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Abstract

Text-to-SQL semantic parsing faces challenges
in generalizing to cross-domain and complex
queries. Recent research has employed a ques-
tion decomposition strategy to enhance the pars-
ing of complex SQL queries. However, this
strategy encounters two major obstacles: (1) ex-
isting datasets lack question decomposition; (2)
due to the syntactic complexity of SQL, most
complex queries cannot be disentangled into
sub-queries that can be readily recomposed.
To address these challenges, we propose a new
modular Query Plan Language (QPL) that sys-
tematically decomposes SQL queries into sim-
ple and regular sub-queries. We develop a trans-
lator from SQL to QPL by leveraging analysis
of SQL server query optimization plans, and we
augment the Spider dataset with QPL programs.
Experimental results demonstrate that the mod-
ular nature of QPL benefits existing semantic-
parsing architectures, and training text-to-QPL
parsers is more effective than text-to-SQL pars-
ing for semantically equivalent queries.
The QPL approach offers two additional advan-
tages: (1) QPL programs can be paraphrased
as simple questions, which allows us to create
a dataset of (complex question, decomposed
questions). Training on this dataset, we obtain
a Question Decomposer for data retrieval that is
sensitive to database schemas. (2) QPL is more
accessible to non-experts for complex queries,
leading to more interpretable output from the
semantic parser.

1 Introduction

Querying and exploring complex relational data
stores necessitate programming skills and domain-
specific knowledge of the data. Text-to-SQL se-
mantic parsing allows non-expert programmers to
formulate questions in natural language, convert
the questions into SQL, and inspect the execution
results. While recent progress has been remark-
able on this task, general cross-domain text-to-SQL
models still face challenges on complex schemas

and queries. State of the art text-to-SQL models
show performance above 90% for easy queries, but
fall to about 50% on complex ones (see Table 1).
This accuracy drop is particularly bothersome for
non-experts, because they also find it difficult to
verify whether a complex SQL query corresponds
to the intent behind the question they asked. In a
user study we performed, we found that software
engineers who are not experts in SQL fail to deter-
mine whether a complex SQL query corresponds to
a question in about 66% of the cases (see Table 4).
The risk of text-to-code models producing incor-
rect results with confidence is thus acute: complex
SQL queries non-aligned with users intent will be
hard to detect.

In this paper, we address the challenge of deal-
ing with complex data retrieval questions through
a compositional approach. Based on the success of
the question decomposition approach for multi-hop
question answering, recent work in semantic pars-
ing has also investigated ways to deal with complex
SQL queries with a Question Decomposition (QD)
strategy. In another direction, previous attempts
have focused on splitting complex SQL queries
into spans (e.g., aggregation operators, join crite-
ria, column selection) and generating each span
separately.

In our approach, we start from a semantic anal-
ysis of the SQL query. We introduce a new inter-
mediary language, which we call Query Plan Lan-
guage (QPL) that is modular and decomposable.
QPL can be directly executed on SQL databases
through direct translation to modular SQL Com-
mon Table Expressions (CTEs). We design QPL to
be both easier to learn with modern neural archi-
tectures than SQL and easier to interpret by non-
experts. The overall approach is illustrated in Fig. 1.
We develop an automatic translation method from
SQL to QPL. On the basis of the modular QPL
program, we also learn how to generate a natural
language decomposition of the original question.
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Question

What is the official language spoken in the country whose head of state
is Beatrix?

Gold SQL

SELECT T2.Language
FROM country AS T1
JOIN countrylanguage AS T2 ON T1.Code = T2.CountryCode
WHERE T1.HeadOfState = 'Beatrix' AND T2.IsOfficial = 'T'

Gold QPL

#1 = Scan Table [country] Predicate [HeadOfState = 'Beatrix']
Output [Code, HeadOfState]

#2 = Scan Table [countrylanguage] Output [CountryCode, Language, IsOfficial]
#3 = Filter [#2] Predicate [IsOfficial = 'T'] Output [CountryCode, Language]
#4 = Join [#1, #3] Predicate [#3.CountryCode = #1.Code] Output [#3.Language]

Computed Question Decomposition (QD)

#1 = Scan the table country and retrieve the code and
head of state of the country whose head of state is Beatrix

#2 = Scan the table countrylanguage and retrieve the country codes,
languages and if they're official

#3 = Filter from #2 all the official languages and
retrieve the country codes and languages

#4 = Join #1 and #3 based on the matching country codes and retrieve
the language spoken in the country whose head of state is Beatrix

Predicted QDMR

#1 = return countries whose head of state is beatrix ;
#2 = return the official language spoken in the official language of #1

Figure 1: Example QPL and Question Decomposition compared to the original SQL query from Spider and to the
predicted QDMR question decomposition from (Wolfson et al., 2020).

