
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 13593–13602
December 6-10, 2023 ©2023 Association for Computational Linguistics

InstOptima: Evolutionary Multi-objective Instruction Optimization via
Large Language Model-based Instruction Operators

Heng Yang1, Ke Li1
1Department of Computer Science, University of Exeter, EX4 4QF, Exeter, UK

{hy345, k.li}@exeter.ac.uk

Abstract

Instruction-based language modeling has re-
ceived significant attention in pretrained lan-
guage models. However, the efficiency of in-
struction engineering remains low and hinders
the development of instruction studies. Re-
cent studies have focused on automating in-
struction generation, but they primarily aim
to improve performance without considering
other crucial objectives that impact instruction
quality, such as instruction length and perplex-
ity. Therefore, we propose a novel approach
(i.e., InstOptima) that treats instruction gen-
eration as an evolutionary multi-objective op-
timization problem. In contrast to text edition-
based methods, our approach utilizes a large
language model (LLM) to simulate instruction
operators, including mutation and crossover.
Furthermore, we introduce an objective-guided
mechanism for these operators, allowing the
LLM to comprehend the objectives and en-
hance the quality of the generated instructions.
Experimental results demonstrate improved
fine-tuning performance and the generation of
a diverse set of high-quality instructions.

1 Introduction

With the rapid development of language mod-
els (Ouyang et al., 2022; Touvron et al., 2023; Ope-
nAI, 2023), instructions (also known as prompts)
play a crucial role in instruction-based language
modeling, and different instructions may lead to
significant differences in model outputs (Zhou
et al., 2022; Honovich et al., 2022; Wan et al.,
2023). For instance, even slightly perturbed in-
structions (e.g., synonym substitutions (Wang et al.,
2021; Zhou et al., 2021) or adversarial attacks (Wan
et al., 2023; Zhu et al., 2023)) can result in un-
expectedly low performance. However, there are
three problems regarding instruction-based learn-
ing that still need to be addressed in existing works.

Firstly, existing works (Lester et al., 2021; Gu
et al., 2022; Zhou et al., 2022, 2023; Li et al.,

2023; Chen et al., 2023) aim to obtain a large num-
ber of instructions through automated instruction
generation to filter high-performance instructions.
However, due to the large and non-differentiable
textual search space (Ishibashi et al., 2023; Cho
et al., 2023), the automated instruction generation
and instruction engineering methods (Brown et al.,
2020; Liu et al., 2023) are inefficient and strug-
gle to search for various high-quality instructions.
Secondly, the objectives of instruction generation
are not clear. Current research (Lester et al., 2021;
Gu et al., 2022; Pitis et al., 2023) regards perfor-
mance (i.e., metrics) as the sole criterion for in-
struction quality. However, model performance
alone cannot precisely explain instruction quality.
We propose to refine instruction quality by consid-
ering fine-grained objectives, such as length and
perplexity. Shorter instructions can lower computa-
tional costs, especially for large-scale models and
datasets. Lower perplexity indicates that instruc-
tions are more easily understood by language mod-
els. Lastly, the diversity of instructions has been
neglected in existing studies, while increasing the
diversity of instructions can mitigate adversarial
attacks (Wan et al., 2023; Zhu et al., 2023) and im-
prove instruction robustness (Yu et al., 2022; Zhu
et al., 2023). We aim to obtain multiple alternative
instructions based on multi-objective optimization,
which can facilitate comprehensive evaluation of
instructions.

To address these three problems, we formulate
the task as an evolutionary multi-objective op-
timization problem and propose our framework
called InstOptima. We leverage a large lan-
guage model, specifically ChatGPT (OpenAI,
2023), to facilitate instruction operations such as
mutation and crossover. Furthermore, we intro-
duce an objective-guided mechanism to assist the
language model in generating high-quality instruc-
tions. In terms of optimization objectives for in-
struction generation, InstOptima incorporates

13593

three objectives: performance (metrics), length,
and perplexity, enabling the exploration of a di-
verse and high-quality set of instructions. We adopt
NSGA-II (Deb et al., 2002) in InstOptima to
obtain a Pareto front of instruction sets.

To validate the efficacy of InstOptima, we
conducted experiments on three generation-based
classification tasks. The experimental results in-
dicate that InstOptima can concurrently obtain
a diverse set of instructions that outperform the
counterparts regarding performance.

In summary, our contributions are as follows:
• We simulate instruction operators based on an

LLM. We also show that the objective-guided
operators help the LLM understand optimization
objective values and improve instruction quality.

• We divide the orientation of instruction search
into multiple objectives, such as performance,
length, and perplexity, facilitating fine-grained
control over instruction quality.

• We utilize a multi-objective optimization algo-
rithm to automatically search for a set of high-
quality instructions, which could benefit defend-
ing against adversarial attacks and improving in-
struction robustness.

The codes are available at: https://github.
com/yangheng95/InstOptima.

