time step
i, given the already generated token ŷ<i and the
contextual information ĥi, the kNN-MT model gen-
erates yi by retrieving the datastore, which can be
calculated as

pkNN(yi | x, y<i) ∝
∑

(hj ,yj)

1yi=yjexp

(−dj
T

)

(1)
where T is the temperature and dj indicates the l2
distance between query ĥi and the retrieved key hj .

2.2 Seq2tree Model
The purpose of the seq2tree code generation mod-
els is to generate ASTs instead of directly out-
putting code snippets. Compared to the sequence-
to-sequence (seq2seq) models, the seq2tree models
ensure the syntactic correctness of the generated
code. Among the seq2tree models, BertranX (Beau
and Crabbé, 2022) was recently proposed and rep-
resented the state-of-the-art architecture. BertranX
employs BERT to process the input natural lan-
guage and features a grammar-based decoder.

Figure 1: Example of ASDL for Python. ASDL defines
a set of grammatical symbols, which are denoted in
orange and distinguished by a unique constructor name
highlighted in blue. Each rule assigns names to its
fields or the symbols marked in black. The grammatical
symbols can be classified into two types: nonterminals
(e.g., expr) and terminals or primitives (e.g., identifier).
Some of the grammatical symbols may have qualifiers
(*) that allow for zero or more iterations of the symbol.

BertranX describes ASTs using sequences of
actions based on ASDL (Wang et al., 1997) gram-
mar, which gives concise notations for describing
the abstract syntax of programming languages (cf.
Figure 1 as an example). With ASDL, BertranX

1292



defines two distinct types of actions that generate
ASTs, i.e., PREDRULE and GENERATE. The first
type is used for initiating the generation of a new
node from its parent node, which we mark as syn-
tactic nodes in this paper; the second type on the
other hand, is used to produce terminal or primitive
symbols that we mark as semantic nodes.

3 kNN-TRANX

The workflow of kNN-TRANX is depicted in Fig-
ure 2. It consists of two main components: datas-
tore building and model inferring.

3.1 Datastore Building
Given a pre-trained seq2tree model and the training
dataset, we first parse code snippets to ASTs and
generate all instances in the training corpus. This
process allows us to capture and store the decoder
representations along with their corresponding tar-
get tokens as key-value pairs. The actions that con-
stitute an AST can be categorized into two groups:
rules and primitives. These categories align with
the actions of GENERATE and PREDRULE, re-
spectively. As shown in Figure 3, the two types
of nodes have significant differences in terms of
type and quantity. Combining them into the same
datastore could potentially reduce retrieval accu-
racy. Therefore, we employ separated datastores
for each node type, referred to as the syntactic and
semantic datastores respectively. Nodes represent-
ing the structural information (e.g., Expr and Call)
are put into the syntactic datastore, while nodes
representing the semantic information (e.g., text
and split) of the code are put into the semantic one.

Given an NL-code pair (x, y) from the training
corpus (X ,Y), we first transform the code snippets
Y into AST representations Z . Next, we calculate
the i-th context representation hi = fθ(x, z<i),
where fθ(·) refers to the trained seq2tree model
and z ∈ Z . The datastore is constructed by taking
hi’s as keys and zi’s as values. Namely,

D(gra) =
(
K, V (gra)

)

=
⋃

(x,z)∈(X ,Z)

{(hi, zi) | zi ∈ z & zi ∈ rules} ,

and

D(pri) =
(
K, V (pri)

)

=
⋃

(x,z)∈(X ,Z)

{(hi, zi) | zi ∈ z & zi ∈ primitives} .

As a result, two separated symbolic datastores
can be constructed based on the various types of
target actions within the training set. Constructing
datastores in this manner is more effective than
storing both types of actions in a single datastore
since it helps reduce noise during retrieval. More-
over, the subsequent token type can be determined
based on grammar rules, facilitating the retrieval
of a specific datastore and accelerating the retrieval
process.

