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Abstract

Transformer-based models have achieved dom-
inant performance in numerous NLP tasks. De-
spite their remarkable successes, pre-trained
transformers such as BERT suffer from a com-
putationally expensive self-attention mecha-
nism that interacts with all tokens, including the
ones unfavorable to classification performance.
To overcome these challenges, we propose in-
tegrating two strategies: token pruning and to-
ken combining. Token pruning eliminates less
important tokens in the attention mechanism’s
key and value as they pass through the layers.
Additionally, we adopt fuzzy logic to handle
uncertainty and alleviate potential mispruning
risks arising from an imbalanced distribution of
each token’s importance. Token combining, on
the other hand, condenses input sequences into
smaller sizes in order to further compress the
model. By integrating these two approaches,
we not only improve the model’s performance
but also reduce its computational demands. Ex-
periments with various datasets demonstrate su-
perior performance compared to baseline mod-
els, especially with the best improvement over
the existing BERT model, achieving +5%p in
accuracy and +5.6%p in F1 score. Addition-
ally, memory cost is reduced to 0.61x, and a
speedup of 1.64x is achieved.

1 Introduction

Transformer-based deep learning architectures
have achieved dominant performance in numer-
ous areas of natural language processing (NLP)
studies (Devlin et al., 2018; Lewis et al., 2019;
Brown et al., 2020; Yang et al., 2019). In particu-
lar, pre-trained transformer-based language mod-
els like BERT (Devlin et al., 2018) and its vari-
ants (Yasunaga et al., 2022; He et al., 2020; Guo
et al., 2020) have demonstrated state-of-the-art per-
formance on many NLP tasks. The self-attention
mechanism, a key element in transformers, allows
for interactions between every pair of tokens in
a sequence. This effectively captures contextual

information across the entire sequence. This mech-
anism has proven to be particularly beneficial for
text classification tasks (Yang et al., 2020; Karl and
Scherp, 2022; Munikar et al., 2019).

Despite their effectiveness, BERT and similar
models still face major challenges. BERT can
be destructive in that not all tokens contribute
to the final classification prediction (Guan et al.,
2022). Not all tokens are attentive in multi-head
self-attention, and uninformative or semantically
meaningless parts of the input may not have a posi-
tive impact on the prediction (Liang et al., 2022).
Further, the self-attention mechanism, which in-
volves interaction among all tokens, suffers from
substantial computational costs. Its quadratic com-
plexity relative to the length of the input sequences
results in high time and memory costs, making
training impractical, especially for document clas-
sifications (Lee et al., 2022; Pan et al., 2022). In
response to these challenges, many recent studies
have attempted to address the problem of compu-
tational inefficiency and improve model ability by
focusing on a few core tokens, thereby reducing
the number of tokens that need to be processed.
Their intuition is similar to human reading com-
prehension achieved by paying closer attention to
important and interesting words (Guan et al., 2022).

One approach is a pruning method that removes
a redundant token. Studies have shown an accept-
able trade-off between performance and cost by
simply removing tokens from the entire sequence
to reduce computational demands (Ma et al., 2022;
Goyal et al., 2020; Kim and Cho, 2020). How-
ever, this method causes information loss, which
degrades the performance of the model (Wei et al.,
2023). Unlike previous studies, we apply pruning
to remove tokens from the keys and values of the at-
tention mechanism to prevent the information loss
and reduce the cost. In our method, less impor-
tant tokens are removed, and the number of tokens
gradually decreases by a certain ratio as they pass
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through the layers. However, there is still a risk of
mispruning when the distribution of importance is
imbalanced, since the ratio-based pruning does not
take into account the importance distribution (Zhao
et al., 2019). To address this issue, we propose to
adopt the fuzzy logic by utilizing fuzzy member-
ship functions to reflect the uncertainty and support
token pruning.

However, the trade-off between performance and
cost of pruning limits the number of tokens that can
be removed, hence, self-attention operations may
still require substantial time and memory resources.
For further model compression, we propose a to-
ken combining approach. Another line of prior
works (Pan et al., 2022; Chen et al., 2023; Bolya
et al., 2022; Zeng et al., 2022) have demonstrated
that combining tokens can reduce computational
costs and improve performance in various com-
puter vision tasks, including image classification,
object detection, and segmentation. Motivated by
these studies, we aim to compress text sequence
tokens. Since text differs from images with locality,
we explore Slot Attention (Locatello et al., 2020),
which can bind any object in the input. Instead of
discarding tokens from the input sequence, we com-
bine input sequences into smaller number of tokens
adapting the Slot Attention mechanism. By doing
so, we can decrease the amount of memory and
time required for training, while also minimizing
the loss of information.