2 Proposed Method

In this section, we first introduce the instruction-
based text generation, followed by the details of
InstOptima.

2.1 Instruction-based Generation

In text generation-based tasks1, instructions are uti-
lized to facilitate in-context learning (Brown et al.,
2020) and improve language modeling. An instruc-
tion (depicted in the right part of Fig. 1) is repre-
sented as I = Concat(d, e), where d and e are
the definition and example of the target task, re-
spectively. d and e are token sequences similar to
(x,y) ∼ D, where x, y, and D denote the input,
output, and task dataset, respectively. The mod-
eling of a generation model f(·, ·) is defined as
follows:

ŷ = f(x, I) (1)

where ŷ represents the generated output given
x and I. In InstOptima, we aim to address

1We validate InstOptima generation-based text classi-
fication, and InstOptima can be easily applied to other
instruction-based modeling tasks.

the problem of automated instruction generation
through multi-objective optimization.

2.2 Evolutionary Instruction Optimization
The workflow of InstOptima is illustrated in
Fig. 1. We begin by initializing a parent population
of instructions to start evolving. The parent popu-
lation is manipulated by LLM-based operators to
generate offspring. Subsequently, we employ the
non-dominated sort algorithm to rank the combined
population and measure the crowdness of instruc-
tions. At the end of each generation, we randomly
replace some Pareto-front instructions with new
instructions to enhance the diversity of the popula-
tion (referred to as genes in NSGA-II). We also
provide the pseudo code of the InstOptima in
Appendix A.4.

2.2.1 Operators for Instructions
To handle the non-differentiable text search space,
we formulate these operators as a text genera-
tion task based on ChatGPT. In other words,
we define a set of fixed prompts P̃, P̃ =
{P̃dm, P̃dc, P̃em, P̃ec}, to guide ChatGPT in per-
forming the instructions, where P̃dm, P̃dc, P̃em, P̃ec

are the fixed prompts for the four operations:
• Definition Mutation (P̃dm): This operator mu-

tates the definition in an instruction. It can in-
volve paraphrases and substitution of new defini-
tions.

• Definition Crossover (P̃dc): This operator com-
bines the definitions of two instructions to cre-
ate a new instruction. It can involve merging or
exchanging parts of the definitions between the
parent instructions.

• Example Mutation (P̃em): This operator per-
turbs the example to introduce diversity. It can
involve modifications such as example substitu-
tion, addition, or deletion.

• Example Crossover (P̃ec): This operator ran-
domly selects examples from two instructions to
create a new instruction.
For instance, we formulate the mutation opera-

tion as follows:

d̂dm = ChatGPT(Concat(P̃dm,d)) (2)

where d̂dm is the new definition generated based
on the original instruction I. The new instruction
is denoted as Î, Î = Concat(d̂dm, e). The other
operators follow a similar formulation to mutation.
Further details of the fixed prompts are available in
Appendix A.5.

13594

https://github.com/yangheng95/InstOptima
https://github.com/yangheng95/InstOptima

Instruction
Operations

Instruction
Individual

Parent Population

Instruction
Individual

Instruction
Individual

Non-
dominated

Sorting

Offspring

Instruction
Individual

Instruction
Individual

Instruction
Individual

Crowdness Evaluation

Individual
Replacement

Pareto-front Offspring

<Definition>: Please read
customer’s reviews and predict
sentiments:
<Example>:
 I really like this movie!
 Sentiment: positive
Predict the sentiment:
<Input>

<Definition>: Let’s classify the
customers’ sentiments:
<Example>:
 I really like this movie!
 Sentiment: positive
Predict the sentiment:
<Input>

Please read the online customer’s
reviews and predict sentiments:
<Example>:
 I really like this movie!
 Sentiment: positive
Predict the sentiment:
<Input>

Initial Instruction

Definition Mutation

Example Mutation

Evolve

Initialise Population

Figure 1: The main framework of InstOptima (left) and instruction operation examples (right). The details of
the workflow that is explained in Section 2.2. The population is composed of individuals of instruction examples.

2.2.2 Optimization Objectives

We consider three objectives F = (m, l, r), in
optimization, i.e., metrics (m), length (l), and per-
plexity (r) of the instruction.
• Performance: We use a set of metrics, such

as accuracy, f1 score, precision, and recall, ob-
tained by evaluating the instruction to calculate
the performance objective. The performance ob-
jective is represented as the reciprocal of the sum
of these metrics.

• Length: The length of the instruction is mea-
sured in terms of the number of characters. This
measurement is fair regardless of the tokenization
strategy.

• Perplexity: The perplexity of the instruction is
measured using the RoBERTa model.

The evaluation of objectives F is shown in the
pseudo-code in Appendix A.4 but not depicted in
Fig. 1 for simplicity.

2.3 Objective-Guided Instruction Operators

To enhance the performance of ChatGPT through
in-context learning, we propose a simple yet effec-
tive objective-feedback mechanism. Specifically,
we incorporate the fitness values F = (m, l, r) into
the fixed prompts. For example, we can append
“Please refer to the objective values: (d1,F1),
(d2,F2)” to P̃dc in instruction examples crossover.