3.2 Model Inferring

The process of model inference can be divided into
three main phases, as shown in Figure 2. First,
the code fragment x is put into the trained model
to generate the context representation hi and com-
pute the neural network distribution (pNN). Then,
we query the datastore using this representation to
obtain the k-nearest-neighbor distribution (pkNN).
Finally, we combine these two distributions to pre-
dict the target token. In the subsequent sections,
we will discuss three pivotal components of kNN-
TRANX: syntax-constrained token-level retrieval,
meta-k network, and confidence network.
Syntax-constrained token-level retrieval. Given
the current context representation hi generated
by the model, we first calculate the l2 distance
dj = l2(hi, ĥj) between the context representa-
tion hi and each neighbor (ĥj , ẑj) in the datas-
tore to determine the k nearest neighbors. Previ-
ous studies (Meng et al., 2022; Dai et al., 2023)
have restricted the search space based on poten-
tial input-output patterns to improve decoding ef-
ficiency and reduce the impact of noise. However,
the restricted search space may also exclude some
valuable knowledge.

To mitigate this problem, our approach features
syntax-aware retrieval capability. In contrast to
conventional seq2seq models, our model aims to
generate ASTs that allow to incorporate symbolic
knowledge and determine the retrieved tokens by
means of syntactic rules. During the retrieval pro-
cess, we can determine the type of the subsequent
token based on the tokens already produced. If the
next token is expected to represent the syntactic
information, we just retrieve the syntactic datastore
to accelerate the retrieval process, and vice versa.
Additionally, we can also use the ASDL rules to
exclude illegitimate tokens to reduce the amount
of irrelevant information. For example, as seen
in Figure 2, our model has already generated the
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Figure 2: Workflow of kNN-TRANX

(a) Syntactic tokens (b) Semantic tokens

Figure 3: t-SNE visualization of CoNaLa data features,
with dark colored dots indicating more frequently oc-
curring vocabulary.

node Expr in the previous time step. It should be
noticed that kNN-TRANX have retrieved Call and
alias nodes according to the distances. However,
the child nodes of Expr do not support alias in the
ASDL grammar. In this way, we filter out these
nodes from the search results to reduce noise and
avoid excluding valuable information.
Meta-k network. We retrieve k relevant pieces of
knowledge from the datastore, and then map the
distances between the query vector and the cached
representation as probabilities. Empirically, the
number of retrievals, k, is crucial in our model
because too few retrievals may result in valuable in-
formation being ignored, while too many retrievals
may introduce noise. To alleviate this problem, we
employ the meta-k network (Zheng et al., 2021) to
dynamically evaluate the weight of the retrieved
knowledge. Meta-k network considers a range
of values that are smaller than the upper bound
K, instead of using a fixed value of k. Typically

the range is set as S = {0, 1, 2, 4, · · · , 2log2⌊K⌋}.
To evaluate the weight of each of the values,
we use distance dj and the count of distinct
values in top j neighbors cj as features and
obtain a normalized weight by pβ(k) =
softmax (fβ([d1, . . . , dK ; c1, . . . , cK ])) where
fβ(·) denotes the Meta-k Network. The prediction
of kNN can be obtained by pkNN (zi|x, ẑ<i) =∑
kr∈S

pβ (kr) · pkrNN (zi|x, ẑ<i) where pkrNN

indicates the kr-nearest-neighbor prediction results
calculated as Equation (1). In this way, the kNN
model can expand the search space while reducing
the impact of the retrieval noise.

Confidence network. In order to utilize the knowl-
edge of the symbolic datastore while maintaining
the generalization ability of the neural network, we
combine two probability distributions by means
of weighting. Previous studies have integrated
the distributions of kNN and NN by using a fixed
or learnable parameter λ to measure their respec-
tive weights. Khandelwal et al. (2021) combine
the probability distributions using fixed weights,
but this approach fails to dynamically adjust the
weights based on the distance retrieved. Zhu et al.
(2023) adjust the weights based on the retrieval
distance, but they overlook the confidence of the
neural network output. Khandelwal et al. (2021)
utilize the probability of the neural network and
retrieval distance as features to dynamically select
the value of λ which consider the confidence of
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the two distributions, but this approach neglects the
correlation between the two distributions.

