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Abstract

End-to-end approaches have shown promis-
ing results for speech translation (ST), but
they suffer from its data scarcity compared
to machine translation (MT). To address this,
progressive training has become a common
practice, of using external MT data during
the fine-tuning phase. Despite of its preva-
lence and computational overhead, its valid-
ity is not extensively corroborated yet. This
paper conducts an empirical investigation and
finds that progressive training is ineffective.
We identify learning-forgetting trade-off as
a critical obstacle, then hypothesize and ver-
ify that consistency learning (CL) breaks the
dilemma of learning-forgetting. The proposed
method, which combines knowledge distilla-
tion (KD) and CL, outperforms the previous
methods on MuST-C dataset (Di Gangi et al.,
2019) even without additional data, and our pro-
posed consistency-informed KD achieves ad-
ditional improvements against KD+CL. Code
and models are availble at https://github.
com/hjlee1371/consistency-s2tt.

1 Introduction

While traditional speech-to-text translation (ST)
systems are built by pipelining automatic speech
recognition (ASR) and machine translation (MT),
end-to-end (E2E) approach recently emerges as a
promising direction to ameliorate error propagation
and model complexity problems (Anastasopoulos
et al., 2022; Bentivogli et al., 2021). However,
E2E ST models encounter data scarcity due to the
need for cross-modal annotations, which are less
abundant compared to datasets used in related tasks
such as machine translation.

Our goal is to enable effective cross-modal trans-
fer from machine translation (MT) models, which
have ample training data, to ST models with lim-
ited data. In pursuit of this goal, we investigate
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Figure 1: Schematic diagram1illustrating the intrinsic
tension in adding MT data for ST training. When ex-
ternal MT data is added during finetuning (in red), the
model experiences ST-MT interference. Conversely,
when less external MT data is incorporated (in blue),
the model tends to forget MT knowledge, resulting in
suboptimal cross-modal transfer.

the widely used progressive training technique in
ST (Tang et al., 2021b,a; Ye et al., 2022; Tang et al.,
2022; Ye et al., 2021), where external MT data
is continuously integrated during the fine-tuning
phase. However, our evaluation brings forth sur-
prising results, as we find that progressive training
is inadequate and leads to suboptimal outcomes.

This inadequacy is due to the dilemma in adding
MT data for ST training. Using external MT data
may incur interference between the two tasks, but
having less external MT data leads to forgetting.

To break the knot in Figure 1, we first shed light
on the overlooked relationship between consistency
and forgetting. In addition, we introduce a novel
approach called consistency-informed knowledge
distillation (cKD). Our findings and proposed meth-
ods are thoroughly evaluated on the MuST-C bench-
mark, encompassing various language pairs. The
results demonstrate the superior performance and
enhanced data efficiency of our approach compared
to previous methods.

Our contributions are as follows.
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• We reevaluate the validity of the widespread
use of progressive training, and find that it is
ineffective.

• We find that consistency learning (CL) reme-
dies the catastrophic forgetting problem, and a
simple combination of knowledge distillation
(KD) and CL achieves promising ST BLEU
scores with a simple design choice and data-
efficient training.

• We further push the limit of KD+CL through
proposing consistency-informed KD (cKD),
which utilizes token-level consistency for
adaptive weighting of KD.

2 Motivation: Is Progressive Training
Effective?

Problem statement and Baseline To motivate,
we define our problem and describe a progressive
learning baseline by Ye et al. (2021), that we use
as strong baseline throughout the paper.

The speech translation (ST) corpus, denoted as
DST = {(s,x,y)}, consists of s (source language
speech), x (source language text or transcription),
and y (target language text or translation).

Due to the scarcity of speech translation datasets,
it is common practice to train ST models jointly
with MT or ASR subtasks (Tang et al., 2021a,b; Ye
et al., 2021). Similarly, in our approach, we train
our model jointly on ST and MT using multitask
cross-entropy losses, denoted as LCE(s,y, θ) and
LCE(x,y, θ).

In progressive training, the MT training is con-
tinued during the fine-tuning phase using external
data source Dext = {(x,y)}. Specifically, at each
epoch, Dext is randomly downsampled to D′

ext,
and during training, ST triplets (s,x,y) or MT
pairs (x,y) are sampled from the union of DST

and D′
ext.