These operators2 allow ChatGPT to autonomously
decide to emphasize or down-weight an instruction
based on the current objectives F .

3 Experimental Setup

We conducted a comprehensive set of experiments3

to validate the performance of InstOptima. The
detailed experiments setups and implementations
are described in Appendix A.1.

3.1 Baseline Methods

We used random instruction (RanInstruct)
generation (i.e., request ChatGPT generates
several instructions similar to instructions gen-
erated by InstOptima) and no-instruction
(NoInstruct) as comparison baselines.
The RanInstruct generates five random
instructions using the LLM to evaluate the
same three objectives as InstOptima.
The NoInstructablates instruction in the
classification-oriented fine-tuning of Flan-T5.

2Please refer to Table 4 for the actual implementations of
these objective-guided operators.

3To improve the reproducibility, we release all experimen-
tal materials in the supplementary files of the submission,
including source code, experiment logs, and results, optimized
instructions.

13595

Table 1: The experimental performance of InstOptima. We show the ACCURACY instead of the performance
objective for intuitive evaluation. The symbols ‘↗’ and ‘↘’ indicate ‘larger is better’ and ‘lower is better’,
respectively. We repeat each experiment in five rounds and report the average results. The best results are in bold.
The ACCURACY is the best accuracy in the Pareto-front, while the LENGTH and PERPLEXITY are correlated with
the instruction that achieves the best accuracy.

MODEL DATASET
InstOptima RanInstruct NoInstruct

ACCURACY↗ LENGTH↘ PERPLEXITY↘ ACCURACY↗ LENGTH↘ PERPLEXITY↘ ACCURACY↗

FlanT5-small

Laptop14 84.9±0.2 622.6±51.5 1.07±0.02 82.5±0.3 740.2±84.6 1.07±0.05 53.8±0.3

Restaurant14 84.9±0.2 421.6±82.4 1.11±0.01 82.3±0.4 328.5±38.5 1.15±0.03 19.2±0.4

SST2 89.7±0.1 402.7±39.1 1.09±0.01 88.7±0.5 499.7±73.2 1.16±0.02 86.9±0.1

AGNews 90.2±0.1 452.5±27.7 1.11±0.04 82.9±0.6 560.6±28.7 1.12±0.04 74.3±0.1

SNLI 69.1±0.2 295.3±74.8 1.14±0.02 50.8±0.5 507.3±98.0 1.09±0.07 37.9±0.2

MNLI 57.4±0.3 385.8±57.5 1.12±0.03 40.6±1.1 519.7±68.6 1.09±0.05 37.3±0.3

FlanT5-base

Laptop14 88.4±0.3 207.2±57.3 1.04±0.04 86.6±0.3 549.7±85.7 1.10±0.03 62.3±0.2

Restaurant14 89.1±0.2 359.4±39.7 1.06±0.03 87.4±0.5 589.3±63.2 1.11±0.03 52.8±0.2

SST2 94.5±0.1 397.8±69.4 1.08±0.01 93.0±0.4 385.6±55.0 1.12±0.01 92.6±0.1

AGNews 93.5±0.3 300.1±73.8 1.15±0.01 90.1±0.6 485.4±68.2 1.16±0.02 88.1±0.1

SNLI 86.6±0.3 430.9±82.2 1.10±0.02 86.4±0.5 399.3±23.8 1.11±0.04 85.9±0.3

MNLI 80.2±0.4 388.2±58.8 1.11±0.03 77.8±0.7 449.1±70.3 1.20±0.03 74.5±0.4

ChatGPT
Laptop14 83.2±2.2 512.9±51.5 1.08±0.02 83.1±0.8 877.6±51.5 1.05±0.03 67.8±5.8

Restaurant14 96.3±1.9 487.3±55.9 1.09±0.02 92.1±1.3 421.6±82.4 1.10±0.02 75.2±6.1

3.2 Main Results
The results in Table 1 show the performance of
InstOptima. Overall, InstOptima achieves
superior objectives based on various base mod-
els (e.g., ChatGPT and FlanT5). For exam-
ple, it outperforms all baselines on all datasets in
terms of ACCURACY. However, for instruction
LENGTH and PERPLEXITY, the RanInstruct
sometimes achieves better objective values. On the
other hand, NoInstruct performs poorly on all
datasets in terms of ACCURACY, underscoring the
importance of instructions in generation-based fine-
tuning. Moreover, the ACCURACY objective ex-
hibits small intervals but relatively large variances,
making it more challenging to optimize. However,
existing methods that prioritize performance opti-
mization struggle to handle the variances in metrics.
On the other hand, the LENGTH objective is eas-
ier to optimize due to its significant variations and
greater significance. This is because long instruc-
tions can result in up to twice training times than
short instructions. The PERPLEXITY metric ranges
within small intervals, indicating a moderate opti-
mization challenge, but it significantly impacts the
understanding of instruction engineers. In addition
to these three objectives, InstOptima can eas-
ily accommodate additional objectives for precise
control of instruction generation.

