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Abstract

Rumors spread rapidly through online social
microblogs at a relatively low cost, causing
substantial economic losses and negative con-
sequences in our daily lives. Existing rumor
detection models often neglect the underlying
semantic coherence between text and image
components in multimodal posts, as well as
the challenges posed by incomplete modalities
in single modal posts, such as missing text or
images. This paper presents CLKD-IMRD, a
novel framework for Incomplete Modality Ru-
mor Detection. CLKD-IMRD employs Con-
trastive Learning and Knowledge Distillation
to capture the semantic consistency between
text and image pairs, while also enhancing
model generalization to incomplete modalities
within individual posts. Extensive experimen-
tal results demonstrate that our CLKD-IMRD
outperforms state-of-the-art methods on two
English and two Chinese benchmark datasets
for rumor detection in social media1.

1 Introduction

Social media platforms like Twitter and Weibo al-
low people to contribute vast amounts of content
to the Internet. However, this content is often rife
with rumors, which can lead to significant societal
problems. For instance, in the first three months of
2020, nearly 6,000 people were hospitalized due
to coronavirus misinformation2, while COVID-19
vaccine misinformation and disinformation are es-
timated to cost 50 to 300 million each day3.

Humans are generally susceptible to false infor-
mation or rumors and may inadvertently spread

∗ Corresponding author.
1Code for all experiments in this paper are available at

https://github.com/fupinyun/CLKD-IMRD
2https://www.who.int/news-room/feature-

stories/detail/fighting-misinformation-in-the-time-of-covid-
19-one-click-at-a-time

3https://asprtracie.hhs.gov/technical-
resources/resource/11632/covid-19-vaccine-misinformation-
and-disinformation-costs-an-estimated-50-to-300-million-
each-day

them (Vosoughi et al., 2018). Suffering from
the low coverage and long delay of rumor detec-
tion manually, automatic rumor detection model-
s are essential. Previous text modality-based ru-
mor detection models focused on exploring prop-
agation (Lao et al., 2021), user information (Li
et al., 2019), and writing styles (Przybyla, 2020;
Xu et al., 2020).

Furthermore, as reported in Jin et al. (2017), mi-
croblogs with pictures have been found to have
11 times more access than those without pictures,
which highlights the importance of multimodal
content in rumor detection. Specifically, some
studies have investigated the fusion of differen-
t modalities, such as images and text, by directly
concatenating their representations (Khattar et al.,
2019; Singhal et al., 2022). Nevertheless, directly
concatenating two different modalities (i.e., tex-
tual and visual modalities) may not capture their
deep semantic interactions. To address this issue,
co-attention-driven rumor detection models aim to
extract the alignment between the two modalities
(Wu et al., 2021; Zheng et al., 2022). However,
current multimodal rumor detection models typi-
cally overlook the problem of incomplete modali-
ties, such as the lack of images or text in a given
post, making them less effective in handling such
cases.

To address the above issues, we propose a nov-
el approach, Contrastive Learning and Knowledge
Distillation for Incomplete Modality Rumor De-
tection (CLKD-IMRD). In fact, supervised con-
trast learning effectively pulls together represen-
tations of the same class while excluding repre-
sentations from different classes, and knowledge
distillation can effectively handle the incomplete
modality cases when debunking rumors. More
specifically, we first construct a teacher model that
consists of multimodal feature extraction, mul-
timodal feature fusion, and contrastive learning.
Then, we adopt knowledge distillation to construct
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a student model that can handle incomplete modal-
ities (i.e., lack of images or texts). Experimen-
tal results and visualizations demonstrate that our
CLKD-IMRD outperforms state-of-the-art meth-
ods on both English and Chinese datasets in rumor
detection on social media.

This paper makes three major contributions.
(1) We propose a novel rumor detection frame-

work that integrates the supervised contrastive
learning into our teacher network. This frame-
work captures the deep semantic interactions a-
mong source texts, images, and user comments si-
multaneously.

(2) We present a knowledge distillation driven
rumor detection model that can handle incomplete
modalities (i.e., lack of images or texts), which is
a common phenomenon on social media.

(3) We conduct extensive experiments and vi-
sualization to verify the effectiveness of the pro-
posed CLKD-IMRD model on the four benchmark
rumor corpora compared to many strong baseline
models.