In addition to joint training, we incorporate MT-
to-ST online knowledge distillation (KD) proposed
by Tang et al. (2021a). For the data triplet (s,x,y),
the KD loss is computed as:

LKD = −
|y|∑

i=1

|V |∑

j=1

P (yi = vj |yi<,x; θ)

logP (yi = vj |yi<, s; θ)

(1)

where vj corresponds to the j-th token of the vo-
cabulary. This encourages the ST “student" to
learn more fine-grained information from the MT
“teacher". When combined with baseline systems,

LKD is weighted by αKD and added to the final
loss.

Progressive training is ineffective Despite its
widespread adoption, we propose that the efficacy
of progressive training has been accepted without
sufficient empirical evidence and followings high-
light our empirical findings against common be-
liefs. From Table 1, we can see that progressive
training does not improve the ST performance, de-
spite expensive computational overhead, contrary
to the popular belief. For deeper understanding,
we also evaluate its MT performance throughout
the training using transcription-translation pair of
ST triplet. As depicted in Figure 2, we observe
catastrophic forgetting in MT performance when
we train ST model without Dext, while it preserves
its MT knowledge by training with Dext.

Based on our observation of catastrophic forget-
ting, it might be expected that cross-modal KD
would benefit from progressive training, as aug-
mented MT data provides a more reliable teacher
signal. However, the inclusion of an extra KD
objective in Table 1 does not yield significant im-
provements. This raises an important question:
why does addressing catastrophic forgetting not
lead to improved ST performance? It appears that
while Dext mitigates forgetting, it also diverts the
model’s focus from ST, highlighting the inherent
tension between learning ST and avoiding MT for-
getting.

Lang. Models DST +Dext p-value
De Baseline 28.07 28.07 0.4145
Es Baseline 31.35 31.30 0.2686
Fr Baseline 37.94 38.04 0.1600
De Base+KD 28.18 28.23 0.2456
Es Base+KD 31.52 31.37 0.1186
Fr Base+KD 38.28 38.33 0.2541

Table 1: ST BLEU results with the baseline and KD
training for various translation directions. Dext is ad-
ditional MT data from an external source(e.g. WMT)
other than ST triplet datasets.

3 Proposed: Effective Cross-modal
Transfer with Consistency Learning
and Consistency-informed KD

Continual Learning View of Speech Translation
ST learning can be viewed from a continual learn-
ing perspective, where knowledge is continuously
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Figure 2: Evolution of MT BLEU with transcription-
translation pairs from MuST-C En-De dev set.

accumulated through pre-trained MT, MT-, and
ST-finetuning. From this standpoint, progressive
training can be interpreted as the generalization
of rehearsal (Robins, 1995). However, as high-
lighted in studies on continual learning (Verwimp
et al., 2021) and multitask learning (Lin et al., 2019;
Sener and Koltun, 2018), bare replay of previous
tasks is not the answer to the stability-plasticity
dilemma: it only offers a suboptimal balance be-
tween MT and ST. Therefore, we turn our focus
to regularization-based methods such as elastic
weight consolidation (EWC) and its variants (Kirk-
patrick et al., 2017; Chaudhry et al., 2018; Schwarz
et al., 2018; Thompson et al., 2019).

Their main idea is to restrict the gradient of new
tasks within the low-curvature “valleys” of the loss
landscape of previous task. While traditional EWC
approximates the Hessian as the diagonals of the
Fisher information matrix

∑
i Fii(θi − θ∗i )

2, we
can remove diagonal approximation from EWC
through well-known relation between KL diver-
gence and Fisher as

DKL(pθ∗ ||pθ) ≈ Ez[log pθ∗ − log pθ]

=
1

2
(θ − θ∗)TF ∗(θ − θ∗)

(2)

While θ∗ is fixed parameter obtained from prior
tasks in original EWC, we can interpret it as cur-
rent parameter and θ = θ∗ +∆θ as the parameter
of submodel induced by arbitrary perturbations.
It recalls recently proposed CL losses such as R-
Drop (Liang et al., 2021), and provokes the ques-
tion that whether the CL framework can ameliorate
the intrinsic dilemma of ST. We thus adopt R-drop
as our CL framework, and weighted loss αCLLCL

is added to the final loss.

Consistency-informed KD If the concept of con-
sistency is indeed crucial for preventing MT forget-

ting, as we hypothesized, we can expect substantial
improvements by incorporating cross-modal KD
compared to not using it. To achieve further en-
hancements, we can go beyond the basic combina-
tion of KD and CL. In particular, we introduce a
novel loss called consistency-informed KD (cKD),
which leverages more detailed information on con-
sistency, as outlined below.