Overall, InstOptima demonstrates impres-
sive performance in instruction optimization across
various tasks and datasets.

3.3 Research Questions
We further discuss our observations and analysis
by answering several research questions.

RQ1: Do the objective-guided operators help
instruction optimization?

Table 2: The experimental performance of
InstOptima-N on FlanT5-small. The to-
kens “−” and “+” indicate worse and better objectives
than InstOptima.

DATASET
InstOptima-N

ACCURACY↗ LENGTH↘ PERPLEXITY↘
Laptop14 84.4±0.2 − 789.3±86.2 − 1.07±0.02

Restaurant14 83.7±0.3 − 455.8±79.9 − 1.12±0.03 −
SST2 89.6±0.1 − 435.2±52.1 − 1.12±0.02 −

AGNews 86.7±0.8 − 535.8±69.4 − 1.26 ±0.12 −
SNLI 69.8±0.6 + 454.0±77.0 − 1.11±0.03 +

MNLI 57.3 ±0.5 − 465.6±98.3 − 1.09 ±0.02 +

To investigate the impact of objective-guided
operators on InstOptima, we conducted ab-
lative experiments to assess the performance of
InstOptima-N, which eliminates the objective
guidance in the operators. The experimental re-
sults on FlanT5-small are presented in Table 2.
Based on the results in Table 1 and Table 2, it is evi-
dent that InstOptima-N achieves inferior objec-
tive values on most datasets, particularly in terms
of ACCURACY and LENGTH. However, for the
SNLI dataset, InstOptima-N obtains better re-
sults in ACCURACY and PERPLEXITY compared to
InstOptima. These findings demonstrate the ef-
fectiveness of objective-guided operators. Nonethe-
less, the concept of objective-guided operators is
still in its early stages and warrants further investi-
gation in future studies.

In conclusion, the experimental results indicate
that objective-guided operators obtain better per-
formance across various datasets.

13596

RQ2: Does the number of evolution generations
matter in InstOptima?

2 4 6 8 10 12 14 16 18

0.35

0.35

0.35

0.35

Laptop14

P
er
fo
rm

an
ce

2 4 6 8 10 12 14 16 18
300

400

500

600

700

Laptop14

L
en
gt
h

2 4 6 8 10 12 14 16 18

1.06

1.08

1.1

1.12

1.14

Laptop14

P
er
p
le
x
it
y

2 4 6 8 10 12 14 16 18
0.44

0.45

0.46

0.47

0.48

SNLI

P
er
fo
rm

an
ce

2 4 6 8 10 12 14 16 18

250

300

350

400

450

SNLI

L
en
gt
h

2 4 6 8 10 12 14 16 18

1.1

1.12

1.14

1.16

SNLI

P
er
p
le
x
it
y

2 4 6 8 10 12 14 16 18

0.28

0.28

0.28

SST2

P
er
fo
rm

an
ce

2 4 6 8 10 12 14 16 18
300

400

500

600

700

SST2

L
en
gt
h

2 4 6 8 10 12 14 16 18

1.08

1.1

1.12

SST2

P
er
p
le
x
it
y

Figure 2: The trajectory plots of objective values across
different datasets. We plot the trajectories of 10 addi-
tional generations using red lines. In these figures, lower
objective values indicate better performance.

Generally, a larger number of generations tends
to result in better objective values after optimiza-
tion. We conducted additional training for 10
generations on the Laptop14, SST2, and SNLI
datasets to study the significance of number of
generations. Based on the experimental results
in Fig. 2., in most cases (e.g., Laptop14 and
SNLI datasets), we observed a significant trade-off
among the three objectives. However, due to the
small scale of the evaluation data and population
size, there were large variances in the performance
objective (see the left column in Fig. 2). These
variances in performance interfere with the conver-
gence of the other two objectives, resulting in the
absence of clear descending trends for the length
and perplexity objectives with an increase in gen-
erations. However, this issue can be addressed by
increasing the population size, number of genera-
tions, and scale of training data.

In conclusion, given the limited evaluation
resources, the number of evolution generations
showed limited improvement. Instead, it is im-
portant to reconcile different objective values to
achieve the final instruction population.

RQ3: Are there trade-offs between different
objectives?

To analyze the relationship between different objec-
tives, we plot the Pareto front (refer to Fig. 5) of in-
structions into three groups. The two-dimensional

Pareto fronts between pairwise objectives are pre-
sented in Fig. 3.

Performance

P
er
p
le
xi
ty

Performance

L
en
gt
h

Perplexity

L
en
gt
h

Performance

P
er
p
le
xi
ty

Performance

L
en
gt
h

Perplexity

L
en
gt
h

Performance

P
er
p
le
xi
ty

Performance

L
en
gt
h

Perplexity

L
en
gt
h

Figure 3: Visualizations of the 2D-Pareto fronts
searched by InstOptima on three datasets. The
three columns from left to right indicate the results on
Laptop14, SST2 and SNLI datasets, respectively.