In contrast to generic QD methods such as QDMR
(Wolfson et al., 2020), our decomposition takes
into account the database schema which is refer-
enced by the question and the semantics of the QPL
operations.

Previous research in semantic parsing has shown
that the choice of the target language impacts a
model’s ability to learn to parse text into an accu-
rate semantic representation. For instance, Guo
et al. (2020) compared the performance of various
architectures on three question-answering datasets
with targets converted to Prolog, Lambda Calculus,
FunQL, and SQL. They discovered that the same
architectures produce lower accuracy (up to a 10%
difference) when generating SQL, indicating that

SQL is a challenging target language for neural
models. The search for a target language that is
easier to learn has been pursued in Text-to-SQL
as well (Yu et al., 2018a; Guo et al., 2019; Gan
et al., 2021). We can view QPL as another candi-
date intermediary language, which in contrast to
previous attempts, does not rely on a syntactic anal-
ysis of the SQL queries but rather on a semantic
transformation into a simpler, more regular query
language.

In the rest of the paper, we review recent work
in text-to-SQL models that investigates interme-
diary representations and question decomposition.
We then present the Query Plan Language (QPL)
we have designed and the conversion procedure
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we have implemented to translate the existing
large-scale Spider dataset into QPL. We then de-
scribe how we exploit the semantic transforma-
tion of SQL to QPL to derive a dataset of schema-
dependent Question Decompositions. We finally
present strategies that exploit the compositional na-
ture of QPL to train models capable of predicting
complex QPL query plans from natural language
questions, and to decompose questions into data-
retrieval oriented decompositions.

We investigate two main research questions:
(RQ1) Is it easier to learn Text-to-QPL – a modular,
decomposable query language – than to learn Text-
to-SQL using Language Model based architectures;
(RQ2) Can non-expert users interpret QPL outputs
in an easier manner than they can for complex SQL
queries.

Our main contributions are (1) the definition of
the QPL language together with automatic trans-
lation from SQL to QPL and execution of QPL
on standard SQL servers; (2) the construction of
the Spider-QPL dataset which enriches the Spi-
der samples with validated QPL programs for Spi-
der’s dataset together with Question Decomposi-
tions based on the QPL structure; (3) Text-to-QPL
models to predict QPL from a (Schema + Question)
input that are competitive with state of the art Text-
to-SQL models and perform better on complex
queries; (4) a user experiment validating that non-
expert users can detect incorrect complex queries
better on QPL than on SQL.1

2 Previous Work

Text-to-SQL parsing consists of mapping a ques-
tion Q = (x1, . . . , xn) and a database schema S =
[table1(col

1
1 . . . col

1
c1), . . . , tableT (col

T
1 . . . colTcT )]

into a valid SQL query Y = (y1, . . . , yq). Per-
formance metrics include exact match (where
the predicted query is compared to the expected
one according to the overall SQL structure and
within each field token by token) and execution
match (where the predicted query is executed on a
database and results are compared).

Several large Text-to-SQL datasets have been
created, some with single schema (Wang et al.,
2020b), some with simple queries (Zhong et al.,
2017). Notably, the Spider dataset (Yu et al.,
2018b) encompasses over 200 database schemas
with over 5K complex queries and 10K questions.

1All of the datasets and code are available on https://
github.com/bgunlp/qpl.

It is employed to assess the generalization capabili-
ties of text-to-SQL models to unseen schemas on
complex queries. Recent datasets have increased
the scale to more samples and more domains (Lan
et al., 2023; Li et al., 2023). In this paper, we fo-
cus on the Spider dataset for our experiments, as it
enables comparison with many previous methods.

2.1 Architectures for Text-to-SQL

Since the work of Dong and Lapata (2016), leading
text-to-SQL models have adopted attention-based
sequence to sequence architectures, translating the
question and schema into a well-formed SQL query.
Pre-trained transformer models have improved per-
formance as in many other NLP tasks, starting with
BERT-based models (Hwang et al., 2019; Lin et al.,
2020) and up to larger LLMs, such as T5 (Raf-
fel et al., 2020) in (Scholak et al., 2021), OpenAI
CodeX (Chen et al., 2021) and GPT variants in (Ra-
jkumar et al., 2022; Liu and Tan, 2023; Pourreza
and Rafiei, 2023).