LcKD = −
|y|∑

i=1

|V |∑

j=1

e−cMT
ij P (yi = vj |yi<,x; θ)

logP (yi = vj |yi<, s; θ)

It augments vanilla KD with token-level weighting
based on MT consistency matrix cMT . Concretely,
cMT
ij represents the bidirectional KL divergence

between two forward pass probabilities for i-th
token and j-th vocabulary: P1(yi = vj |yi<,x)
and P2(yi = vj |yi<,x). Intuitively, cKD can be
understood as ignoring inconsistent MT teacher
probabilities at token-level.

4 Results and Analysis

Consistency learning remedies catastrophic for-
getting We begin by examining the hypothesis
that CL data-efficiently remedies catastrophic for-
getting. As illustrated in Figure 2, CL demonstrates
a remarkable ability to retain MT knowledge even
in the absence of additional MT data, thereby con-
firming our hypothesis. The final ST BLEU scores,
presented in Table 3, further support these findings.
Surprisingly, progressive training consistently un-
derperforms in all language directions. This sug-
gests that progressive training becomes redundant
in the presence of CL, as it loses the benefits of
preserving MT knowledge while still diverting the
models’ attention away from ST.

CL provides a more reliable teacher for KD
Thanks to our data-efficient solution for catas-
trophic forgetting, we can confidently predict larger
gains from knowledge distillation (KD), as ex-
plained in 3. To empirically demonstrate this, we
train our ST model using a simple combination of
KD and CL. The results in Table 3 clearly show
that this approach leads to greater improvements in
all language directions, surpassing the performance
of progressive training by a significant margin.

Furthermore, we observe that the performance
gain from KD is more pronounced when combined
with CL compared to KD alone (+0.29 BLEU with
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Models Joint PT
FT Data Languages

Avg.
ST MT De Es Fr

TaskAware‡(Indurthi et al., 2021) ✓ ✓ - 28.88 - - -
SpeechT5(Ao et al., 2022) ✓ ✓ - 25.18 - 35.30 -
STPT‡(Tang et al., 2022) ✓ ✓ ✓ 29.2§ 33.1 39.7 34.0

SpeechUT‡(Zhang et al., 2022) ✓ ✓ - 30.1 33.6 41.4 35.0
JT-S-MT(Tang et al., 2021a) - ✓ ✓ 26.8 31.0 37.4 31.7

XSTNet(Ye et al., 2021) - ✓ ✓ 27.8† 30.8 38.0 32.2
Chimera(Han et al., 2021) - ✓ - 27.1† 30.6 35.6 31.1

SATE(Xu et al., 2021) - ✓ - 28.1† - - -
STEMM(Fang et al., 2022) - ✓ - 28.7 31.0 37.4 32.4

WACO(Ouyang et al., 2022) - ✓ - 28.1 32.0 38.1 32.7
AdaTrans(Zeng et al., 2022) - ✓ - 28.7 - 38.7 -

ConST(Ye et al., 2022) - ✓ ✓ 28.3 32.0 38.3 32.8
Ours(Base+KD+CL) - ✓ - 29.08 32.13 39.47 33.56
Ours(Base+cKD+CL) - ✓ - 29.27∗∗ 32.32∗ 39.51 33.70

Table 2: ST BLEU scores on MuST-C tst-COMMON for various methods. † use OpenSubtitles (Lison and Tiedemann,
2016) for Dext and ‡ use additional data augmentation. § is from corresponding github implementations, not from
the papers. * and ** indicates statistically significant differences between (Base+KD+CL) and (Base+cKD+CL)
(p < 0.1 and p < 0.05).

Lang. Models DST +Dext p-value
De∗∗∗ Base+CL 28.94 28.57 0.0043
Es∗∗∗ Base+CL 31.83 31.18 0.0001
Fr∗∗ Base+CL 39.05 38.79 0.0253
De∗∗ +KD+CL 29.08 28.82 0.0240
Es∗∗∗ +KD+CL 32.13 31.43 0.0001
Fr∗∗∗ +KD+CL 39.47 38.96 0.0001

Table 3: ST BLEU results with CL training for var-
ious translation directions. *** indicates statistically
significant differences between DST and DST + Dext

(p < 0.01).