Overall, there is a clear trade-off between in-
struction length and perplexity. However, when
considering the pairs of performance-length and
performance-perplexity, there is no clear trade-off
observed in Fig. 3. This could be attributed to the
lack of strict trade-offs and the presence of noise
fitness points due to the evaluation of metrics on
small datasets during optimization. It is expected
that this issue can be mitigated when evaluating
performance on larger datasets.

Nevertheless, InstOptima consistently dis-
covers high-quality instructions in most scenarios,
regardless of the loose trade-offs between objective
pairs such as performance-length and performance-
perplexity. This demonstrates the effectiveness of
InstOptima in obtaining a diverse set of instruc-
tions.

4 Conclusion

We propose a multi-objective instruction optimiza-
tion framework to obtain a diversified set of in-
structions. To address the challenges posed by
the large and non-differentiable text search space,
InstOptima utilizes objective-guided instruc-
tion operators based on LLM, which shows impres-
sive performance in instruction generation. How-
ever, it is important to note that multi-objective
instruction optimization is still in the early stages
and requires further research in the future.

13597

5 Limitations

The first limitation of InstOptima lies in the po-
tential crisis of local optima in the multi-objective
optimization. InstOptima initializes the instruc-
tion population based on fixed manually crafted
instructions, which are then mutated using LLM.
Although InstOptima has been demonstrated
to search for diversified and high-quality instruc-
tions in experiments, the essence on fixed initial
instructions may lead to traps in local optima dur-
ing the multi-objective process. In the future, the
generation of initial instruction populations, such
as employing randomized initial instructions, re-
mains a topic worth exploring.

The second limitation of InstOptima is re-
lated to experimental resources. Due to resource
constraints, we only utilized single-round API calls
to generate new instructions using LLM. This ap-
proach overlooks the contextual information that
could help in understanding objective feedback in
the instruction generation. We believe that continu-
ous dialogue with LLM will significantly improve
the quality of instruction generated by LLM. Ad-
ditionally, due to the difficulty of accessing LLM,
we conducted experiments with smaller population
sizes and fewer iterations, which may underesti-
mate the performance of InstOptima.

Acknowledgments

This work was supported in part by the
UKRI Future Leaders Fellowship under Grant
MR/S017062/1 and MR/X011135/1; in part by
NSFC under Grant 62376056 and 62076056;
in part by the Royal Society under Grant
IES/R2/212077; in part by the EPSRC under Grant
2404317; in part by the Kan Tong Po Fellowship
(KTP\R1\231017); and in part by the Amazon Re-
search Award and Alan Turing Fellowship.

References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, pages 632–642. The Association for Computa-
tional Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS’20: Proc. of Annual Conference on Neural
Information Processing Systems.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng
Huang, and Tianyi Zhou. 2023. Instructzero: Ef-
ficient instruction optimization for black-box large
language models. CoRR, abs/2306.03082.

Sukmin Cho, Soyeong Jeong, Jeongyeon Seo, and
Jong C. Park. 2023. Discrete prompt optimization
via constrained generation for zero-shot re-ranker.
CoRR, abs/2305.13729.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
CoRR, abs/2210.11416.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and
T. Meyarivan. 2002. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput., 6(2):182–197.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2022. PPT: pre-trained prompt tuning for few-shot
learning. In ACL’22: Proc. of the 60th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8410–8423. Association for Computational
Linguistics.

Or Honovich, Uri Shaham, Samuel R. Bowman, and
Omer Levy. 2022. Instruction induction: From
few examples to natural language task descriptions.
CoRR, abs/2205.10782.

Yoichi Ishibashi, Danushka Bollegala, Katsuhito Su-
doh, and Satoshi Nakamura. 2023. Evaluating the
robustness of discrete prompts. In EACL’23: Proc.
of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pages
2365–2376. Association for Computational Linguis-
tics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, pages 3045–
3059. Association for Computational Linguistics.

13598

https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2306.03082
https://doi.org/10.48550/arXiv.2306.03082
https://doi.org/10.48550/arXiv.2306.03082
https://doi.org/10.48550/arXiv.2305.13729
https://doi.org/10.48550/arXiv.2305.13729
https://doi.org/10.48550/arXiv.2210.11416
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.48550/arXiv.2205.10782
https://doi.org/10.48550/arXiv.2205.10782
https://aclanthology.org/2023.eacl-main.174
https://aclanthology.org/2023.eacl-main.174
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243