In this work, we propose to integrate token prun-
ing and token combining to reduce the computa-
tional cost while improving document classification
capabilities. During the token pruning stage, less
significant tokens are gradually eliminated as they
pass through the layers. We implement pruning
to reduce the size of the key and value of atten-
tion. Subsequently, in the token combining stage,
tokens are merged into a combined token. This pro-
cess results in increased compression and enhanced
computational efficiency.

We conduct experiments with document classi-
fication datasets in various domains, employing
efficient transformer-based baseline models. Com-
pared to the existing BERT model, the most sig-
nificant improvements show an increase of 5%p
in accuracy and an improvement of 5.6%p in the
F1 score. Additionally, memory cost is reduced
to 0.61x, and a speedup of 1.64x is achieved, thus
accelerating the training speed. We demonstrate
that our integration results in a synergistic effect

not only improving performance, but also reducing
memory usage and time costs.

Our main contributions are as follows:

• We introduce a model that integrates token
pruning and token combining to alleviate
the expensive and destructive issues of self-
attention-based models like BERT. Unlike pre-
vious works, our token pruning approach re-
moves tokens from the attention’s key and
value, thereby reducing the information loss.
Furthermore, we use fuzzy membership func-
tions to support more stable pruning.

• To our knowledge, our token combining ap-
proach is the first attempt to apply Slot At-
tention, originally used for object localization,
for lightweight purposes in NLP. Our novel
application not only significantly reduces com-
putational load but also improves classifica-
tion performance.

• Our experiment demonstrates the efficiency
of our proposed model, as it improves clas-
sification performance while reducing time
and memory costs. Furthermore, we high-
light the synergy between token pruning and
combining. Integrating them enhances perfor-
mance and reduces overall costs more effec-
tively than using either method independently.

2 Related Works

2.1 Sparse Attention

In an effort to decrease the quadratic time and space
complexity of attention mechanisms, sparse atten-
tion sparsifies the full attention operation with com-
plexity O(n2), where n is the sequence length. Nu-
merous studies have addressed the issue of sparse
attention, which can hinder the ability of trans-
formers to effectively process long sequences. The
studies also demonstrate strong performances, es-
pecially in document classification. Sparse Trans-
former (Child et al., 2019) introduces sparse factor-
izations of the attention matrix by using a dilated
sliding window, which reduces the complexity to
O(n

√
n). Reformer (Kitaev et al., 2020) reduces

the complexity to O(nlogn) using the locality-
sensitive hashing attention to compute the near-
est neighbors. Longformer (Beltagy et al., 2020)
scales complexity to O(n) by combining local win-
dow attention with task-motivated global attention,
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making it easy to process long documents. Lin-
former (Wang et al., 2020) performs linear self-
attention with a complexity of O(n), theoretically
and empirically showing that self-attention can be
approximated by a low-rank matrix. Similar to
our work, Linformer reduces the dimensions of the
key and value of attention. Additionally, we im-
prove the mechanism by reducing the number of
tokens instead of employing the linear projection,
to maintain the interpretability. BigBird (Zaheer
et al., 2020) introduces a sparse attention method
with O(n) complexity by combining random at-
tention, window attention, and global attention.
BigBird shows good performance on various long-
document tasks, but it also demonstrates that sparse
attention mechanisms cannot universally replace
dense attention mechanisms, and that the imple-
mentation of sparse attention is challenging. Addi-
tionally, applying sparse attention has the potential
risks of incurring context fragmentation and lead-
ing to inferior modeling capabilities compared to
models of similar sizes (Ding et al., 2020).

2.2 Token Pruning and Combining

Numerous studies have explored token pruning
methods that eliminate less informative and re-
dundant tokens, resulting in significant computa-
tional reductions in both NLP (Kim et al., 2022;
Kim and Cho, 2020; Wang et al., 2021) and Vision
tasks (Chen et al., 2022; Kong et al., 2021; Fayyaz
et al., 2021; Meng et al., 2022). Attention is one
of the active methods used to determine the im-
portance of tokens. For example, PPT (Ma et al.,
2022) uses attention maps to identify human body
tokens and remove background tokens, thereby
speeding up the entire network without compro-
mising the accuracy of pose estimation. The model
that uses the most similar method to our work to
determine the importance of tokens is LTP (Kim
et al., 2022). LTP applies token pruning to input
sequences in order to remove less significant to-
kens. The importance of each token is calculated
through the attention score. On the other hand, Dy-
namicViT (Rao et al., 2021) proposes an learned
token selector module to estimate the importance
score of each token and to prune less informative
tokens. Transkimmer (Guan et al., 2022) leverages
the skim predictor module to dynamically prune the
sequence of token hidden state embeddings. Our
work can also be interpreted as a form of sparse
attention that reduces the computational load of

attention by pruning the tokens. However, there
is a limitation to pruning mechanisms in that the
removal of tokens can result in a substantial loss of
information (Kong et al., 2021).