2 Related Work

2.1 Single Modality-based Models

Generally, propagation patterns are good indica-
tors of rumor detection, because the interaction a-
mong different kinds of users (e.g., normal users
and opinion leaders) or a source microblog and it-
s subsequent reactions can help to detect rumor.
As mentioned in (Wu et al., 2015), a rumor was
first posted by normal users, and then some opin-
ion leaders supported it. Finally it was reposted
by a large number of normal users. The propa-
gation of a normal message, however, was very
different from the propagation pattern of a fake
news. The normal message was posted by opinion
leaders and was reposted directly by many normal
users instead. Ma et al. (2017) also proposed a
propagation path-based model to debunk rumors.
Lao et al. (2021) presented a propagation-based
rumor detection model to extract the linear tempo-
ral sequence and the non-linear diffusion structure
simultaneously.

In addition, user information is also a good in-
sight to rumor detection, because the authorita-
tive users are unlikely to publish a rumor, while
normal users have a high probability to produce
or repost a rumor instead. Specifically, Mukher-
jee and Weikum (2015) assessed user credibility
based on several factors, including community en-

gagement metrics (e.g., number of answers, rat-
ings given, comments, ratings received, disagree-
ment and number of raters), inter-user agreement,
typical perspective and expertise, and interaction-
s. Yuan et al. (2020) proposed a fake news detec-
tion model based on integrating the reputation of
the publishers and reposted users. Li et al. (2019)
presented a user credit driven multi-task learning-
based framework to conduct rumor detection and
stance detection simultaneously.

Furthermore, the writing style is a crucial factor
in rumor detection, as there are often distinct dif-
ferences in the vocabulary and syntax used in ru-
mors compared to non-rumors. Specifically, Ru-
bin et al. (2015) proposed a rhetorical structure-
based framework for news verbification. The
rhetorical structure is a wildly used theory in dis-
course analysis, which describes how the con-
stituent units of a discourse are organized into
a coherent and complete discourse according to
a certain relationship. According to the rhetori-
cal structure theory, the relationship between dis-
course units mostly shows the nucleus-satellite re-
lationship. Compared with the author’s commu-
nicative intention, the discourse unit in the core
position is in a relatively important position, and
there are different discourse relationships between
the core discourse unit and the satellite discourse
unit. Potthast et al. (2018) adopted some lexical
features (e.g., characters uni-gram, bi-gram and
tri-gram, stop words, part of speech, readability
value, word frequency, proportion of quoted word-
s and external links, number of paragraphs, and
average length of a text) for fake news detection.
Przybyla (2020) presented a writing style-based
fake news detection framework to verify the effec-
tiveness of sentiment vocabularies.

2.2 Multimodal-based Models

Wang et al. (2018) presented a GAN-based mul-
timodal fake news detection model to adopt VG-
G (Visual Geometry Group) to extract visual fea-
tures and employ a CNN (Convolutional neural
network) to extract text features simultaneously.
They also integrated the characteristics of the in-
variance of an event to facilitate the detection of
the newly arrived events of fake news. Khattar
et al. (2019) proposed a variational auto-encoder-
based fake news detection model to capture the
shared representation between textual and visu-
al modalities. Their novel decoder can utilize
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Figure 1: Framework of CLKD-IMRD. FC: fully connection; R: rumor; N: non-rumor.

the multimodal representations from a variation-
al auto-encoder. Zhou et al. (2020) presented
a similarity-based fake new detection model to
calculate the similarity between multimodal and
cross-modal features jointly. In addition, Dhawan
et al. (2022) proposed a graph attention-based fake
news detection framework to incorporate the inter-
action between textual word information and the
local visual object from images. Wei et al. (2021)
presented a graph convolutional networks-based
rumor detection model to investigate the reliability
of potential relationships in propagation structures
through a Bayesian model. Yuan et al. (2019) p-
resented a graph-based rumor detection model to
combine the encoding of local semantic and glob-
al structural information simultaneously. Zheng
et al. (2022) proposed a GAT-based rumor detec-
tion model to integrate textual, visual, and social
graphs altogether.

Despite the emergence of many multimodal ru-
mor detection models in recent years, they often
overlook the distinguishing features of samples
with the same or different types of labels. Addi-
tionally, these models do not account for incom-
plete modality situations, where the image may
fail to load, which is a common occurrence on
the Internet. To address these gaps, we propose
a novel framework based on contrastive learning
and knowledge distillation to effectively debunk

rumors with incomplete modalities.

3 Methodology

3.1 Task Formulation

Let’s define P = {p1, p2, ..., pn} as a set of post-
s. Each post pi consists of {ti, vi, ci}, where ti
indicates a source text, vi donates an image, and
ci refers to a comment. We approach rumor de-
tection as a binary classification task, with a goal
of learning a function f(pi) → y, where pi repre-
sents the given multi-modal post, and y represents
the label assigned to the post, where y=1 indicates
a rumor and y=0 indicates a for non-rumor.