To address this issue, we propose a confidence
network that estimates the confidence of both
probabilities based on kNN and NN distributions.
In addition, we incorporate the weights of each
k-value as features into the confidence network,
ensuring that the model is aware of the number
of tokens that require attention. As such our
model can capture the relationship between
the two distributions. In cases where the two
distributions conflict, we assign a higher weight
to the distribution with higher confidence. The
confidence λ is calculated from W as λi =
S(W[pkNN (zi | x, ẑ<i) ; pNN (zi|x, ẑ<i) ; pβ(k)]),
where S denotes the sigmoid activation function.

The final distribution at prediction zi is calcu-
lated as a weighted sum of two distributions with
λi, i.e., p (zi|x, ẑ<i) = λipkNN + (1− λi) pNN.

4 Experiments

In this section, we first introduce the datasets and
evaluation metrics. Then, we conduct a compre-
hensive study and analysis on code generation and
model canonical incremental adaptation.

4.1 Datasets and evaluation metrics

We evaluate kNN-TRANX on two code genera-
tion datasets, namely, CoNaLa dataset (Yin et al.,
2018) and Django dataset (Oda et al., 2015). The
CoNaLa dataset comprises 600k NL-code pairs col-
lected from StackOverflow, out of which 2,879 NL
were rewritten by developers. This dataset con-
tains questions that programmers encounter in their
real-world projects. On the other hand, the Django
dataset consists of 18,805 examples, where each
example consists of one line of Python code accom-
panied by corresponding comments. Compared to
CoNaLa, approximately 70% of the examples in
Django are simple tasks that include variable as-
signment, method definition, and exception han-
dling, easily inferred from the corresponding NL
predictions. We employed BLEU (Papineni et al.,
2002), CodeBLEU (Ren et al., 2020), and exact
match (EM) metrics to assess the performance of
our experiments.

4.2 Code Generation

Implementation details. We use BertranX as the
base seq2tree model for our experiments, which
is trained on annotated data and 100k mined data.

To expedite the implementation, we leverage kNN-
box (Zhu et al., 2023), an open-source toolkit for
building kNN-MT, to implement kNN-TRANX.
As explained in Section 3, kNN-TRANX creates
two datastores. Due to the considerable difference
in vocabulary sizes between the two datastores, we
construct separate settings for the syntactic and
semantic datastores. For the syntactic datastore,
we set the upper limit Krule to 4 to account for its
limited token variety. For the semantic datastore,
we set Kpri to 64. To train the meta-k network
and confidence network, we employ the AdamW
optimizer with a learning rate of 3e-4. To accelerate
the datastore retrieval process, we incorporate the
FAISS library (Johnson et al., 2019) for similarity
retrieval. All experiments are performed on a single
NVIDIA 2080Ti.
Baselines. We compare kNN-TRANX against five
state-of-the-art code generation models.

• TRANX (Yin and Neubig, 2018) is a seq2tree
model consisting of a bidirectional LSTM en-
coder for learning the semantic representation
and a decoder for outputting a sequence of ac-
tions for constructing the tree.

• Reranker (Yin and Neubig, 2019) reorders a set
of N-best candidates to improve the quality of
the generated results.

• Ext-codegen (Xu et al., 2020) incorporates API
documentation as external knowledge into the
model, thus enabling data augmentation.

• TAE (Norouzi et al., 2021) uses BERT and a
transformer decoder to auto-encoding monolin-
gual data.

• BertranX (Beau and Crabbé, 2022) uses BERT
as an encoder and serves as the base model for
our kNN-TRANX.

• REDCODER (Parvez et al., 2021) retrieves rele-
vant code from a retrieval database and provides
them as a supplement to code generation models.