To address this challenge, several studies have
explored methods for replacing token pruning.
ToMe (Bolya et al., 2022) gradually combines to-
kens based on their similarity instead of remov-
ing redundant ones. TokenLearner (Ryoo et al.,
2021) extracts important tokens from visual data
and combines them using MLP to decrease the
number of tokens. F-TFM (Dai et al., 2020) gradu-
ally compresses the sequence of hidden states while
still preserving the ability to generate token-level
representations. Slot Attention (Locatello et al.,
2020) learns a set of task-dependent abstract rep-
resentations, called "slots", to bind the objects in
the input through self-supervision. Similar to Slot
Attention, GroupViT (Xu et al., 2022) groups to-
kens that belong to similar semantic regions us-
ing cross-attention for semantic segmentation with
weak text supervision. In contrast to GroupViT,
Slot Attention extracts object-centric representa-
tions from perceptual input. Our work is funda-
mentally inspired by Slot Attention. To apply Slot
Attention, which uses a CNN as the backbone, to
our transformer-based model, we propose a com-
bining module that functions similarly to the group-
ing block of GroupViT. TPS (Wei et al., 2023)
introduces an aggressive token pruning method
that divides tokens into reserved and pruned sets
through token pruning. Then, instead of remov-
ing the pruned set, it is squeezed to reduce its size.
TPS shares similarities with our work in that both
pruning and squeezing are applied. However, while
TPS integrates the squeezing process with pruning
by extracting information from pruned tokens, our
model processes combining and pruning indepen-
dently.

3 Methods

In this section, we first describe the overall archi-
tecture of our proposed model, which integrates
token pruning and token combining. Then, we in-
troduce each compression stage in detail, including
the token pruning strategy in section 3.2 and the
token combining module in section 3.3.

3.1 Overall Architecture

Our proposed model architecture is illustrated in
Figure 1. The existing BERT model (Devlin et al.,
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Figure 1: Overall architecture of our purposed model Model architecture is composed of several Token-pruned
Attention Blocks, a Token Combining Module, and Attention Blocks. (Left): Fuzzy-based Token Pruning Self-
attention In each layer, fuzzy-based pruning method removes tokens using importance score and fuzzy membership
function. (Right): Token Combining Module This module apportions embedded tokens to each of the combination
token using a similarity matrix between them.

2018) consists of stacked attention blocks. We
modify the vanilla self-attention mechanism by ap-
plying a fuzzy-based token pruning strategy. Sub-
sequently, we replace one of the token-pruned at-
tention blocks with a token combining module. Re-
placing a token-pruned attention block instead of
inserting an additional module not only enhances
model performance but also reduces computational
overhead due to its dot product operations. First,
suppose X = {xi}ni=1 is a sequence token from
an input text with sequence length n. Given X ,
let E = {ei}ni=1 be an embedded token after pass-
ing through the embedding layer. Each ei is an
embedded token that corresponds to the sequence
token xi. Additionally, we add learnable combi-
nation tokens. Suppose C = {ci}mi=1 is a set of
learnable combination tokens, where m is the num-
ber of combination tokens. These combination
tokens bind other embedded tokens through the
token combining module. We simplify {ei}ni=1 to
{ei} and {ci}mi=1 to {ci}. We concatenate {ei} and
{ci} and use them as input for token-pruned atten-
tion blocks. We denote fuzzy-based token pruning
self-attention by FTPAttn , feed-forward layers
by FF , and layer norm by LN . The operations
performed within the token-pruned attention block
in l-th layer are as follows:

{ẽil}, {c̃il} = FTPAttn([{eli}; {ci}l]) (1)

{êil}, {ĉil} = LN(FF ([{ẽil}; {c̃il}])
+ [{ẽil}; {c̃il}] (2)

The token combining module receives {êil} and
{ĉil} as input and merges {êil} into {ĉil} to output
combined tokens {cl+1

i }. After the token combin-
ing module, subsequent attention blocks do not
perform pruning. Finally, we obtain the sequence
representation by aggregating the output tokens
{ri}, in which our method averages the output.