3.2 Framework of CLKD-IMRD

Figure 1 illustrates our proposed CLKD-IMRD
framework for rumor detection. Specifically, we
employ a multimodal feature extraction module to
obtain representations of the source text, images,
and comments from a given post. For the teacher
model, the extracted multimodal features are fed
into a multimodal feature fusion module. During
the multimodal feature fusion phase, we adopt vi-
sual features to enhance textual features, using the
cross-modal joint attention mechanism to obtain
enhanced features between textual and visual rep-
resentations. Then, in the output layer module, we
integrate features from different modalities into a
supervised contrastive learning framework. For
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the student model which lacks visual modality, we
directly concatenate the representation of source
text and comments, and adopt knowledge distilla-
tion to obtain corresponding classification results.

3.2.1 Teacher Model
The teacher model is composed of three modules:
multimodal feature extraction, multimodal feature
fusion, and output layer.

Multimodal Feature Extraction: For textu-
al feature extraction, we utilize a CNN to obtain
the textual representations of source text and com-
ments. Given a text ti in a post pi, we first ob-
tain its representation as Oi

1:Lt
= {oi

1, o
i
2, ..., o

i
Lt

}
where ot

j indicates the word embeddings of the
j-th word in a text ti, and o ∈ Rd where d do-
nates the dimension size of the word embedding.
Then, the word embedding matrix O is fed in-
to a CNN framework to obtain the feature map
Si = {Si1, Si2, ..., Si(Lt−k+1)} where k is the
size of receptive field. Next, we perform max-
pooling on Si to obtain the Ŝi = max(Si) and
extract the final representation for the source tex-
t ti as Ri

t = concat(Ŝi
k=3, Ŝ

i
k=4, Ŝ

i
k=5) through

concatenating of different receptive fields. Sim-
ilarly, we extract the representation for comment
Ci as Ri

c = concat(Ŝi
k=3, Ŝ

i
k=4, Ŝ

i
k=5).

We utilize ResNet-50 (He et al., 2016) to extrac-
t the representation for image vi. Specifically, we
first extract the output of the second-to-last layer
of ResNet-50 and represent it as V i

r , feeding it in-
to a fully connected layer to obtain the final visual
features as Ri

v = σ(Wv ∗ V i
r ) with the same di-

mension size as the textual features.
Multimodal Feature Fusion: To capture the

interaction among different modalities and en-
hance cross-modal features, we employ a co-
attention (Lu et al., 2019) mechanism. For both
textual and visual modalities, we first adopt multi-
head self-attention (Vaswani et al., 2017) to en-
hance the inner feature representation. For in-
stance, given a textual feature Ri

t, we adopt Qi
t =

Ri
tW

Q
t , Ki

t = Ri
tW

K
t , and V i

t = Ri
tW

V
t to calcu-

late matrix Q, K, and V , respectively, where WQ
t ,

WK
t , and W V

t ∈ Rd∗ d
H are linear transformation

where H donates the total number of heads. We
obtain the multi-head self-attention feature of tex-
tual modality as equation 1 as follows.

Zi
t = (||Hh=1softmax(

Qi
tK

i
t
T

√
d

)V i
t )WO

t (1)

where "||" donates concatation operation. h refers
to the h-th head, and WO

t ∈ R(d∗d) indicates the
output of linear transformation.

Similarly, we obtain the multi-head self-
attention feature of visual modality as equation 2
as follows.

Zi
v = (||Hh=1softmax(

Qi
vK

i
v
T

√
d

)V i
v )WO

v (2)

To extract the co-attention between the textual
and visual modalities, we perform a similar self-
attention process, replacing Ri

t to Zi
v, Ri

t to Zi
t to

generate Qi
v, Ki

t and V i
t , respectively, and finally

obtain the enhanced textual features Zi
vt with vi-

sual features as equation 3.

Zi
vt = (||Hh=1softmax(

Qi
vK

i
t
T

√
d

)V i
t )WO

vt (3)

Next, we perform the second co-attention be-
tween Zi

vt and Zi
v to obtain the cross-modality fea-

ture Z̃i
vt and Zi

tv as equation 4 and 5, respectively.