• CodeT5 (Wang et al., 2021) builds on the sim-
ilar architecture of T5 (Raffel et al., 2020) but
incorporates code-specific knowledge to endow
the model with better code understanding.

Main results.
The experimental results are presented in Table 2.

Our proposed kNN-TRANX exhibits a superior
performance over BertranX on the CoNaLa dataset
by 3.11 BLEU (9.1%), 2.95 CodeBLEU (8.2%),
and 1.6 EM (27.6%). On the Django dataset, we
observed improvements of 3.34 BLEU (4.2%), 2.81
CodeBLEU (3.6%), and 2.39 EM (3.0%). These re-
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Model CoNaLa Django
BLEU CodeBLEU EM BLEU CodeBLEU EM

TRANX 28.11 29.01 2.5 62.31 64.35 73.70
Reranker 30.11 28.98 2.8 73.26 71.29 80.18

Ext-codegen 32.26 33.23 3.0 - - -
TAE 33.41 32.87 3.4 68.39 70.27 81.03

BertranX 34.18 36.09 5.8 79.86 78.85 79.77
REDCODER 35.12 36.82 6.4 75.36 73.01 78.82

CodeT5 36.28 35.34 6.8 76.50 71.92 80.93

kNN-TRANX 37.29 39.04 7.4 83.20 81.66 82.16

Table 2: Comparative results of models trained on the CoNaLa and Django test datasets.

Figure 4: The syntax match score of the generated code
on the CoNaLa dataset.

sults indicate that token-level retrieval can improve
the performance of code generation models, and
the improvement is more evident for challenging
tasks. To demonstrate that our model can gener-
ate code with more accurate syntax, we provide
the syntax match score (Ren et al., 2020) in Fig-
ure 4, which reflects the degree of syntax matching
in code. The results indicate that our model out-
performs the baseline model in terms of syntax
accuracy.

Analysis. We conduct an ablation study of kNN-
TRANX as shown in Table 3. The experimental
results demonstrate that retrieval filtering method
can significantly enhance the performance of the
code generation models. For the method that com-
bines NN distribution and kNN distribution, we
compared the method of measuring retrieval dis-
tance proposed in adaptive kNN-box (Zhu et al.,
2023). Experimental results show that our ap-
proach of considering both distributions compre-
hensively achieves better results. We also evaluate
the effect of placing both types of action in the

same datastore. The result shows that this approach
significantly reduces the quality of the generated
code by introducing a substantial amount of noise.
Moreover, we analyze the effect of Krule and Kpri

on the experimental results, as presented in Table 4.
The results align with our conjecture that retrieving
a small number of the syntactic nearest neighbors
and a relatively large number of semantic entries
leads to better code generation. Furthermore, Fig-
ure 5 shows that increasing the size of datastore
can improve the quality of generated code. Ad-
ditionally, Figure 5(a) and Figure 5(d) depict that
even a small amount of syntactic knowledge stored
can achieve a high quality of code generation. In
contrast, the quality of generated code keeps im-
proving as the size of semantic datastore increases.
We believe this is because semantic knowledge is
relatively scarce compared to syntactic knowledge,
which can be demonstrated by Figure 3.

4.3 Model Canonical Incremental Adaptation

Implementation details. Although the recent pro-
posed large-scale models such as Codex (Chen
et al., 2021) and GPT-4 (OpenAI, 2023) have
demonstrated its powerful code generation capabili-
ties, one of the challenges is that the trained models
are difficult to update. Models need to be continu-
ously trained via incremental learning, which con-
sumes huge computing resources. To make matters
worse, incremental learning with new data can lead
to catastrophic forgetting problems (Li and Hoiem,
2016). To address this, we validate our model using
incremental learning by only updating the datas-
tore without adapting the model parameters. We
use BertranX†1 as our base model to simulate the

1BertranX† is trained on annotated data and 5k mined data
on CoNaLa dataset.
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Model CoNaLa Django
BLEU CodeBLEU EM BLEU CodeBLEU EM

BertranX 34.18 36.09 5.8 79.86 78.85 79.77

kNN-TRANX 37.29 39.04 7.4 83.20 81.66 82.16
w/o noise filtering 36.51 38.23 7.0 81.32 79.92 81.54

w/o Confidence Network 36.89 37.82 5.8 81.23 79.15 81.98
w/o separate datastore 35.62 37.21 6.2 80.74 79.23 80.08

Table 3: Ablation study of different strategies and networks on CoNaLa dataset and Django dataset.