3.2 Fuzzy-based Token Pruning Self-attention

We modify vanilla self-attention by implementing
token pruning. Our token pruning attention
mechanism gradually reduces the size of the
key and value matrices by eliminating relatively
unimportant embedded tokens, except for the
combination tokens.

Importance Score We measure the signifi-
cance of tokens based on their importance score.
For each layer and head, the attention probability
Attentionprob is defined as:

Attentionl,h
prob = softmax(

Ql,h
p K l,h

p
T

√
d

) ∈ Rn×n

(3)

where l is the layer index, h is the head index, d is
the feature dimension, and Ql,h

p ,K l,h
p ∈ Rn× d

h in-
dicate query, key, and respectively. Attentionprob

is interpreted as a similarity between the i-th token
ei and the j-th token ej , with row index i ∈ [1, n]
and column index j ∈ [1, n]. As the similarity
increases, a larger weight is assigned to the value
corresponding to ej . The j-th column in Equation
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3 represents the amount of token ej attended by
other tokens ei (Wang et al., 2021). Therefore, ej
is considered a relatively important token as it is
attended by more tokens. We define the importance
score S(ej) in layer l and head h as:

S(ej)
l,h =

1

n

n∑

i=1

(Attentionl,h
prob)i,j (4)

Token Preservation Ratio After calculating the
importance score using Qp and Kp in the l-th layer,
we select tl+1 embedded tokens in descending or-
der of their scores. The tl+1 embedded tokens are
then indexed for Kp and Vp in the (l + 1)-th layer.
Other embedded tokens with relatively low impor-
tance score are pruned as a result. We define the
number of tokens that remain after token pruning
in the (l + 1)-th layer as:

tl+1 = ⌊tl × p⌋ (5)

where tl+1 depends on p, a hyperparameter
indicating the token preservation ratio of tl+1 to tl.
This preservation ratio represents the proportion
of tokens that are retained after pruning, relative
to the number of tokens before pruning. As token
pruning is not performed in the first layer, t1 = n,
and the attention uses the entire token in Qp,
Kp, and Vp. In the (l + 1)-th layer, tokens are
pruned based on S(ej)

l,h with Ql,h
p ∈ Rn× d

h and
K l,h

p ∈ Rtl× d
h , where tl+1 ≤ tl. In the subsequent

layers, the dimensions of Kp and Vp gradually
decreases.

Fuzzy-based Token Pruning However, simply
discarding a fixed proportion of tokens based
on a importance score could lead to mispruning.
Especially in imbalanced distributions, this
pruning strategy may remove crucial tokens while
retaining unimportant ones, thereby decreasing the
model accuracy (Zhao et al., 2019). Insufficient
training in the initial layers of the model can lead
to uncertain importance scores, thereby increasing
the risk of mistakenly pruning essential tokens.
Furthermore, the importance score of a token is
relative, and the distinction between the degree
of importance and unimportance may be unclear
and uncertain. To address this challenge, we
exploit fuzzy theory, which can better perceive
uncertainty. We employ two fuzzy membership
functions to evaluate the degree of importance
and unimportance together. Inspired by the

previous work (Zhao et al., 2019) on fuzzy-based
filter pruning in CNN, we design fuzzy mem-
bership functions for Importance(S(e)) and
Unimportance(S(e)) as:

Importance(S) =





0 if S(e) ≤ a
S(e)−a
b−a if a < S(e) < b

1 if S(e) ≥ b

(6)

Unimportance(S) =





1 if S(e) ≤ a
b−S(e)
b−a if a < S(e) < b

0 if S(e) ≥ b

(7)

where we simplify the importance score S(ej)
l,h

to S(e). Unlike the previous work(Zhao et al.,
2019) that uses fixed constants as hyperparame-
ters, our approach adopts the quantile function
QS(e)(0.25) and QS(e)(0.75) for a and b, respec-
tively, to ensure robustness. We compute a quan-
tile function for all importance scores, capturing
the complete spectrum of head information. The
importance set I and the unimportance set U are
defined using the α − cut, commonly referred to
as αA = x|A(x) ≥ α in fuzzy theory. To mitigate
information loss due to imbalanced distribution, we
employ token pruning based on the preservation
ratio p for tokens that fall within the set (I − U)c.
In the initial layers, where attention might not be
adequately trained, there’s a risk of erroneously
removing crucial tokens. To counteract this, we’ve
set the α for I to a minimal value of 0.01, while
the α for U is empirically set to 0.9. Finally, our
fuzzy-based token pruning self-attention FTPAttn

is defined as :

FTPAttn = softmax(
Ql,h

p K l,h
p

T

√
d

)V l,h
p ,

(Ql,h
p ∈ Rn× d

h , K l,h
p , V l,h

p ∈ Rtl× d
h ) (8)