Z̃i
vt = (||Hh=1softmax(

Qi
vK

i
vt

T

√
d

)V i
vt)W

O
vt (4)

Zi
tv = (||Hh=1softmax(

Qi
tK

i
v
T

√
d

)V i
v )WO

tv (5)

Finally, we conduct concatenation for the two
enhanced features and the initial comment features
to obtain the final multimodal features as Zi =
concat(Z̃i

vt, Z
i
tv, R

i
c).

Output Layer: Given that supervised con-
trast learning (SCL) (Khosla et al., 2017) effec-
tively pulls together representations of the same
class while excluding representations from differ-
ent classes, we incorporate the supervised contrast
learning function into our total loss for the rumor
detection as equation 6. To enhance the robust-
ness of the proposed model, we introduce projec-
tion gradient descent (PGD) (Madry et al., 2017)
into textual embeddings when calculating the gra-
dient of textual features in each training iteration
and adopt it to calculate adversarial perturbations.
Then, we recalculate the gradient on the updated
textual features, repeat this process with m times,
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and adopt spherical space to limit the range of dis-
turbance. Finally, we accumulate the above adver-
sarial gradient to the original gradient and adopt it
for parameter adjustment.

LTeacher = (1 − λ)LCE + λLSCL (6)

where λ ∈ {0, 1} is a hyper parameter, CE do-
nates cross entropy (equation 7), and SCL indi-
cates supervised contrast learning (equation 8).

LCE = − 1

N

N∑

i=1

C∑

c=1

yi,clogŷi,c (7)

where C indicates the label type (i.e., rumor and
non-rumor), yi,c donates the true label with class
type c, and ŷi,c refers to the predicted probability
with class type c.

LSCL =
1

N

∑

i∈I

1

|Pi|
∑

p∈Pi

−log
exp(

Zi.Zp

Γ )
∑

a∈Ai
exp(Zi.Za

Γ )

(8)
where I donates the set of indexes of training sam-
ples, Pi embodies the set of indexes of positive
samples, Ai refers to the indexes of contracted
samples, Zi stands for the normalization, and Γ
indicates a temperature parameter to control dif-
ferent categories.

3.2.2 Student Model
As mentioned in the Introduction section, exist-
ing rumor detection models ignore the incomplete
modality problem. It is common for the image
to fail to load in a given multimodal post. Due
to the lack of visual information, only textual in-
formation can be used for rumor detection. To
address this issue, we adopt knowledge distilla-
tion (Hinton et al., 2015) to perform incomplete
rumor detection based on our pre-trained teacher
model. The motivation behind knowledge distil-
lation is to leverage the soft labels predicted by
the teacher network to guide the learning of the s-
tudent network and improve its performance. By
minimizing the distance between the soft probabil-
ity distributions of the student and teacher models,
as measured by the KL loss (equation 9), we aim
to align the predictions of the student model with
those of the teacher model. In essence, knowl-
edge distillation serves the purpose of incorporat-
ing soft targets associated with the teacher net-
work, which exhibits complex yet superior predic-
tion performance, into the overall Loss function.

This facilitates the training of the student network,
which is simplified, possesses lower complexity,
and is more suitable for deployment in inference
scenarios. The ultimate goal is to achieve effec-
tive knowledge transfer.

LKD(qt, qs, τ) =
N∑

i=1

2τ2KL(σ(
qt
i

τ
), σ(

qs
i

τ
))

(9)
where qt and qs donate the output of teacher and s-
tudent network, respectively, σ indicates softmax,
τ refers to scale the temperature of the smooth-
ness of two distributions. A lower value of τ will
sharpen the distribution, leading to an expanded
difference between the two distributions. It con-
centrates the distillation on the maximum output
predicted by the teacher network. On the other
hand, a higher value of τ will flatten the distri-
bution, narrowing the gap between the teacher and
student networks. This broader distribution con-
centrates the distillation on the entire output range.
Then, the total loss of student model is shown in
equation 10.

LStudent = αLKD + (1 − α)LCE (10)

where CE donates cross entropy, and α is a hyper
parameter.

4 Experiments

4.1 Datasets and Evaluation Metrics
We utilize four benchmark multimodal corpora:
the two Chinese datasets (e.g., Weibo-19 (Song
et al., 2019), Weibo-17 (Jin et al., 2017)) and the
two English corpus (e.g., Twitter (Boididou et al.,
2018), Pheme (Zubiaga et al., 2017)). Each dataset
comprises source text and images. The Weibo-
19 and Pheme have comments, while the Weibo-
17 and Twitter don’t have comments. Table 1
presents the statistics of the four benchmark cor-
pora. We adopt four popular evaluation metric-
s: i.e., accuracy, precision, recall, and F1-Score,
to investigate the performance of our proposed
framework and other comparing approaches.