Krule Kpri BLEU CodeBLEU EM

1 1 36.05 37.74 6.4
1 16 36.33 37.46 7.0
1 64 36.51 37.69 7.4
1 128 36.63 37.84 7.2

4 1 35.76 37.59 6.4
4 16 37.09 38.72 7.0
4 64 37.29 39.04 7.4
4 128 37.06 38.80 7.2

16 1 36.02 37.81 6.4
16 16 37.01 38.70 7.2
16 64 36.89 38.76 7.4
16 128 37.34 38.99 7.2

Table 4: We studied the impact of different K values
on the generation results on CoNaLa dataset. Krule ∈
{1, 4, 16} and Kpri ∈ {1, 16, 64, 128}.

scenario for incremental learning. Then, we update
the datastore using {0k, 10k, 50k, 95k} mined data
in CoNaLa dataset respectively. In our experiment,
we update the datastore to perform efficient fine-
tuning. Compared to the method of fine-tuning
all parameters (which requires training 122,205k
parameters), our method only needs to train 17k,
greatly reducing the GPU memory consumption
required for training, and achieving comparable
results to fine-tuning all parameters.

It is worth noting that, compared to the previous
kNN generative model, our model includes two
datastores for syntactic and semantic information,
respectively. There are 109 kinds of token in the
syntactic datastore, and the number of correspond-
ing datastore entries is 1,603k. However, the types
of token in the semantic datastore may be infinite,
depending on the actual defined vocabulary, so the
knowledge corresponding to each vocabulary is
relatively scarce, with only 518k entries in this ex-

periment. Figure 5 confirms that providing a small
amount of syntactic knowledge can improve the
performance of the model. Therefore, we consider
two ways to update the datastores in our experi-
ments, i.e., updating both datastores and updating
the semantic datastore only.
Main results. We adopte the same evaluation met-
rics as code generation. As shown in Table 5,
firstly, without using additional datastore, kNN-
TRANX† can outperform BertranX†. As the knowl-
edge in the datastore is constantly updated, we
can see that kNN-TRANX has improved on three
evaluation criteria. In terms of BLEU evaluation,
kNN-TRANX† with 95k external data can achieve
performance comparable to that of training-based
BertranX. Furthermore, we update only the seman-
tic datastore, which can also be effective. We
also provide two examples to demonstrate how k-
nearest-neighbor retrieval assists in model decision-
making in Appendix A.1. It should be noted that
the CoNaLa dataset was obtained through data min-
ing, and the majority of the NL-code pairs obtained
through mining are irrelevant, which greatly adds
noise to our retrieval. Therefore, we believe that
kNN-TRANX can perform even better on more
reliable data sources through incremental learning.

5 Related Work

Code generation. Code generation aspires to gen-
erate target code through natural language to im-
prove programmers’ development efficiency. Yin
and Neubig (2018) propose TRANX to generate
ASTs instead of generating code snippets directly.
Based on TRANX, Beau and Crabbé (2022) pro-
pose BertranX relying on a BERT encoder and a
grammar-based decoder. Poesia et al. (2022) pro-
pose a framework for substantially improving the
reliability of pre-trained models for code genera-
tion. Chen et al. (2022) propose CodeT to lever-
age pre-trained language models to generate both
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Figure 5: The impact of datastore size on the BLEU and CodeBLEU scores of CoNaLa dataset and Django dataset.
We used three strategies to reduce the datastore size, which are reducing the storage of syntactic knowledge, semantic
knowledge, and both types of knowledge.

the code snippets along with test cases, and select
the best code based on the number of test cases
passed. Besides, researchers used pre-training
methods to incorporate more external knowledge
into the model, effectively improving its perfor-
mance on downstream tasks (Feng et al., 2020;
Wang et al., 2021; Ahmad et al., 2021). Recently,
large-scale pre-training models have demonstrated
remarkable capabilities in code generation (Li et al.,
2023; Wang et al., 2023; Touvron et al., 2023).