3.3 Token Combining Module
Token combining module takes token-pruned atten-
tion block’s output representation êi

l, ĉil as inputs.
Combination tokens, which are concatenated with
embedded tokens, pass through token-pruned at-
tention blocks to incorporate global information
from input sequences. Then, combination tokens
integrate embedded tokens based on their similarity
in the embedded space. Similar to GroupViT (Xu
et al., 2022), our token combining module uses
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Gumbel-Softmax (Jang et al., 2016) to perform
cross-attention between combination tokens and
embedded tokens. We define the similarity matrix
Sim as:

Sim l
i,j

=
exp(WqLN(ĉi

l) ·WkLN(êj
l)) + gi∑m

t=1exp(WqLN(ĉt
l) ·WkLN(êj

l)) + gt
(9)

where LN is layer normalization, Wq and Wk

are the weights of projection matrix for the com-
bination tokens and embedded tokens, respec-
tively, and {gi} are i.i.d random samples from
the Gumbel(0, 1) distribution. Subsequently, we
implement hard assignment technique (Xu et al.,
2022), which employs a one-hot operation to de-
termine the specific combination token to which
each embedded token belongs. We define hard
assignment HA as:

HAl
i,j = 1M l

i
(Siml

i,j) + Siml
i,j − sg(Siml

i,j),

Mi = max(Simi,−)
(10)

where sg is the stop gradient operator to stop the
accumulated gradient of the inputs. We update
the combination token by calculating the weighted
sum of the embedded token that corresponds to the
same combination token. The output of the token
combining block is calculated as follows:

cl+1
i = ĉi

l +Wo

∑m
j=1HAl

i,jWv êj
l

∑m
j=1HAl

i,j

(11)

where Wv and Wo are the weights of the projec-
tion matrix. We adopt the grouping mechanism
described in GroupViT. GroupViT learns semantic
segmentation by grouping output segment tokens
to object classes through several grouping stages.
Our method, on the other hand, replaces one layer
with a token combining module and compresses
embedded tokens to a few informative combined
tokens. Empirically, we find that this approach re-
duces the training memory and time of the model,
increasing performance.

4 Experiments

This section aims to validate the effectiveness of
our proposed model. Firstly, we evaluate the doc-
ument classification performance of our proposed
model compared to the baseline models. Secondly,

we investigate the time and memory costs of our
proposed model and evaluate its efficiency. Lastly,
through the ablation study, we compare the effects
of different preservation ratios on fuzzy-based to-
ken pruning self-attention. We also analyze the
impact of the position of the token combining mod-
ule and the number of combination tokens.

4.1 Dataset

We evaluate our proposed model using six datasets
across different domains with varying numbers
of classes. SST-2 (Socher et al., 2013) and
IMDB (Maas et al., 2011) are datasets for sen-
timent classification on movie reviews. BBC
News (Greene and Cunningham, 2006) and 20
NewsGroups (Lang, 1995) comprise a collec-
tion of public news articles on various topics.
LEDGAR (Tuggener et al., 2020) includes a cor-
pus of legal provisions in contract, which is part of
the LexGLUE (Chalkidis et al., 2021) benchmark
to evaluate the capabilities of legal text. arXiv
is a digital archive that stores scholarly articles
from a wide range of fields, such as mathematics,
computer science, and physics. We use the arXiv
dataset employed by the controller (He et al., 2019)
and perform classification based on the abstract of
the paper as the input. We present more detailed
statistics of the dataset in Table 1.

Dataset Genre C I T

SST-2 review 2 9613 23.2
IMDB review 2 50000 292.2

BBC News news 5 2225 452.7
20 NewsGroup news 20 18846 330.6

LEDGAR legal 100 80000 138.7
arXiv scientific publication 11 1200 202.6

Table 1: Statistics of the datasets. C denotes the number
of classes in the dataset, I the number of instances,
and T the average number of tokens calculated using
BERT(bert-base-uncased) tokenizer.