Moxin Li, Wenjie Wang, Fuli Feng, Jizhi Zhang, and
Tat-Seng Chua. 2023. Robust instruction optimiza-
tion for large language models with distribution shifts.
CoRR, abs/2305.13954.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9):195:1–195:35.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Silviu Pitis, Michael R. Zhang, Andrew Wang, and
Jimmy Ba. 2023. Boosted prompt ensembles for
large language models. CoRR, abs/2304.05970.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Har-
ris Papageorgiou, Ion Androutsopoulos, and Suresh
Manandhar. 2014. Semeval-2014 task 4: Aspect
based sentiment analysis. In Proceedings of the 8th
International Workshop on Semantic Evaluation, Se-
mEval@COLING 2014, Dublin, Ireland, August 23-
24, 2014, pages 27–35. The Association for Com-
puter Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2013, 18-21 October 2013, Grand Hyatt
Seattle, Seattle, Washington, USA, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pages
1631–1642. ACL.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Alexander Wan, Eric Wallace, Sheng Shen, and Dan
Klein. 2023. Poisoning language models during in-
struction tuning. CoRR, abs/2305.00944.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Xiaosen Wang, Yichen Yang, Yihe Deng, and Kun He.
2021. Adversarial training with fast gradient pro-
jection method against synonym substitution based
text attacks. In AAAI’21: Proc. of Thirty-Fifth AAAI
Conference on Artificial Intelligence, pages 13997–
14005. AAAI Press.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, EMNLP 2020 - Demos, Online, November
16-20, 2020, pages 38–45. Association for Computa-
tional Linguistics.

Xiaoyan Yu, Qilei Yin, Zhixin Shi, and Yuru Ma. 2022.
Improving the semantic consistency of textual ad-
versarial attacks via prompt. In International Joint
Conference on Neural Networks, IJCNN 2022, Padua,
Italy, July 18-23, 2022, pages 1–8. IEEE.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural In-
formation Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 649–657.

Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei
Chang, and Xuanjing Huang. 2021. Defense against
synonym substitution-based adversarial attacks via
dirichlet neighborhood ensemble. In ACL/IJC-
NLP’21: Proc. of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing, pages 5482–5492. Association for
Computational Linguistics.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. CoRR, abs/2211.01910.

Yuhang Zhou, Suraj Maharjan, and Beiye Liu. 2023.
Scalable prompt generation for semi-supervised
learning with language models. In EACL’23: Find-
ings of the Association for Computational Linguistics,
pages 758–769. Association for Computational Lin-
guistics.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang,
Hao Chen, Yidong Wang, Linyi Yang, Wei Ye,

13599

https://doi.org/10.48550/arXiv.2305.13954
https://doi.org/10.48550/arXiv.2305.13954
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2304.05970
https://doi.org/10.48550/arXiv.2304.05970
https://doi.org/10.3115/v1/s14-2004
https://doi.org/10.3115/v1/s14-2004
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2305.00944
https://doi.org/10.48550/arXiv.2305.00944
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://ojs.aaai.org/index.php/AAAI/article/view/17648
https://ojs.aaai.org/index.php/AAAI/article/view/17648
https://ojs.aaai.org/index.php/AAAI/article/view/17648
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1109/IJCNN55064.2022.9892715
https://doi.org/10.1109/IJCNN55064.2022.9892715
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://doi.org/10.18653/v1/2021.acl-long.426
https://doi.org/10.18653/v1/2021.acl-long.426
https://doi.org/10.18653/v1/2021.acl-long.426
https://doi.org/10.48550/arXiv.2211.01910
https://doi.org/10.48550/arXiv.2211.01910
https://aclanthology.org/2023.findings-eacl.58
https://aclanthology.org/2023.findings-eacl.58

Neil Zhenqiang Gong, Yue Zhang, and Xing Xie.
2023. Promptbench: Towards evaluating the robust-
ness of large language models on adversarial prompts.
CoRR, abs/2306.04528.

A Appendix

A.1 Experiment Setup
A.1.1 Datasets
We selected six datasets for three classification
tasks. For the aspect-based sentiment analy-
sis (ABSA) task, we used the Laptop14 and
Restaurant14 datasets (Pontiki et al., 2014).
For text classification (TC) tasks, we chose the
SST2 (Socher et al., 2013) and AGNews (Zhang
et al., 2015) datasets. We selected the SNLI (Bow-
man et al., 2015) and MNLI (Wang et al., 2019)
datasets for the natural language inference (NLI)
task. We trained our models on the first 1000 sam-
ples from the original training, validation and test-
ing datasets, respectively.

A.1.2 Experimental PLMs
For the LLM to operate instructions, we select the
ChatGPT4(OpenAI, 2023) with a temperature of
1 and a maximum token length of 500.

To obtain the objective value of perfor-
mance, we performed instruction-based classifica-
tion experiments using the FlanT5-small and
FlanT5-base models (Chung et al., 2022), as
well as ChatGPT, which are the latest and popular
PLM/LLM for instruction learning. For the calcu-
lation of semantic complexity, we employed the
RoBERTa (Liu et al., 2019) model from transform-
ers(Wolf et al., 2020).