Retrieval-augmented models. Retrieving and in-
tegrating auxiliary sentences has shown effective-
ness in enhancing the generation of class models.
Farajian et al. (2017) propose retrieving similar
sentences from the training set to adapt to differ-
ent inputs. The work of Hayati et al. (2018) is
built on the neural network model of AST driver
and generates code by searching action subtrees.
Parvez et al. (2021) propose using retrieved natu-
ral language code to improve the performance of
code generation and code translation models using
REDCODER.

Recently, Khandelwal et al. (2021) propose
kNN-MT, a non-parametric paradigm for construct-

ing a datastore using a decoder representation as
a key and using the corresponding target charac-
ter as a value. The generation is done by retriev-
ing the top k neighbors as the result. Based on
this paradigm, a number of optimization methods
have also been proposed. Zheng et al. (2021) use a
meta-k network to dynamically adjust the retrieval
weights. Jiang et al. (2022) improve the robustness
of kNN-MT in terms of both model structure and
training methods. Meng et al. (2022) propose Fast
kNN-MT, which improves retrieval efficiency by
constructing multiple smaller datastores.

6 Conclusion

In this paper, we propose kNN-TRANX. By provid-
ing syntactic and semantic datastores for seq2tree
model, we are able to outperform the baselines.
In addition, we provide more knowledge for the
model by switch the datastores without fine-tuning
the neural network. Experimental results show that
kNN-TRANX exhibits competitive performance
against learning-based methods through incremen-
tal learning. In the future, we plan to construct
a smaller and more fine-grained syntactic datas-

1298



Model Only External BLEU CodeBLEU EM Training Cost Extra
Semantics Data (FLOPs) Storage

BertranX† - - 29.22 29.89 4.0 1.09 · 1017 -

kNN-TRANX† - 0 32.25 32.08 4.2 1.11 · 1017 0.2G

kNN-TRANX† False
10k 32.95 32.87 4.4 1.14 · 1017 0.5G
50k 33.71 33.58 4.4 1.23 · 1017 1.3G
95k 34.04 34.69 4.8 1.35 · 1017 2.2G

kNN-TRANX† True
10k 32.28 32.14 4.2 1.14 · 1017 0.3G
50k 33.25 33.87 4.2 1.23 · 1017 0.5G
95k 33.89 34.43 4.6 1.35 · 1017 0.8G

BertranX - - 34.18 36.09 5.8 1.55 · 1018 -

Table 5: The results of model canonical incremental adaptation. BertranX† is trained on cleaned 2k and mined 5k
data. kNN-TRANX† is built on the same size data as a datastore on top of BertranX†. When Only Semantics is set
to False, both datastores are updated simultaneously, while True means only semantic datastore is updated. External
data refers to the quantity of training data updating the datastore.

tore to reduce the search space of the model and
accelerate model inference.

Limitations

Although our proposed approach can enhance the
generalizability of the seq2tree model and enable
rapid updates by switching datastores, incorporat-
ing extra datastores necessitates a similarity search
at each time step of inference. Even though only
one of the two datastores needs to be retrieved,
the inference time for the model may still increase
considerably (cf. Appendix A.2). Furthermore,
the incorporation of additional datastores will con-
sume storage space and may escalate with growing
training data. Although the previous work has pro-
posed approaches to reduce the content of datastore
through pruning, this approach also leads to model
performance degradation.
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A Appendix