In addition to pre-trained transformer models,
several task-specific improvements have been in-
troduced: the encoding of the schema can be im-
proved through effective representation learning
Bogin et al. (2019), and the attention mechanism of
the sequence-to-sequence model can be fine-tuned
Wang et al. (2020a). On the decoding side, tech-
niques that incorporate the syntactic structure of
the SQL output have been proposed.

To make sure that models generate a sequence
of tokens that obey SQL syntax, different ap-
proaches have been proposed: in (Yin and Neu-
big, 2017), instead of generating a sequence of
tokens, code-oriented models generate the abstract
syntax tree (AST) of expressions of the target pro-
gram. Scholak et al. (2021) defined the constrained
decoding method with PICARD. PICARD is an
independent module on top of a text-to-text auto-
regressive model that uses an incremental parser
to constrain the generated output to adhere to the
target SQL grammar. Not only does this eliminate
almost entirely invalid SQL queries, but the parser
is also schema-aware, thus reducing the number
of semantically incorrect queries, e.g., selecting a
non-existent column from a specific table. We have
adopted constrained decoding in our approach, by
designing an incremental parser for QPL, and en-
forcing the generation of syntactically valid plans.
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Difficulty NatSQL + RAT-SQL Din-SQL GPT-4 GPT3.5-turbo

Easy 91.6% 91.1% 87.7%
Medium 75.2% 79.8% 75.1%
Hard 65.5% 64.9% 72.5%
Extra Hard 51.8% 43.4% 53.9%

Overall 73.7% 74.2% 74.3%

Table 1: Spider Development Set baseline execution accuracy by difficulty level

2.2 Zero-shot and Few-shot LLM Methods
With recent LLM progress, the multi-task capa-
bilities of LLMs have been tested on text-to-SQL.
In zero-shot mode, a task-specific prompt is pre-
fixed to a textual encoding of the schema and the
question, and the LLM outputs an SQL query. Ra-
jkumar et al. (2022); Liu et al. (2023), showed that
OpenAI Codex achieves 67% execution accuracy.
In our own evaluation, GPT-4 (as of May 2023)
achieves about 74% execution accuracy under the
same zero-shot prompting conditions.

Few-shot LLM prompting strategies have also
been investigated: example selection strategies are
reviewed in (Guo et al., 2023; Nan et al., 2023)
and report about 85% execution accuracy when
tested on Spider dev or 7K examples from the Spi-
der training set. Pourreza and Rafiei (2023); Liu
and Tan (2023) are top performers on Spider with
the GPT4-based DIN-SQL. They use multi-step
prompting strategies with query decomposition.

Few-shot LLM prompting methods close the gap
and even outperform specialized Text-to-SQL mod-
els with about 85% execution match vs. 80% for
3B parameters specialized models on the Spider
test set, without requiring any fine-tuning or train-
ing. In this paper, we focus on the hardest cases
of queries, which remain challenging both in SQL
and in QPL (with execution accuracy at about 60%
in the best cases). We also note that OpenAI-based
models are problematic as baselines, since they
cannot be reproduced reliably.2

2.3 Intermediary Target Representations
Most text-to-SQL systems suffer from a severe
drop in performance for complex queries, as re-
ported for example in DIN-SQL results where the
drop in execution accuracy between simple queries
and hard queries is from about 85% to 55% (see
also (Lee, 2019)). We demonstrate this drop in

2It is most likely that the Spider dataset was part of the
training material processed by GPT-x models.

Table 1 which shows execution accuracy of lead-
ing baseline models (Gan et al., 2021; Pourreza
and Rafiei, 2023) per Spider difficulty level on the
development set. The GPT3.5-turbo results cor-
respond to our own experiment using zero-shot
prompt. Other methods have been used to demon-
strate that current sequence to sequence methods
suffer at compositional generalization, that is, sys-
tems trained on simple queries, fail to generate com-
plex queries, even though they know how to gen-
erate the components of the complex query. This
weakness is diagnosed by using challenging com-
positional splits (Keysers et al., 2019; Shaw et al.,
2021; Gan et al., 2022) over the training data.

One of the reasons for such failure to generalize
to complex queries relates to the gap between the
syntactic structure of natural language questions
and the target SQL queries. This has motivated
a thread of work attempting to generate simpli-
fied or more generalizable logical forms than exe-
cutable SQL queries. These attempts are motivated
by empirical results on other semantic parsing for-
malisms that showed that adequate syntax of the
logical form can make learning more successful
(Guo et al., 2020; Herzig and Berant, 2021).