Baselines: We take seven baseline models as
illustrated in Appendix A.1.

Hyper-parameter Settings: Following the ap-
proach of existing baseline systems, we divide the
dataset into training, validation, and testing set-
s using a ratio of 7:1:2, respectively. For word
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Table 1: Corpus statistics. N: Non-rumors; R: Rumors.

#N #R #Images #Comments
Weibo-19 877 590 1,467 4,534
Weibo-17 4,749 4,779 9,528 0

Twitter 6,026 7,898 514 0
Pheme 1,428 590 2,018 21,564

embeddings, we employ Word2Vec-style embed-
dings as proposed in (Yuan et al., 2019). The
number of head H in self-attention is set to 8.
We adopt Adam (Kingma and Ba, 2014) to opti-
mize our loss function. The learning rate is set to
0.002, and the batch size is set to 64. The value of
dropout is set to 0.6. The τ in knowledge distilla-
tion is set to 5.0. The Γ in supervised contrastives
learning is set to 0.5. The length of source text Lt

and comment Lc are set to 50. α is set to 0.7, and
λ is set to 0.5. The number of m in resistance dis-
turbance is set to 3. We perform 5 runs throughout
all experiments and report the average results and
standard deviation results.

4.2 Results and Discussion
Model Comparison: Tables 2 and 3 present the
average performance and standard deviation ob-
tained from five executions on both the Chinese
and English datasets. On the Pheme and Weibo-19
datasets, since we used the same training, valida-
tion, and testing splits as the baseline systems, we
directly compare our results with theirs. In addi-
tion, we execute the public available source codes
from these baselines on the Twitter and Weibo-
17 datasets. Since EBGCN and GLAN constructe
a propagation graph by using comments in the
source posts, we don’t report their performance on
the Weibo-17 and Twitter datasets without com-
ments information. It is evident from Tables 2 and
3 that our CLKD-IMRD outperforms other mod-
els in terms of accuracy, precision, recall, and F1-
Score measures. This highlights the significance
of multimodal feature fusion and contrastive learn-
ing in our approach. While ChatGPT has proven
effective in various NLP tasks, its performance in
rumor detection is not satisfactory. On the Weibo-
17 and Twitter datasets, only short source texts are
utilized without comments as a supplementation,
resulting in poor performance of the ChatGPT on
the rumor detection task. Based on the observa-
tions from Tables 2 and 3, we can derive the fol-
lowing insights:

(1) Among the three multi-modal baselines
(EANN, MVAE, and SAFE), SAFE achieves the

highest performance in all four measures: ac-
curacy, precision, recall, and F1-Score. On the
other hand, MVAE demonstrates the poorest per-
formance across all four measures on the Wei-
bo dataset, which highlights the ineffectiveness of
the superficial combination of textual and visu-
al modalities in MVAE. In contrast, the incorpo-
ration of event information in the EANN model
proves beneficial for debunking rumors. Notably,
the SAFE model successfully incorporates a deep
interaction between textual and visual modalities,
resulting in superior performance.

(2) Among the three social graph-based base-
lines (EBGCN, GLAN, and MFAN), they demon-
strate better performance compared to the simpler
EANN and MVAE models. Both EBGCN and
GLAN achieve comparable performance as they
incorporate structural information. However, M-
FAN, which combines textual, visual, and social
graph-based information, outperforms the others
in all four measures: accuracy, precision, recall,
and F1-Score.

Performance of Knowledge Distillation:
CLKD-IMRD involves adopting a multimodal
contrastive learning model as the teacher model,
and multimodal and incomplete modal models
as the student models. Such teacher-student
framework allows us to transfer knowledge from
the multimodal teacher model to both multimodal
and single-modal student models. We explore four
student models, each utilizing only cross-entropy
loss as the loss function.

• Student-1: The model incorporates al-
l modalities, including source text, visual in-
formation, and user comments.

• Student-2: The model focuses on textual
(source text) and visual modalities.

• Student-3: The model relies on the textu-
al modality, considering both the source text
and comments.

• Student-4: The model exclusively relies on
the source text modality.

Limited to space, the knowledge distillation re-
sults on the Weibo-19 and Pheme datasets are
shown in Table 4, which indicate that all stu-
dent models exhibit improvement when guided
by the teacher model. Even student-4, which
only includes the source text modality, demon-
strates a 1.0%-1.7% enhancement in accuracy
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Table 2: Performance comparison of rumor detection models on the two Chinese datasets.