CL vs. +0.21 BLEU without CL). This suggests
that the improvements achieved through CL are
not limited to intra-modal regularization, but rather
have a broader cross-modal impact. Thus, we can
attribute the enhanced performance to a better MT
teacher originating from the non-forgetting effect
of CL.

Additional improvement from cKD and com-
parison of methods From Table 2, it is evident
that our straightforward combination of KD and
CL outperforms the majority of previous methods,
even with minimal FT data. Moreover, our pro-
posed cKD method achieves additional significant
improvements. While we included large-scale joint
pretraining (JPT) methods in the comparison, it is
important to note that these methods require signif-

icantly more data, training complexity, and com-
putational resources2. Despite this, our method
performs on par with most of the JPT approaches,
indicating ample opportunity for further research
in developing lightweight strategies for patching
modality-specific pretrained models.

Simple KD+CL is comparable to well-chosen
Dext Some previous works have observed that
introducing the spoken domain Dext, such as Open-
Subtitles (Lison and Tiedemann, 2016), improves
ST BLEU (Ye et al., 2021; Han et al., 2021). To
compare our data-efficient method with more com-
petitive models, we also conducted intensive ex-
periments for En-De using OpenSubtitles as our
new Dext during finetuning. Without CL, models
trained with OpenSubtitles achieve higher BLEU
scores, which aligns with previous works and
demonstrates the importance of domain knowledge.
However, with CL, training with a well-chosen ex-
ternal MT becomes worthless.

Considering the difficulties and high computa-
tion costs of determining the best Dext, our sug-
gested approach provides a more practical and effi-
cient way of training ST models. Further detailed
analysis of the relationship between CL and forget-
ting can be found in the appendix E.

2For detailed information, refer to appendix D

13575



Models DST +OpenSubtitles p-value
Base∗∗∗ 28.07 28.54 0.0001
+KD∗∗∗ 28.18 28.66 0.0001
+CL 28.94 28.90 0.2942
+KD+CL 29.08 28.91 0.1036

Table 4: ST BLEU results with various training con-
figurations for En-De, after substituting WMT with
OpenSubtitles. *** indicates statistically significant
differences between DST and DST +Dext (p < 0.01).

5 Conclusion

In this paper, we conduct thorough experiments
to reexamine the effectiveness and efficiency of
progressive training. We identify the key challenge
of balancing ST and MT tasks and discover that,
when KD and CL are combined with a balance,
adding data plays a deterimental role and thus can
be omitted for higher data efficiency. Our findings
lead us to propose cKD, which dynamically utilizes
intra-modal consistency for cross-modal KD. Our
experiments demonstrate the effectiveness of cKD
in terms of both performance and data efficiency.
We also provide additional analysis to support our
findings.

6 Limitations

While our method provides a simple and data-
efficient way of training, the convergence speed
of a single model is still slow, as previously re-
ported in Liang et al. (2021). Although Beyer et al.
(2022) recently studied the advantage of lengthy
training schedules in knowledge distillation, KD
with a faster convergence remains as an open ques-
tion.

Additionally, while our codes and data are
sourced from publicly available resources, our pre-
trained MT checkpoints are not publicly accessi-
ble. Although this choice was necessary to ensure
a fair comparison with previous studies, leverag-
ing public MT checkpoints could potentially en-
able more efficient training strategies, especially
for low-resource languages. Notably, the availabil-
ity of extensive multilingual MT checkpoints, such
as those introduced by Fan et al. (2021); Ma et al.
(2021), presents an opportunity for enhanced train-
ing approaches.

Furthermore, the translation directions we con-
sidered are quite limited to Indo-European lan-
guages (German, Spanish, and French), though this
is partially attributed to the scarcity of non-Indo-

European benchmarks.
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A Data Statistics

En-De En-Es En-Fr

ST
Data MuST-C3

Sents 250k 264k 274k

MT
Data WMT144 WMT135 WMT14
Sents 4M 14M 36M

Table 5: Statistics of data used for main experiments.

B Implementation Details

Data We used MuST-C (Di Gangi et al., 2019)
dataset with three language directions: English (En)
to German (De), Spanish (Es), and French (Fr). For
external MT data, we used WMT dataset with dif-
ferent years for each language pairs: WMT13 for

3https://mt.fbk.eu/must-c/
4https://www.statmt.org/wmt14/

translation-task.html
5https://www.statmt.org/wmt13/

translation-task.html
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En-Es and WMT14 for En-De, En-Fr. For Open-
Subtitle experiment, we used v20186 with 18M
sentences for finetuning, while pretrained check-
points are shared with WMT experiments.