4.2 Experimental Setup and Baselines

The primary aim of this work is to address
the issues of the BERT, which can be expen-
sive and destructive. To evaluate the effective-
ness of our proposed model, we conduct ex-
periments comparing it with the existing BERT
model(bert-base-uncased). For a fair compar-
ion, both of BERT and our proposed model fol-
low the same settings, and ours is warm-started
on bert-base-uncased. Our model has the same
number of layers and heads, embedding and hid-
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Dataset Model Location Accuracy F1(macro) F1(micro) Dataset Model Location Accuracy F1(macro) F1(micro)

SST-2

BigBird - 91.8 91.8 91.8

20
N

ew
sG

roup

BigBird - 69.3 67.7 69.3
Longformer - 91.0 91.0 91.0 Longformer - 68.5 67.0 68.5
F-TFM - 92.0 92.0 92.0 F-TFM - 69.7 68.5 69.7
Transkimmer - 91.4 91.4 91.4 Transkimmer - 67.8 64.9 67.8
BERT - 90.7 89.4 90.7 BERT - 68.7 56.1 68.7
ours-P - 91.1 89.8 91.1 ours-P - 69.4 56.8 70.0
ours-PF - 91.4 90.1 91.4 ours-PF - 70.7 58.2 70.7
ours-C layer 11 91.8 90.8 91.8 ours-C layer 11 69.2 56.5 69.2
ours-PFC layer 11 92.1 91.0 92.1 ours-PFC layer 11 69.9 57.1 69.9
ours-PFC layer 7 90.1 88.6 90.1 ours-PFC layer 7 68.5 55.4 68.5

IM
D

B

BigBird - 92.8 92.8 92.8

L
E

D
G

A
R

BigBird - 86.9 78.8 86.9
Longformer - 93.4 93.4 93.4 Longformer - 84.0 82.1 84.0
F-TFM - 91.7 91.7 91.7 F-TFM - 86.7 78.4 86.7
Transkimmer - 93.7 93.7 93.7 Transkimmer - 87.1 77.3 87.1
BERT - 93.7 92.8 93.7 BERT - 86.2 77.4 86.2
ours-P - 93.8 92.9 93.8 ours-P - 86.5 77.9 86.5
ours-PF - 94.3 93.4 94.3 ours-PF - 86.8 78.4 86.8
ours-C layer 11 92.6 91.3 92.6 ours-C layer 11 86.9 78.4 86.9
ours-PFC layer 11 93.5 92.5 93.5 ours-PFC layer 11 87.3 79.2 87.3
ours-PFC layer 7 92.8 91.5 92.8 ours-PFC layer 7 85.7 76.8 85.7

B
B

C
N

ew
s

BigBird - 97.1 97.1 97.1
arX

iv
BigBird - 74.0 70.4 74.0

Longformer - 97.9 97.9 97.9 Longformer - 66.0 64.8 66.0
F-TFM - 96.5 96.5 96.5 F-TFM - 70.0 66.5 70.0
Transkimmer - 97.6 97.6 97.6 Transkimmer - 73.7 72.6 73.7
BERT - 96.2 94.0 96.2 BERT - 69.0 52.5 68.3
ours-P - 97.2 95.4 97.2 ours-P - 71.0 56.6 70.2
ours-PF - 97.9 96.6 97.9 ours-PF - 76.0 61.0 74.0
ours-C layer 11 96.8 95.2 96.8 ours-C layer 11 70.0 52.7 69.2
ours-PFC layer 11 98.1 97.1 98.1 ours-PFC layer 11 74.0 58.1 73.1
ours-PFC layer 7 97.0 95.2 97.0 ours-PFC layer 7 68.0 50.7 67.3

Table 2: Performance comparison on document classification. To our proposed model, ours-P applies token pruning,
ours-PF applies fuzzy-based token pruning, ours-C applies token combining module, and ours-PFC applies both
fuzzy-based token pruning and token combining module. The best performance is highlighted in bold.

Model Location FLOPs Memory Cost Speedup
BigBird - 1.57x 0.82x 0.94x
Longformer - 2.10x 1.11x 0.55x
F-TFM - 1.03x 0.39x 1.11x
Transkimmer - 0.13x 0.87x 0.70x
BERT - - - -
ours-P - 1x 0.88x 1.33x
ours-PF - 1x 0.88x 1.25x
ours-C layer 11 0.877x 0.89x 1.26x
ours-PFC layer 11 0.877x 0.80x 1.29x
ours-PFC layer 7 0.544x 0.61x 1.64x

Table 3: Efficiency comparison on document classifica-
tion.

den sizes, and dropout ratio as BERT. Our model
has the same number of layers and heads, embed-
ding and hidden sizes, and dropout ratio as BERT.
We also compare our method to other baselines,
including BigBird (Zaheer et al., 2020) and Long-
former (Beltagy et al., 2020), which employ sparse
attention, as well as F-TFM (Dai et al., 2020) and
Transkimmer (Guan et al., 2022), which utilize to-
ken compression and token pruning, respectively.