A.1 Case Study on Model Canonical
Incremental Adaptation

We showcase two selected instances from the
CoNaLa dataset in Table 6. For each instance, we
present the output and probability distribution of
the model when generating incorrect behavior. We
also demonstrate how our method utilizes the kNN
algorithm to enhance the model’s decision-making
process, thereby proving the effectiveness of our
method. As shown in the first example, BertranX†

demonstrates the ability to construct code with ap-
propriate syntax, but it inaccurately generates the
primitive legend. However, with the assistance of
kNN-TRANX†, the final decision of the model
changes through retrieval, resulting in the desired
code. In the second example, BertranX† makes
an error when generating the second token. kNN-
TRANX†, utilizing an updated syntactic datastore,
produces code that is semantically close to the tar-
get code. In contrast, kNN-TRANX†, which did
not update the syntactic datastore, has drawbacks
in the generation of correct code due to insuffi-
cient syntactic node information, despite having
improved retrieval efficiency and datastore size.
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NL: Plot dataframe df without a legend.

Target code: df.plot(legend=False)

Target action sequence: [Expr, Call, Attribute, Name, df, Load, plot, Load, Reduce, keyword, legend, NameConstant, · · · ]
Model Predicted Code Predicted Action Sequence pNN pkNN λ p(y|x)

♣
df.plot(kind=‘bar‘,

[· · · keyword, kind · · · ]
p(kind) = 0.63 - - p(kind) = 0.63

legend=0) p(legend) = 0.21 p(legend) = 0.21

♢ df.plot(legend=False) [· · · keyword, legend · · · ]
p(kind) = 0.63 p(kind) = 0.12

0.38
p(kind) = 0.44

p(legend) = 0.21 p(legend) = 0.88 p(legend) = 0.46

♠ df.plot(legend=False) [· · · keyword, legend · · · ]
p(kind) = 0.63 p(kind) = 0.12

0.41
p(kind) = 0.42

p(legend) = 0.21 p(legend) = 0.88 p(legend) = 0.48

NL: Get rid of none values in dictionary kwargs.

Target code: res = {k: v for k, v in list(kwargs.items()) if v is not None}

Target action sequence: [Assign, Name, res, Store, Reduce, DictC, Name, k, Load, Name, v, Load, comprehension, · · · ]
Model Predicted Code Predicted Action Sequence pNN pkNN λ p(y|x)

♣ kwargs.values() [Expr, Call · · · ]
p(Call) = 0.43

- -
p(Call) = 0.43

p(DictC) = 0.38 p(DictC) = 0.38

p(Subs) = 0.14 p(Subs) = 0.14

♢
{k: v for k, v in

[Expr, DictC · · · ]
p(Call) = 0.43 p(Call) = 0.05

0.47

p(Call) = 0.25

list(kwargs.items()) p(DictC) = 0.38 p(DictC) = 0.95 p(DictC) = 0.65

if v is not None} p(Subs) = 0.14 p(Subs) = 0 p(Subs) = 0.07

♠ kwargs.items()[0] [Expr, Subs · · · ]
p(Call) = 0.43 p(Call) = 0.21

0.36

p(Call) = 0.35

p(DictC) = 0.38 p(DictC) = 0 p(DictC) = 0.14

p(Subs) = 0.14 p(Subs) = 0.79 p(Subs) = 0.37

Table 6: The case study of model canonical incremental adaptation. ✓ represents the correct target code. ♣ is the
generated result of BertranX†. ♢ and ♠ are the generated results of updating or not updating the syntactic datastore
with 95k external data by kNN-TRANX†. The actions enclosed in the red boxes indicate the generated errors. We
present the probability distribution of model decisions during the generation of these erroneous tokens.

Model Decoding Time (ms/code)
BertranX 357.5(×1.00)
kNN-MT 1258.4(×3.52)

kNN-TRANX 722.2(×2.02)

Table 7: Decoding time of different models.

A.2 Decoding Time
We compared the decoding time of BertranX, kNN-
MT, and kNN-TRANX using the CoNaLa test set.
During decoding, the beam size was set to 15. The
results are presented in Table 7.
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