Models We brought the model architecture from
Ye et al. (2021) as strong baseline systems. Con-
cretly, the model comprised of transformer encoder-
decoder and modality-specific encoders. For
speech inputs, we used 16-bit 16kHz raw signal
as our audio input, and it is fed into the acoustic en-
coder, which is a sequence of Wav2Vec2 (Baevski
et al., 2020) and convolutional subsampler. Due to
the sequence length difference between speech and
text inputs, the 2-layer convolutional subsamplers
with kernel size 5 and stride 2 are used. For text in-
puts, conventional embedding layer with tokenized
subwords are used. Output from the modality-
specific encoders are subsequentially fed into the
shared translation encoder-decoder.

Following recent works with competitive results
(Ye et al., 2021, 2022; Han et al., 2021; Fang et al.,
2022), we also leveraged pretraining strategies for
speech and MT. While several previous works pro-
posed various types of pretraining, we only ex-
ploited two types of pretraining: speech represen-
tation learning and MT. For speech, we used pub-
licly available, Librispeech (Panayotov et al., 2015)
trained Wav2Vec2 (Baevski et al., 2020) with base
configuration7. For MT, we pretrained encoder-
decoder on MT task with external dataset Dext. We
used post-norm transformer-base (Vaswani et al.,
2017) with shared embedding layer.

Training & Evaluation For training, unigram
tokenizers are firstly trained using sentencepice
(Kudo, 2018) with 10k joint vocabularies on the
transcriptions and translation pairs from MuST-
C. For main experiments, we use AdamW opti-
mizer (Loshchilov and Hutter, 2017) with β1 = 0.9
and β2 = 0.999. Learning rate is 5 × 10−5

with 25000 warmup steps and inverse square root
scheduling. Weight for KD and CL was αKD =
0.2 and αCL = 5.0 For MT pretraining, we
use AdamW optimizer (β1 = 0.9, β2 = 0.98)
with learning rate 7 × 10−4, 4000 warmup steps.
Dropout (p = 0.1) and label smoothing (p = 0.1)
is applied to both MT pretraining and finetuning.

Triplet-based joint training only with DST is con-
sidered as baseline, and various combinations of

6https://opus.nlpl.eu/OpenSubtitles-v2018.php
7https://dl.fbaipublicfiles.com/fairseq/

wav2vec/wav2vec_small.pt

training techniques are built based on this. All
models are trained with fairseq8 (Ott et al., 2019)
using 4 Nvidia V100 GPUs. Following Liang et al.
(2021), size of batches without CL is twice that of
with CL for fair comparison. We averaged best 5
checkpoints based on ST BLEU score of MuST-C
dev set. At evaluation, we used sacreBLEU9 (Post,
2018). All models are trained with 3 random seeds
and concatenated for statistical test through paired
bootstrap resampling (Koehn, 2004).

C Relation between Continual Learning
and Consistency Learning

In original EWC, Hessians is usually approximated
as diagonals of Fisher information matrix F , as
seen in EWC loss as follows:

LEWC =
∑

i

Fii(θi − θ∗i )
2 (3)

where θ∗ is the parameter obtained from previous
tasks. In the context of ST, thanks to availability of
MT data, we can remove diagonal approximation
from EWC through well-known relation between
KL divergence and Fisher information as

DKL(pθ∗ ||pθ) ≈ Ez[log pθ∗ − log pθ]

=
1

2
(θ − θ∗)TF ∗(θ − θ∗)

(4)

where F ∗ indicates that the Fisher is calculated at
θ∗.

Concretely, CL can be understood as regular-
izing the dropout submodel using full model’s
curvature, unlike EWC-like regularizations with
the following differences: it uses online mini-
batch throughout the training, not fixed subset of
previous task’s dataset (Kirkpatrick et al., 2017)
or exponential moving average of mini-batch
Fisher (Chaudhry et al., 2018); Fisher is computed
at continuously varying parameter θ, not fixed θ∗.
Despite these differences, the joint training strategy
allows for the approximation of Eq 2 to be con-
sidered accurate, as the parameters will remain in
the low-loss valley of MT throughout the training
process. Intuitively speaking, dropout-averaged
curvature information regularizes the gradient at
each training step in a more knowledge-preserving
manner, as opposed to simply summing multitask
gradients.