Most notable attempts include SyntaxSQLNet
(Yu et al., 2018a), SemQL (Guo et al., 2019) and
NatSQL (Gan et al., 2021). NatSQL aims at re-
ducing the gap between questions and queries. It
introduces a simplified syntax for SQL from which
the original SQL can be recovered. Figure 2 illus-
trates how this simplified syntax is aligned with
spans of the question.

Our work is directly related to this thread. Our
approach in designing QPL is different from Nat-
SQL, in that we do not follow SQL syntax nor
attempt to mimic the syntax of natural language.
Instead, we apply a semantic transformation on
the SQL query, and obtain a compositional regular
query language, where all the nodes are simple ex-
ecutable operators which feed into other nodes in
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Question

What type of pet is the youngest animal,
and how much does it weigh?

SQL

SELECT PetType , Weight FROM Pets
ORDER BY Pet_Age LIMIT 1

Spider-SS Decomposition
SubSentence: What type of pet
NatSQL: SELECT Pets.Pettype
SubSentence: is the youngest animal
NatSQL: ORDER BY Pets.Pet_Age LIMIT 1
SubSentence: and how much does it weigh?
NatSQL: SELECT Pets.Weight

Figure 2: NatSQL and Question Decomposition in
Spider-SS (Gan et al., 2022)

a data-flow graph according to the execution plan
of the SQL query. Our method does not aim at
simplifying the mapping of a single question to a
whole query, but instead at decomposing a question
into a tree of simpler questions, which can then be
mapped to simple queries. The design of QPL vs.
SQL adopts the same objectives as those defined
in KoPL vs. SparQL in (Cao et al., 2022) in the
setting of QA over Knowledge Graphs.

2.4 Question Decomposition Approaches

Our approach is also inspired by work attempting
to solve complex QA and semantic parsing using a
question decomposition strategy (Perez et al., 2020;
Fu et al., 2021; Saparina and Osokin, 2021; Wolf-
son et al., 2022; Yang et al., 2022; Deng et al.,
2022b; Zhao et al., 2022; Niu et al., 2023). In this
approach, the natural language question is decom-
posed into a chain of sub-steps, which has been pop-
ular in the context of Knowledge-Graph-based QA
with multi-hop questions (Min et al., 2019; Zhang
et al., 2019). Recent work attempts to decompose
the questions into trees (Huang et al., 2023), which
yields explainable answers (Zhang et al., 2023).

In this approach, the question decomposer is
sometimes learned in a joint-manner to optimize
the performance of an end to end model (Ye et al.,
2023); it can also be derived from a syntactic anal-
ysis of complex questions (Deng et al., 2022a); or
specialized pre-training of decompositions using
distant supervision from comparable texts (Zhou
et al., 2022); or weak supervision from execution

values (Wolfson et al., 2022). LLMs have also been
found effective as generic question decomposers
in Chain of Thought (CoT) methods (Wei et al.,
2022; Chen et al., 2022; Wang et al., 2023). In this
work, we compare our own Question Decomposi-
tion method with the QDMR model (Wolfson et al.,
2022).

3 Decomposing Queries into QPL

3.1 Query Plan Language Dataset Conversion

We design Query Plan Language (QPL) as a modu-
lar dataflow language that encodes the semantics of
SQL queries. We take inspiration in our semantic
transformation from SQL to QPL from the def-
inition of the execution plans used internally by
SQL optimizers, e.g., (Selinger et al., 1979). We
automatically convert the original Spider dataset
into a version that includes QPL expressions for all
the training and development parts of Spider. The
detailed syntax of QPL is shown in § A.4.

QPL is a hierarchical representation for execu-
tion plans. It is a tree of operations in which the
leaves are table reading nodes (Scan nodes), and
the inner nodes are either unary operations (such as
Aggregate and Filter) or binary operations (such
as Join and Intersect). Nodes have arguments,
such as the table to scan in a Scan node, or the join
predicate of a Join node.

An important distinction between QPL plans and
SQL queries is that every QPL sub-plan is a valid
executable operator, which returns a stream of data
tuples. For example, Fig. 1 shows an execution
plan with 4 steps and depth 2. The 4 steps are:
the two Scan leaves, the Filter sub-plan, and the
Join sub-plan, which is the root of the overall plan.