A.1.3 Hyper-parameter Settings
The generation size and number of generation for
NSGA-II is 100 and 10, respectively. In the
fine-tuning5 of the PLMs (i.e., FlanT5-small
and FlanT5-base), we set the learning rate and
batch size to 5e− 5 and 16, respectively. We fine-
tune the PLMs for 3 epochs with an L2 regulariza-
tion parameter of 0.01.

A.1.4 Experimental Environment
The experiments are carried out on a computer run-
ning the Cent OS 7 operating system, equipped
with an RTX 3090 GPU and a Core i-12900k pro-
cessor. We use the PyTorch 2.0.0 library and
transformers 4.28.0.

4ChatGPT-turbo-0301 version.
5We use the Huggingface Trainer for fine-tuning, and the

code is available in the supplementary materials.

A.2 Additional Experiments for
Summarization

A.2.1 Generative Text Summarization
We conducted experiments for a text generation
task. i.e., generative summarization. To evalu-
ate InstOptima, we used three subsets from
The GigaWord dataset and the FlanT5-small
model in our experiments. In these subsets, the
training set contains 5k training examples, while
the testing set and validation set each have 1k ex-
amples. According to the Rouge1 metric, it is
evident that InstOptima performs well on the
GigaWord dataset, demonstrating that it is a task-
agnostic method for multi-objective instruction op-
timization.

A.2.2 Experiments based on Different
Backbone Models

We have conducted experiments to demonstrate
the relationship between the backbone model and
performance. Due to resource limitations, we
are currently using FlanT5 variants (small, base,
and large, Llama is not implemented currently)
as backbones to implement InstOptima. We
have generated a box plot to visualize the experi-
mental results in Fig. 4 The figure illustrates that
performance is highly dependent on the scale of
the backbone instruction-follow model. In other
words, because the FlanT5-small model has
limited capability to follow instructions, the accu-
racy achieved by an instruction is low and exhibits
a larger variance compared to the larger instruction-
follow models. In this context, InstOptima
plays a crucial role in identifying instructions with
optimized objectives.

A.3 The Visualization of Pareto-fronts

In Fig. 5, we show the visualizations of Pareto-
front instructions obtained by InstOptima on
the Laptop14, SST2 and SNLI datasets. Due
to resource limitations, we only present the plots
on the Laptop14, SST2, and SNLI datasets. We
plot the first three fronts searched by NSGA-II,
and the first three fronts are indicated by red, green,
and blue colors, respectively.

A.4 Multi-objective Optimization Algorithm

InstOptima is a multi-objective instruction op-
timization approach that evolves a population of
instructions through a series of steps. We present
the pseudo-code of InstOptima in Algorithm 1.

13600

https://doi.org/10.48550/arXiv.2306.04528
https://doi.org/10.48550/arXiv.2306.04528

Table 3: The experimental performance of InstOptima. We show the ACCURACY instead of the performance
objective for intuitive evaluation. The symbols ↗ and ↘ indicate larger is better and lower is better, respectively. We
repeat each experiment in five rounds and report the average results. The best results are in bold. The ACCURACY
is the best accuracy in the Pareto-front, while the LENGTH and PERPLEXITY are correlated with the instruction that
achieves the best accuracy.

MODEL DATASET
InstOptima RanInstruct NoInstruct

ACCURACY↗ LENGTH↘ PERPLEXITY↘ ACCURACY↗ LENGTH↘ PERPLEXITY↘ ACCURACY↗
FlanT5-small GigaWord 33.7±0.3 586.9±91.5 1.08±0.02 32.9±1.9 891.6±151.5 1.11±0.03 30.8±0.8

Large Base Small
80

82

84

86

88

90

92

Flan-T5 Variant

A
cc
u
ra
cy

(%
)

RanInstruct
InstOptima

Large Base Small

85

90

95

Flan-T5 Variant

A
cc
u
ra
cy

(%
)

RanInstruct
InstOptima

Laptop14 Restaurant14

Large Base Small

88

90

92

94

96

Flan-T5 Variant

A
cc
u
ra
cy

(%
)

RanInstruct
InstOptima

Large Base Small

85

90

95

Flan-T5 Variant

A
cc
u
ra
cy

(%
)

RanInstruct
InstOptima

AGNewsSST2

SNLI MNLI

Large Base Small

40

50

60

70

80

90

Flan-T5 Variant

A
cc
u
ra
cy

(%
)

RanInstruct
InstOptima

Large Base Small

50

60

70

80

90

Flan-T5 Variant

A
cc
u
ra
cy

(%
)

RanInstruct
InstOptima

Figure 4: Box plot visualizations of the performance
based on different backbone models.

Firstly, the algorithm initializes a population of
instructions. Then, it iteratively performs the fol-
lowing steps for a specified number of generations:
selecting two instructions from the population, eval-
uating their objectives, applying LLM-based in-
struction operators to create new instructions, and
adding them to a temporary population. After each
generation, the temporary population is combined
with the original population, and a selection pro-
cess is applied to choose the fittest instructions. Fi-
nally, the algorithm returns the evolved population
of instructions as the final results.