Weibo-19 Weibo-17
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

EANN 80.96±2.26 80.19±2.37 79.86±2.46 79.87±2.40 82.83±2.64 82.76±2.42 82.68±2.58 82.71±2.43
MVAE 71.67±0.89 70.52±0.95 70.21±1.01 70.34±0.98 81.23±1.25 84.54±1.75 74.68±1.32 79.94±1.58
SAFE 84.95±0.85 84.98±0.82 84.95±0.91 84.96±0.86 75.56±1.43 76.54±1.35 74.95±1.51 74.80±1.46

EBGCN 83.14±2.01 85.46±2.12 81.76±1.54 81.45±1.74 - - - -
GLAN 82.44±2.02 82.45±2.26 80.86±1.71 81.26±1.93 - - - -
MFAN 88.95±1.43 88.91±1.60 88.13±1.68 88.33±1.53 88.23±1.83 88.56±1.91 88.07±1.98 88.17±1.73

ChatGPT 29.83±0 28.27±0 28.95±0 28.52±0 0±0 0±0 0±0 0±0
CLKD-IMRD 93.36±1.12 93.38±1.23 92.91±1.28 93.07±1.20 91.25±1.01 91.29±1.32 91.34±1.33 91.14±1.71

Table 3: Performance comparison of rumor detection models on the two English datasets.

Twitter Pheme
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

EANN 71.52±1.96 77.95±2.14 70.65±3.23 72.79±2.69 77.13±0.96 71.39±1.07 70.07±2.19 70.44±1.69
MVAE 79.91±0.96 84.88±1.23 71.48±1.10 71.57±1.25 77.62±0.64 73.49±0.81 72.25±0.90 72.77±0.81
SAFE 76.49±1.24 82.18±1.62 79.50±1.01 79.68±0.98 81.49±0.84 79.88±1.22 79.50±0.81 79.68±0.70

EBGCN - - - - 82.99±0.65 81.31±0.73 79.29±0.71 79.82±0.64
GLAN - - - - 83.32±1.64 81.25±2.06 77.13±3.26 78.51±2.68
MFAN 86.08±1.12 85.03±1.67 83.61±1.93 84.36±1.64 88.73±0.83 87.07±1.41 85.61±1.65 86.16±1.04

ChatGPT 0±0 0±0 0±0 0±0 34.29±0 24.26±0 26.94±0 25.53±0
CLKD-IMRD 88.01±0.91 88.15±1.03 84.64±0.65 86.53±0.97 89.09±0.47 87.46±0.96 85.86±0.16 86.58±0.41

and F1-Score measures. Similar improvements
are observed in the other three student model-
s (student-1, student-2, and student-3). Among
these, student-1, utilizing all modalities (source
text, visual information, and user comments),
achieves the best performance across all four mea-
sures. Generally, student-2 outperforms student-3
due to its incorporation of both textual and visual
modalities, while student-3 relies solely on textual
information.

Ablation Study: Limited to space, Table 5
presents the performance of ablation analysis on
the Weibo-19 and Pheme datasets, where we ex-
amine the impact of various components by con-
sidering five cases:

• w/o text: We exclude the use of source text.

• w/o image: We omit the utilization of image
information.

• w/o comment: We disregard the inclusion of
comments.

• w/o contrastive learning: We eliminate the
application of contrastive learning.

• w/o projection gradient descent: We do not
employ projection gradient descent.

Based on the findings in Table 5, several conclu-
sions can be drawn. 1) The source text plays a cru-
cial role in rumor detection. The performance sig-
nificantly deteriorates when the source text is ex-
cluded, underscoring the importance of the textual

modality in identifying rumors. 2) Both images
and comments contribute to debunking rumors, as
evidenced by their absence leading to a decline
in performance. 3) The integration of supervised
contrastive learning enhances the model’s ability
to distinguish between positive and negative sam-
ples in the corpora, which positively impacts the
performance of the model. 4) The inclusion of
projection gradient descent during the adversarial
perturbations training phase improves the robust-
ness of our proposed model.

Impact of Co-attention Settings: We further
analyze the performance comparison with differ-
ent number of co-attention as illustrated in Ap-
pendix A.2.

4.3 Impact of Number of Comments

We further analyze the performance of different
comment scenarios, considering the following six
cases:

• 0% comment: No comments are used in this
case.

• only the first comment: Only the first com-
ment is considered.

• 20% comments: We include 20% of the
comments in a time-sequential manner.