We automatically convert SQL queries into se-
mantically equivalent QPL plans by reusing the ex-
ecution plans produced by Microsoft SQL Server
2019 query optimizer (Fritchey, 2018). QPL is
a high-level abstraction of the physical execution
plan produced (which includes data and index
statistics). In QPL syntax, we reduced the num-
ber of operators to the 9 operators listed in Table 2.
We also design the operators to be context free, i.e.,
all operators take as input streams of tuples and out-
put a stream of tuples, and the output of an operator
only depends on its inputs.3 We experiment with
different syntactic realizations of QPL expressions,

3This is in contrast to SQL execution plan operators such
as Nested-Loops where the two children nodes tightly depend
on each other.
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Operator Description

Scan Scan all rows in a table with optional filtering predicate
Aggregate Aggregate a stream of tuples using a grouping criterion into a stream of groups
Filter Remove tuples from a stream that do not match a predicate
Sort Sort a stream according to a sorting expression
TopSort Select the top-K tuples from a stream according to a sorting expression
Join Perform a logical join operation between two streams based on a join condition
Except Compute the set difference between two streams of tuples
Intersect Compute the set intersection between two streams of tuples
Union Compute the set union between two streams of tuples

Table 2: Description of QPL Operators

SQL Query
Optimizer
Exec. Plan QPL CTE

Results

Figure 3: QPL generation process: the dataset SQL expressions are run through the query optimizer, which is then
converted into QPL. QPL expressions are converted into modular CTE SQL programs, which can be executed. We
verify that the execution results match those of the original SQL queries.

and elected the version where steps are numbered
and ordered bottom-up, corresponding roughly to
the execution order of the steps. We validate that
the result sets returned by the converted QPL plans
are equivalent to those of the original Spider SQL
queries. We thus enrich the Spider training and de-
velopment sets with semantically equivalent QPL
programs as shown in Fig. 3.

3.2 Text-to-QPL Model

Original SQL

SELECT template_id, count(*)
FROM Documents
GROUP BY template_id

CTE

WITH
Scan_1 AS (

SELECT Template_ID FROM Documents
),
Aggregate_2 AS (

SELECT COUNT(*) AS Count, Template_ID
FROM Scan_1
GROUP BY Template_ID

)
SELECT * FROM Aggregate_2

Figure 4: SQL query and its equivalent CTE

In order to train a text-to-QPL model, we fine-
tune Flan-T5-XL (Chung et al., 2022) (3B param-
eters) on 6,509 training examples. Each example
contains a question, schema information and the
gold computed QPL. The input to the model is the
same as in Shaw et al. (2021), i.e., Question |
Schema Name | Table1 : Col11, Col12, ...
| Table2 : Col21, Col22, ... We also exper-
iment with rich schema encoding, adding type, key
and value information as described in §A.2. We
train the model for 15 full epochs and choose the
model with the best execution accuracy on the de-
velopment set. Execution accuracy is calculated by
generating a QPL prediction, converting it to Com-
mon Table Expression format (CTE) (see example
in Fig. 4), running the CTE in the database and
comparing the predicted result sets of the predicted
and gold CTEs. Final evaluation of the model uses
the PICARD (Scholak et al., 2021) decoder with
a parser we developed for QPL syntax. This con-
strained decoding method ensures that the gener-
ated QPL programs are syntactically valid.

4 Question Decomposition

We use the QPL plans automatically computed
from SQL queries in the dataset to derive a set of
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question decompositions (QD) that are grounded in
the QPL steps, as shown in Fig. 1. We investigate
three usages of this QD method: (1) QPL → QD:
we learn how to generate a QD given a QPL plan;
this is useful at inference time, to present the pre-
dicted QPL to non-expert users, as a more readable
form of the plan; (2) Q → QD we train a question
decomposer on the Spider-QPL dataset for which
we collect a set of validated automatically gener-
ated QDs; (3) Q+QD → QPL we finally inves-
tigate a Text-to-QPL predictor model which given
a question, firstly generates a corresponding QD,
and then predicts a QPL plan based on (Q+QD).

4.1 QPL to QD
We use the OpenAI gpt-3.5-turbo-0301 model
to generate a QD given a QPL plan. We prepared
a few-shot prompt that includes a detailed descrip-
tion of the QPL language syntax and six examples
that cover all the QPL operators that we prepared
manually (see §A.3).