For IMDB, BBC News, and 20NewsGroup, 20%
of the training data is randomly selected for vali-
dation. During training, all model parameters are
fine-tuned using the Adam optimizer (Kingma and

Ba, 2014). The first 512 tokens of the input se-
quences are processed. The learning rate is set
to 2e-5, and we only use 3e-5 for the LEDGAR
dataset. We also use a linear warm-up learning
rate scheduler. In all experiments, we use a batch
size of 16. We choose the model with the lowest
validation loss during the training step as the best
model. We set the token preservation ratio p to 0.9.

4.3 Main Result

To evaluate the performance and the effi-
ciency of each strategy, we compare our pro-
posed model(ours-PFC) with five baselines and
three other models: one that uses only token
pruning(ours-P), one that applies fuzzy member-
ship functions for token pruning(ours-PF), and one
that uses only a token combining module(ours-C),
as shown in Table 2 and Table 3.

Compared to BERT, ours-P consistently outper-
forms it for all datasets with higher accuracy and
F1 scores, achieving approximately 1.33x speedup
and 0.88x memory savings. More importantly, the
performance of ours-PF significantly surpasses
that of ours-P with up to 5.0%p higher accuracy,
4.4%p higher F1(macro) score, and 3.8%p higher
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F1(micro) score, with the same FLOPs and compa-
rable memory costs. To evaluate the performance
of ours-C and ours-PFC, we incorporate the com-
bining module at the 11-th layer, which results in
the optimal performance. A comprehensive discus-
sion on performance fluctuations in relation to the
location of the combining module is presented in
Section 4.4. Excluding the IMDB dataset, ours-C
not only achieves higher values in both the accuracy
and F1 scores compared to the BERT but also ex-
ceeds by 0.89x speedup and 1.26x memory savings
while reducing FLOPs. Across all datasets, our
models(ours-PF or ours-PFC) consistently outper-
form all efficient transformer-based baseline mod-
els. Furthermore, ours-PFC outperforms the BERT
with up to 5.0%p higher accuracy, 5.6%p higher
macro F1 score, and 4.8%p higher micro F1 score.
Additionally, ours-PFC exhibits the best perfor-
mance with the least amount of time and memory
required, compared to models that use pruning or
combining methodologies individually. These find-
ings highlight the effectiveness of integrating token
pruning and token combining on BERT’s document
classification performance, from both the perfor-
mance and the efficiency perspective.

Subsequently, we evaluate the potential effec-
tiveness of ours-C and ours-PFC by implementing
the combining module at the 7-th layer. As shown
in Table 5 of Section 4.4, applying the combining
module to the 7-th layer leads to further time and
memory savings while also mitigating the potential
decrease in accuracy. Compared to BERT, it only
shows a minimal decrease in accuracy (at most
0.8%p). Moreover, it reduces FLOPs and memory
costs to 0.61x, while achieving a 1.64x speedup. In
our experiments, we find that our proposed model
effectively improves document classification per-
formance, outperforming all baselines. Even when
the combination module is applied to the 7th layer,
it maintains performance similar to BERT while
further reducing FLOPs, lowering memory usage,
and enhancing speed.

4.4 Ablation study

Token Preservation Ratio We evaluate different
token preservation ratios p on the BBC News
dataset, as shown in Table 4. Our findings indicate
that the highest accuracy, at 98.1%, was achieved
when p is 0.9. Moreover, our fuzzy-based pruning
strategy results in 1.17x reduction in memory cost
and 1.12x speedup compared to the vanilla self-

attention mechanism. As p decreases, we observe
that performance deteriorates and time and memory
costs decrease. A smaller p leads to the removal of
more tokens from the fuzzy-based token pruning
self-attention. While leading a higher degree of in-
formation loss in attention, it removes more tokens
can result in time and memory savings.

Preservation Ratio p Accuracy Memory Cost Speedup
0.95 97.7 0.99x 1.07x
0.9 97.9 0.86x 1.12x
0.85 97.6 0.79x 1.14x
0.8 97.2 0.75x 1.17x
0.75 97.4 0.71x 1.19x
0.7 97.2 0.69x 1.24x
0.65 96.8 0.68x 1.25x
0.6 96.5 0.67x 1.25x

BERT 96.2 - -

Table 4: Comparisons of different token preservation
ratios

Token Combining Module In Table 5, we compare
the positions of different token combining mod-
ules on the BBC News dataset. We observe that
placing the token combining module earlier within
the layers results in greater speedup and memory
savings. Since fewer combined tokens proceed
through subsequent layers, the earlier this process
begins, the greater the computational reduction that
can be achieved. However, this reduction in the in-
teraction between the combination token and the
embedded token hinders the combination token to
learn global information, potentially degrading the
model performance. Our proposed model shows
the highest performance when the token combining
module is placed in the 11-th layer, achieving an
accuracy of 98.1%.