• 50% comments: We include 50% of the
comments in a time-sequential manner.
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Table 4: Performance comparison of knowledge distillation on Weibo-19 and Pheme. Performance improvement
is represented by numbers in parentheses with ↑ symbol.

Weibo-19 Pheme
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Teacher 94.24 94.07 93.95 94.01 89.61 88.49 85.92 87.06
Student-1 initial 93.22 93.33 92.55 92.90 88.31 86.72 84.49 85.48
Student-1 after KD 94.24(↑1.02) 94.67(↑1.34) 93.40(↑0.85) 93.93(↑1.03) 88.83(↑0.52) 87.39(↑0.67) 85.11(↑0.62) 86.13(↑0.65)
Student-2 initial 91.53 90.99 91.67 91.27 86.49 84.63 81.91 83.08
Student-2 after KD 93.22(↑1.69) 93.67(↑2.68) 92.28(↑0.61) 92.85(↑1.58) 88.31(↑1.82) 86.23(↑1.60) 85.26(↑3.35) 85.72(↑2.64)
Student-3 92.20 92.33 91.42 91.82 87.01 84.56 83.86 84.18
Student-3 after KD 93.22(↑1.02) 93.19(↑0.86) 92.69(↑1.27) 91.92(↑0.10) 88.31(↑1.30) 86.91(↑2.35) 84.23(↑0.37) 85.40(↑1.22)
Student-4 90.85 91.85 89.33 90.23 86.23 83.65 82.76 83.18
Student-4 after KD 92.20(↑1.35) 92.33(↑0.48) 91.42(↑2.09) 91.81(↑1.58) 87.79(↑1.56) 86.65(↑3.00) 83.08(↑0.32) 84.57(↑1.39)

Table 5: Ablation study.

Weibo-19 Pheme
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

CLKD-IMRD 94.24 94.07 93.95 94.01 89.61 88.49 85.92 87.06
w/o text 81.02 80.36 80.00 80.17 77.14 72.76 68.56 69.89
w/o image 92.20 92.49 91.29 91.79 88.05 86.30 84.30 85.20
w/o comment 92.54 93.36 91.30 92.08 86.75 84.43 83.12 83.73
w/o contrastive
learning 93.22 93.33 92.55 92.90 88.31 86.72 84.49 85.48
w/o projection
gradient descent 92.54 92.17 92.39 92.27 87.27 84.60 84.78 84.79

Table 6: Performance comparison with different num-
ber of comments.

Accuracy Precision Recall F1-Score
Weibo-19

0% comments 92.54 93.36 91.30 92.08
only the
first comment 94.24 94.07 93.95 94.01
20% comments 93.56 93.61 92.97 93.26
50 % comments 92.88 92.37 93.08 92.67
80 % comments 92.88 92.90 92.27 92.55
all comments 93.22 93.33 92.55 92.90

Pheme
0% comments 86.75 84.43 83.12 83.73
only the
first comment 89.61 88.49 85.92 87.06
20% comments 87.27 84.71 82.53 84.62
50 % comments 87.01 85.14 82.79 83.82
80 % comments 88.02 87.04 83.14 84.74
all comments 88.02 85.50 85.50 85.50

• 80% comments: We include 80% of the
comments in a time-sequential manner.

• all comments: All comments are included.

Limited to space, the impact of number of com-
ments results on the Weibo-19 and Pheme are
shown in Table 6. Based on the findings in Table
6, we can draw the conclusion that increasing the
number of comments does not contribute signifi-
cantly to debunking rumors. In fact, as the number
of comments increases, the introduction of noise
becomes more prominent. Interestingly, the first
comment proves to be more valuable in the context
of rumor detection, as it carries more relevant in-
formation for distinguishing between rumors and
non-rumors.

Figure 2: T-SNE visualization on the Weibo-19.

Visualization Studies: Figures 2 and 3 dis-
play the T-SNE visualization of the test data from
Weibo-19 and Pheme, respectively. The visualiza-
tions clearly depict the successful classification of
most samples into distinct groups, demonstrating
the effectiveness and strong representation capa-
bility of our proposed model.

Figures 4 and 5 showcase the attention visual-
ization samples with the label "non-rumor" and
"rumor" from the Weibo-19 and Pheme, respec-
tively, which provides insights into the interaction
between textual and visual information, and how
the enhanced features contribute to debunking ru-
mors. In Figure 4, the words "cat" and "dog" high-
lighted in red demonstrate high attention weight-
s and align well with specific regions in the cor-
responding image. This accurate alignment con-
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Figure 3: T-SNE visualization on the Pheme.