We validated manually 50 pairs (QPL, QD) gen-
erated using this method and found them to be re-
liable, varied and fluent. In addition, we designed
an automatic metric to verify that the generated
QDs are well aligned with the source QPL plan:
(1) we verify that the number of steps in QD is
the same as that in the source QPL; (2) we iden-
tify the leaf Scan instructions in the QD and verify
that they are aligned with the corresponding QPL
Scan operations. To this end, we use a fuzzy string
matching method to identify the name of the table
to be scanned in the QD instruction. The QPL-QD
alignment score combines the distance between the
length of QD and QPL and the IoU (intersection
over union) measure of the set of Scan operations.

4.2 Dataset Preparation
Using the QPL → QD generator, we further enrich
the Spider-QPL dataset with a computed QD field
for each sample. For the sake of comparison, we
also compute the predicted QDMR decomposition
of the question (Wolfson et al., 2020) using the
Question Decomposer from (Wolfson et al., 2022)4

We obtain for each example a tuple: <Schema,
Question, SQL, QPL, QD, QDMR>. We obtained
1,007 valid QDs (QPL-QD alignment score of 1.0)
in the Spider Dev Set (out of 1,034) and 6,285 out
of 6,509 in the Training Set with a valid QPL.

4We used the decomposer model pub-
lished in https://github.com/tomerwolgithub/
question-decomposition-to-sql.

4.3 Question Decomposer Model

Given the dataset of <Q, QD> obtained above we
train a QPL Question Decomposer which learns to
predict a QD in our format given a question and a
schema description: Q+Schema → QD. We fine-
tune a Flan-T5-XL model for this task, using the
same schema encoding as for the Q+ Schema →
QPL model shown in §3.2.

4.4 Q+QD to QPL Prediction

We train a Flan-T5-XL model under the same con-
ditions as previous models on ⟨Q,QD,QPL⟩ to
predict QPL given the QD computed by our ques-
tion decomposer.

5 Experiments and Results

5.1 Text-to-QPL Prediction

We present our results on the Spider development
set in Table 3. We compare our models to T5-3B
with PICARD (Scholak et al., 2021), as it is the
closest model to ours in terms of number of pa-
rameters, architecture, and decoding strategy. To
make the comparison as close as possible, we re-
train a model <Q → SQL> using the same base
model Flan-T5-XL as we use for our <Q → QPL>
model. We also compare two schema encoding
methods: Simple Schema Encoding only provides
the list of table names and column names for each
table; Rich Schema Encoding provides for each col-
umn additional information: simplified type (same
types as used in Spider’s dataset - text, number,
date, other), keys (primary and foreign keys) and
values (see §A.2 for details). We see that at every
difficulty level (except “Easy” for Simple Schema
Encoding), our Q → QPL model improves on the
baseline. The same is true compared to the other
models in Table 1.5 All other things being equal,
this experiment indicates that it is easier to learn
QPL as a target language than SQL (RQ1).

On overall accuracy, the direct Q → QPL model
achieves a respectable 77.4% without database
content and 83.8% with database content. Our
model notably achieves highest execution accuracy
on Hard and Extra-Hard queries across existing
fine-tuned and LLM-based models (70.0% across
Hard+Extra-Hard with database content).

5The Q → SQL baseline we show reaches 82% vs. 79%
reported in Scholak et al. (2021) as we used a more complete
schema encoding and the instruction fine-tuned Flan-T5-XL
model as opposed to the base T5-3B model.
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Spider Difficulty Q → QPL Q+QD → QPL Q → SQL Support

Simple Schema Encoding
Easy 87.5% 84.7% 91.9% 248
Medium 84.3% 72.2% 76.9% 446
Hard 66.7% 62.0% 64.9% 174
Extra Hard 54.8% 45.1% 44.6% 166

Overall 77.4% 69.1% 73.3% 1034

Rich Schema Encoding
Easy 93.5% 91.5% 248
Medium 89.0% 88.3% 446
Hard 74.7% 69.5% 174
Extra Hard 65.1% 63.9% 166

Overall 83.8% 82.0% 1034

Table 3: Accuracy on Spider Development Set by difficulty level with Simple Schema Encoding (table names and
column names) and Rich Schema Encoding (column types, keys, values).

Type Gold label Time Correct

QPL Incorrect query 89% 53%
Correct query 100% 79%

67%

SQL Incorrect query 102% 50%
Correct query 101% 25%

34%

Avg time QPL 123s
SQL 132s

Table 4: User experiment: 20 (question, query) pairs are
shown to 4 users - half in QPL and half in SQL, half are
correct and half incorrect. The table reports how long
users assessed on average each query, and how often
they were right in assessing the correctness of the query.