8https://github.com/facebookresearch/fairseq
9BLEU signature: nrefs:1|bs:10000|seed:12345|

case:mixed|eff:no|tok:13a|smooth:exp|version:
2.0.0

13579

https://opus.nlpl.eu/OpenSubtitles-v2018.php
https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt
https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt
https://github.com/facebookresearch/fairseq


D Comparison with joint pretraining
(JPT) methods

Joint-pretraining (JPT) approaches have critical
limitations in low-resource settings. JPT requires
the preparation and aggregation of more data from
multiple sources, as shown in Table 6. They also
necessitate additional data augmentation, either
at the phoneme level (STPT) or the unit level
(SpeechUT). This, in turn, adds complexity to
the training pipeline, such as the inclusion of a
phoneme transcriptor (STPT) and a text-to-unit
generator (SpeechUT), as illustrated below. In
terms of computational efficiency, we also compare
the GPU updates required by our approach with
JPT. Our proposed contribution, which involves
interleaving modality-specific models in terms of
data and computation, leads to significant cost sav-
ings.

• STPT(Tang et al., 2022)

– Joint pretraining: 16 A100, 12 gradient
accumulation, 200k updates

– Joint finetuning: 8 V100, 3 gradient ac-
cumulation, 50k updates

• SpeechUT(Zhang et al., 2022)

– Text-to-unit (T2U) generator: not re-
ported

– Joint pretraining: 32 V100, 1 gradient
accumulation, 400k updates

– Task-specific finetuning: 8 V100, 4 gra-
dient accumulation, 50k updates

• Ours

– Joint finetuning: 4 V100, 4 gradient ac-
cumulation, 200k updates

E Further analysis

Forgotten MT knowledge cannot be restored
Advantage of adopting CL in ST can be understood
as two-fold: the well-known regularization effect
already discussed in original paper (Liang et al.,
2021), and keeping MT knowledge for successful
cross-modal transfer. To verify that BLEU improve-
ments cannot be solely explained by the former, we
tried to fix the model, which already had undergone
catastrophic forgetting, and see whether it restores
MT knowledge. Concretely, we initialize the whole
model with final checkpoint from baseline of 2 and
retrain it with KD+CL. As shown in Figure 3, it

Figure 3: Evolution of MT BLEU with different param-
eter initialization.

is clear that forgotten MT knowledge cannot be
restored even with CL. It also can be understood
through our continual learning interpretation of CL
discussed in Section C, that CL loss cannot pro-
vide credible curvature information outside of MT
low-loss region.

Figure 4: Epoch-wise Spearman correlation coefficient
between batch order and their losses for IWSLT14 De-
En. It is clear that CL alleviates imbalanced training
problem.

CL also remedies imbalanced training Shao
and Feng (2022) recently found that the problem of
catastrophic forgetting arises in not only continual
learning but also conventional static learning, espe-
cially in low-resource regime of complex tasks (e.g.
MT). Concretely, they found the imbalanced train-
ing problem exists, that the models concentrate
more on recently exposed data samples. While
we established the relation between CL and catas-
trophic forgetting in cross-modal transfer, we fur-

13580



Models
Pretrainig Data

Speech ASR MT
STPT(Tang et al., 2022) 60k hours 400 hours 4.5M sentences

SpeechUT(Zhang et al., 2022) 1.4k hours 100 hours 4.5M sentences
Ours 960 hours - 4.5M sentences

Table 6: Amount of pretraining data required for En-De

ther verify it with conventional MT through the lens
of imbalanced training. We trained low-resource
MT systems with IWSLT14 De-En with 160k sen-
tences10, and calculated epoch-wise Spearman cor-
relation between order of training batches and their
respective losses following Shao and Feng (2022),
that negative coefficient implies imbalanced train-
ing. As Figure 4 shows, CL largely alleviates the
problem of imbalanced training even without the
use of additional teacher model originally proposed
in Shao and Feng (2022). We also gathered epoch-
wise normalized losses over the whole training
and calculated Spearman correlation for quanti-
tative comparison, and it reconfirms our findings
(r = −0.12 for baseline vs. r = −0.07 for CL).

10https://iwslt.org/
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