Figure 4: Attention visualization on the Weibo-19.

tributes to the prediction of the sample as a non-
rumor. In contrast, in Figure 5, the words "sus-
pect" and "MartinPlace" fail to align with their re-
spective image regions, indicating poor alignmen-
t and predicting the sample as a rumor correctly.
These observations highlight the deep semantic in-
teraction between the textual and visual modalities
within our proposed model.

Figure 5: Attention visualization on the Pheme.

5 Conclusion

In this paper, we propose a rumor detection frame-
work that combines supervised contrastive learn-
ing and knowledge distillation. Our framework
leverages hierarchical co-attention to enhance the
representation of textual (source text and com-
ments) and visual modalities, enabling them to
complement each other effectively. The utilization
of contrastive learning has proven to be success-
ful in debunking rumors. Additionally, knowledge
distillation has demonstrated its efficacy in han-
dling incomplete modalities for rumor detection.
Moving forward, our future work aims to integrate
graph structures, such as social graphs, into our
proposed framework for further improvement.
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A Appendix

A.1 Baselines

To investigate the performance of our proposed
CLKD-IMRD model, we will perform comparison
studies on following approaches.

EANN (Wang et al., 2018): A GAN-based mul-
timodal model that adopts characteristics of the in-
variance of an event to facilitate the detection of
the newly arrived events of fake news.

MVAE (Khattar et al., 2019): A variational
auto-encoder-based model that captures the shared
representation between textual and visual modali-
ties.

SAFE (Zhou et al., 2020): A similarity-aware
multimodal model that debunks fake news from
the similarity between multimodal and cross-
modal features jointly.

EBGCN (Wei et al., 2021): An edge-
enhanced bayesian graph convolutional networks-
based model that investigates the reliability of po-
tential relationships in propagation structures.

GLAN (Yuan et al., 2019): An integration of
local semantic and global structural information-
based model that debunks rumor.

MFAN (Zheng et al., 2022): A feature-
enhanced attention networks-based multimodal
model that combines textual, visual, and social
graphs to enhances graph topology and neighbor-
hood aggregation processes when detecting rumor.

ChatGPT 4: A popular application showcasing
the capabilities of the GPT language model is our
baseline model. Since ChatGPT cannot receive
image modality, we adopt the source text and the
first comment as the input of ChatGPT, along with
a question "judge it a rumor or not" to obtain the
response, and map the results to labels (i.e.g, "yes"
to rumor, "no" to non-rumor, "unable to judge" to
none).

A.2 Impact of Co-attention Settings

Limited to space, Table 7 lists the performance
comparison with different number of co-attention
on the Weibo-19 and Pheme datasets. We consider
four cases as follows.

• Zero Co-attention: In this case, no co-
attention is used. The representations of the
source text, visual images, and comments are
directly concatenated.

4https://openai.com/blog/chatgpt

Table 7: Performance comparison with different num-
ber of co-attention; co-att donates co-attention.

Accuracy Precision Recall F1-Score
Weibo-19

Zero co-att 92.54 92.04 92.66 92.31
One co-att 93.22 93.06 92.82 92.94
Two co-att 93.90 93.77 93.53 93.64
Three co-att 94.24 94.07 93.95 94.01

Pheme
Zero co-att 86.49 83.31 85.79 84.33
One co-att 88.57 87.58 84.15 85.60
Two co-att 88.83 87.80 84.59 85.96
Three co-att 89.61 88.49 85.92 87.06

• One Co-attention: Here, only the first co-
attention is employed.

• Two Co-attention: In this case, two text-
visual co-attention operations are conducted.
The enhanced textual-visual representation is
then concatenated with the comment repre-
sentation.

• Three Co-attention: This case involves the
adoption of all three co-attention operations.
The enhanced textual and visual representa-
tions are concatenated with the comment rep-
resentations.

From Table 7, we observe that the perfor-
mance improves with an increase in the num-
ber of co-attentions. Specifically, the Zero co-
attention case demonstrates the lowest perfor-
mance across all three measures (accuracy, preci-
sion, F1-Score), which indicates the importance of
capturing the deep interaction between textual and
visual modalities through co-attentions. With the
addition of one co-attention, we observe an im-
provement in performance as the enhanced textu-
al representation aids in debunking rumors. As
expected, the best performance is achieved when
both the enhanced textual and visual representa-
tions are utilized, as evidenced by their superior
results across all four measures.
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