A.5 Fixed Prompts for Instruction Operators
The prompts in green are the trigger of objective-
guided instruction generation.

400
600

800

1.1

1.15

0.28

0.28

0.28

LengthPerplexity

P
er
fo
rm

a
n
ce

SST2

400
600

800
1,000

1.1

1.2

0.35

0.36

Length
Perplexity

P
er
fo
rm

a
n
ce

Laptop14

300
400

1.1

1.12

1.14

0.45

0.5

LengthPerplexity

P
er
fo
rm

a
n
ce

SNLI

Figure 5: Visualizations of the Pareto fronts searched
by InstOptima on three datasets. The PLM used to
evaluate performance is FlanT5-small.

13601

Algorithm 1: The pseudo code of InstOptima.
Input: Task dataset D, Number of generations N , Population size M , Instruction Operators P̃
Output: Evolved population of instructions P∗

1 P ← InitializePopulation(M) ; // Initialize the population
2 for i← 1 to N do
3 Q ← ∅ ; // Initialize the offspring population
4 for j ← 1 to M do
5 I1 ← Pj ; // Select parent instruction
6 I2 ← random(P) ; // Select random parent instruction

7 F1 ← EvaluateObjectives (I1)6 ; // Evaluate objectives for parent 1
8 F2 ← EvaluateObjectives (I2) ; // Evaluate objectives for parent 2
9 (d1, e1)← I1 ; // Extract definition and example from parent 1

10 (d2, e2)← I2 ; // Extract definition and example from parent 2

11 O ← random(P̃) ; // Select a random operator

12 if O == P̃dm then
13 d̂dm ← ChatGPT(Concat(P̃dm,d1,F1)) ; // Generate mutated definition

14 Î← Concat(d̂dm, e1) ; // Combine mutated definition with example

15 if O == P̃dc then
16 d̂dc ← ChatGPT(Concat(P̃dc,d1,F1,d2,F2)) ; // Generate crossoverd definition

17 Î← Concat(d̂dc, e1) ; // Combine crossoverd definition with example

18 if O == P̃em then
19 êem ← ChatGPT(Concat(P̃em, e1,F1)) ; // Generate mutated example

20 Î← Concat(d1, êem) ; // Combine original definition with mutated example

21 if O == P̃ec then
22 êec ← ChatGPT(Concat(P̃ec, e1,F1, e2,F2)) ; // Generate crossoverd example

23 Î← Concat(d1, êec) ; // Combine original definition with crossoverd example

24 Q ← Q∪ {Î} ; // Add offspring to the population

25 Q∗ ← CombinePopulations(P ,Q) ; // Combine parent and offspring populations
26 P ← SelectPopulation(Q∗, M) ; // Select the best individuals for the next

generation

27 P∗ = P ; // Set the evolved population as the final population
28 return P∗ ; // Return the evolved population

Table 4: The fixed prompts used to implement LLM-based instructions. “<Input>” indicates the input of the
operators. The green keywords are the triggers of objective-guided instruction generation.

OPERATORS PROMPTS INPUT

P̃dm

I want you to be a professional prompt engineer. Now I am working on the multi-objective evolutionary
prompt optimization, and I need your help to design and optimize the template prompt. Here I give
you an example template prompt, please understand the meaning of the prompt and modify it. Given
the minimization objectives, please be creative and output the paraphrased or mutated prompt. Please
remove Minimization objectives in the output: <Input>

(d,F)

P̃dc

I want you to be a professional prompt engineer. Now I am working on the multi-objective evolutionary
prompt optimization for sentiment analysis, and I need your help to design and optimize the template
prompt. Here I give you two template prompts, please understand the meaning of the two prompts and
crossover them into a new prompt. Given the minimization objectives, please be creative and output
the generated new prompt based on the two examples. Please remove Minimization objectives in the
output: <Input>

(d1,F1, d2,F2)

P̃em

I want you to be a professional prompt engineer. Now I am working on the multi-objective evolutionary
prompt optimization for sentiment analysis, and I need your help to design and optimize the template
prompt. Here I give you two groups of examples for completing the prompt, please generate new
examples to substitute the following examples and there are no more than two examples in the new
prompt. Given the minimization objectives, please be creative and output the generated example in
the same format. Please remove Minimization objectives in the output: <Input>

(e,F)

P̃ec

I want you to be a professional prompt engineer. Now I am working on the multi-objective evolutionary
prompt optimization for sentiment analysis, and I need your help to design and optimize the template
prompt. Here I give you two groups of examples for completing the prompt, please read the examples
of the two groups of examples and crossover the examples into a new example group and there are
no more than two examples in the new examples. Given the minimization objectives, please be
creative and output the crossovered the examples. Please remove Minimization objectives in the
output: <Input>

(e1,F1, e2,F2)

13602