The <Q + QD → QPL> model is inferior to
the direct Q → QPL model (69.1% to 77.4% with
simple schema encoding). We verified that this is
due to the lower quality of the QD produced by our
question decomposer. On Oracle QD, the model
produces about 83% accuracy without database
content. Table 8 confirms that the model accuracy
level increases when the QD-QPL alignment score
increases. This indicates that the development of
a more robust question decomposer grounded in
query decomposition for training signal has the
potential to improve semantic parsing performance.

In addition, we find that the <Q+QD → QPL>
model produces correct answers that were not com-
puted by the direct <Q → QPL> model in 50 cases

(6 easy, 18 medium, 15 hard, 11 extra hard). This
diversity is interesting, because for hard and extra-
hard cases, execution accuracy remains low (55%-
74%). Showing multiple candidates from different
models may be a viable strategy to indicate the lack
of confidence the model has on these queries.

5.2 Interpretability User Experiment

In order to probe whether QPL is easier to interpret
by non-expert SQL users, we organized a user ex-
periment. We selected a sample of 22 queries of
complexity Hard and Extra-Hard. We collected pre-
dicted SQL queries and QPL plans for the queries,
with half correct (producing the expected output),
and half incorrect.

Four volunteer software engineers with over five
years of experience participated in the experiment.
We asked them to determine whether a query in
either SQL or QPL corresponded to the intent of the
natural language question. The participants were
each exposed to half cases in QPL and half in SQL,
half correct and half incorrect. We measured the
time it took for each participant to make a decision
for each case. Results are reported in Table 4. They
indicate that the participants were correct about
QPL in 67% of the cases vs. 34% of the SQL
cases, supporting the hypothesis that validating the
alignment between a question and query is easier
with QPL than with SQL (p < 0.06) (RQ2).
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Error Type Error Err.% Explanation

Wrong aggregate 35 21% Error in Aggregate (sum, avg, count, max, min)
Join 31 19% Wrong join (e.g., not on Primary/Foreign key)
Wrong column 17 12% Output does not include the right columns
Missing filter 17 10% Filter stage is missing
Wrong constant 15 9% Compare with wrong constant (e.g., isOfficial = ’Y’ vs. ’T’)
Wrong predicate 12 7% Error in selection predicate (e.g., > instead of <)
Lost 12 7% Predicted QPL is completely wrong
Typing 7 4% Compare with constant of wrong type (e.g., age = ’old’ vs. 20)
Extremum 4 2% Error in selecting top value (min vs. max for example)
Intersect 4 2% Error in Intersect operation
Wrong structure 3 2% QPL plan is not a connected tree
Syntax issue 3 2% Predicted QPL is not syntactically valid
Except 2 1% Error in Except operation
Distinct 1 1% Missing distinct flag
Wrong table 1 1% Refers to the wrong table in the schema

Grand Total 167

Table 5: Error Types: Breakdown of errors by error types

6 Error Analysis

The most challenging error type is related to queries
that involve aggregate operations (group by and
aggregated values such as count, sum or max).

Table 5 shows the breakdown of errors by error
types for the Q → QPL model with Rich Schema
Encoding. We hypothesize that errors related to
Join operations could be reduced by exploiting a
more expressive description of the schema struc-
ture and applying either a post-processing critique
of the generated QPL or enforcing stricter con-
straints in the QPL Picard parser. Similarly, a
more detailed description of the content of encoded
columns could improve the Wrong Constant type.

The Spider development set includes 20 different
schemas. Table 9 shows the break down of errors
per schema. We observe that 5 schemas account
for over 70% of the errors. These schemas do not
follow best practices in data modeling: keys are
not declared, column naming is inconsistent, and
value encoding in some columns is non standard
(e.g., use of ’T’/’F’ for boolean values).

7 Conclusion

We presented a method to improve compositional
learning of complex text-to-SQL models based on
QPL, a new executable and modular intermediary
language that is derived from SQL through seman-
tic transformation. We provide software tools to

automatically translate SQL queries into QPL and
to execute QPL plans by translating them to CTE
SQL statements. We also compiled Spider-QPL, a
version of Spider which includes QPL and Ques-
tion Decomposition for all examples.