Layer Accuracy Memory Cost Speedup FLOPs
5 96.5 0.47x 1.69x 2.65x
6 96.6 0.54x 1.53x 2.17x
7 97.8 0.61x 1.39x 1.84x
8 97.2 0.68x 1.29x 1.60x
9 97.4 0.76x 1.17x 1.41x
10 97.8 0.82x 1.17x 1.26x
11 98.1 0.89x 1.03x 1.14x

11(*) (97.7) (0.90x) (0.88x) (1.14x)
12 97.6 0.96x 0.97x 1.04x

Table 5: Comparisons according to combining module
location. We replace one of the existing transformer
layers with a token combining module. (*) represents a
case where a combining module is additionally inserted
without replacing.
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Combination Tokens In Table 6, we compare the
accuracy achieved with different numbers of com-
bination tokens. We use four datasets to analyze
the impact of the number of classes on the combi-
nation tokens. We hypothesized that an increased
number of classes would require more combina-
tion tokens to encompass a greater range of in-
formation. However, we observe that the highest
accuracy is achieved when using eight combina-
tion tokens across all four datasets. When more
combination tokens are used, performance grad-
ually degrades. These results indicate that when
the number of combination tokens is fewer than
the number of classes, each combination token can
represent more information as a feature vector in a
768-dimensional embedding space, similar to find-
ings in GroupViT. Through this experiment, we
find that the optimal number of combination tokens
is 8. We show that our proposed model performs
well in multi-class classification without adding
computation and memory costs.

Dataset C
Number of Combination Tokens

4 8 16 32 64
SST-2 2 91.2 92 90.9 91.2 89.7
BBC News 5 97.3 98.1 97.5 97.6 97.2
20 NewsGroup 20 68.5 69.9 68.9 68.7 67.6
LEDGAR 100 85.6 87.3 86.7 86 85.9

Table 6: Performance comparison of different numbers
of combination tokens. C denotes the number of classes
in the dataset.

5 Conclusion

In this paper, we introduce an approach that inte-
grates token pruning and token combining to im-
prove document classification by addressing expen-
sive and destructive problems of self-attention in
the existing BERT model. Our approach consists
of fuzzy-based token pruned attention and token
combining module. Our pruning strategy gradually
removes unimportant tokens from the key and value
in attention. Moreover, we enhance the robustness
of the model by incorporating fuzzy membership
functions. For further compression, our token com-
bining module reduces the time and memory costs
of the model by merging the tokens in the input
sequence into a smaller number of combination
tokens. Experimental results show that our pro-
posed model enhances the document classification
performance by reducing computational require-
ments with focusing on more significant tokens.

Our findings also demonstrate a synergistic effect
by integrating token pruning and token combining,
commonly used in object detection and semantic
segmentation. Ultimately, our research provides
a novel way to use pre-trained transformer mod-
els more flexibly and effectively, boosting perfor-
mance and efficiency in a myriad of applications
that involve text data processing.

Limitations

In this paper, our goal is to address the fundamental
challenges of the BERT model, which include high
cost and performance degradation, that hinder its
application to document classification. We demon-
strate the effectiveness of our proposed method,
which integrates token pruning and token combin-
ing, by improving the existing BERT model. How-
ever, our model, which is based on BERT, has an in-
herent limitation in that it can only handle input se-
quences with a maximum length of 512. Therefore,
it is not suitable for processing datasets that are
longer than this limit. The problems arising from
the quadratic computation of self-attention and the
existence of redundant and uninformative tokens
are not specific to BERT and are expected to inten-
sify when processing longer input sequences. Thus,
we will improve other transformer-based models
that can handle long sequence datasets, such as
LexGLUE, and are proficient in performing natural
language inference tasks in our future work.

Ethics Statement

Our research adheres to ethical standards of prac-
tice. The datasets used to fine-tune our model are
publicly available and do not contain any sensitive
or private information. The use of open-source data
ensures that our research maintains transparency.
Additionally, our proposed model is built upon a
pre-trained model that has been publicly released.
Our research goal aligns with an ethical commit-
ment to conserve resources and promote acces-
sibility. By developing a model that minimizes
hardware resource requirements and time costs,
we are making a valuable contribution towards a
more accessible and inclusive AI landscape. We
aim to make advanced AI techniques, including
our proposed model, accessible and practical for
researchers with diverse resource capacities, ulti-
mately promoting equity in the field.
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