Our experiments indicate that QPL is easier
to learn using fine-tuned LLMs (our text-to-QPL
model achieves SOTA results on fine-tuned mod-
els on Spider dev set without db values, especially
on hard and extra-hard queries); and easier to in-
terpret by users than SQL for complex queries.
On the basis of the computed QPL plans, we de-
rived a new form of Question Decomposition and
trained a question decomposer that is sensitive to
the target database schema, in contrast to existing
generic question decomposers. Given a predicted
QPL plan, we can derive a readable QD that in-
creases the interpretability of the predicted plan.

In future work, we plan to further exploit the
modularity of QPL plans for data augmentation
and to explore multi-step inference techniques. We
have started experimenting with an auto-regressive
model which predicts QPL plans line by line. Our
error analysis indicates that enhancing the model
to further take advantage of the database values
and foreign-keys has the potential to increase the
robustness of this multi-step approach. We are also
exploring whether users can provide interactive
feedback on predicted QD as a way to guide QPL
prediction.
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Limitations

All models mentioned in this paper were trained
on one NVIDIA H100 GPU with 80GB RAM for
10 epochs, totaling around 8 hours of training per
model at the cost of US$2 per GPU hour.

The models were tested on the Spider develop-
ment set, which only has QPLs of up to 13 lines;
our method has not been tested on longer QPLs.

During training, we did not use schema infor-
mation such as the primary-foreign key relation-
ships and column types, nor did we use the ac-
tual databases’ content. In this regard, our models
might output incorrect Join predicates (due to lack
of primary-foreign key information), or incorrect
Scan predicates (due to lack of database content).

We acknowledge certain limitations arising from
the evaluation conducted on the Spider develop-
ment set. These limitations include:

1. A total of 49 queries yield an empty result
set on their corresponding databases. Conse-
quently, inaccurately predicted QPLs could
generate the same "result" as the gold query
while bearing significant semantic differences.
In the Spider-QPL dataset, we have inserted
additional data so that none of the queries re-
turn an empty result set in the development
set.

2. As many as 187 queries employ the LIMIT
function. This can lead to complications in
the presence of "ties"; for instance, when
considering the query SELECT grade FROM
students ORDER BY grade DESC LIMIT 1,
the returned row becomes arbitrary if more
than one student shares the highest grade.

Ethics Statement

The use of text-to-code applications inherently car-
ries risks, especially when users are unable to con-
firm the accuracy of the generated code. This issue
is particularly pronounced for intricate code, such
as complex SQL queries. To mitigate this risk, we
introduce a more transparent target language. How-
ever, our limited-scale user study reveals that, even
when utilizing this more interpretable language,
software engineers struggle to detect misaligned
queries in more than 30% of instances. This occurs
even for queries with moderate complexity (QPL
length of 5 to 7). More work on interpretability of
generated code is warranted before deploying such
tools.
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A Appendix

A.1 Q → QPL Model

The Q → QPL model was trained using the Hug-
gingFace Transformers (Wolf et al., 2020) and
PEFT (Sourab Mangrulkar, 2022) libraries. As
the Flan-T5-XL model was too large to fine-tune
on one GPU, we use the LoRA (Hu et al., 2021)
method to fine-tune only the q and v matrices
of the model. Hyperparameters used in training
are listed in Table 7. The trained model and
training and validation datasets are available on
https://huggingface.co/bgunlp.

Hyperparameter Value

# Epoch 10
Dropout Prob. 0.05
Batch Size 1
Learning Rate 0.0002
Adaptation (r) 16
LoRA α 32

Table 7: Q → QPL Training Hyperparameters

A.2 Schema Encoding Methods

We compare two methods to describe the database
schema when we prompt our models:

1. Simple Schema Encoding: this is similar to
Shaw et al. (2021), i.e., Question | Schema
Name | Table1 : Col11, Col12, ... |
Table2 : Col21, Col22, ...

2. Rich Schema Encoding: this encoding pro-
vides for each column a simplified type (as in
Spider - text, number, date or other); primary
and foreign keys; and values.
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QPL Length Q → QPL Q+QD → QPL Support

1 87.3% 78.3% 189
2 86.6% 83.4% 277
3 85.3% 78.0% 191
4 75.0% 62.9% 124
5 67.1% 54.4% 164
6 48.2% 25.9% 27
7 31.8% 22.7% 44

≥8 11.9% 24.4% 18

Overall 77.4% 69.1% 1034

Table 6: Execution Accuracy of Text-to-QPL Models on Spider Development Set by Length of QPL. QPL length is
a more natural measure of query complexity than the method used to classify queries in Spider. We find that there is
little correlation between QPL Length and the Spider difficulty level.

For example:
Simple Schema Encoding: pets_1

Table Student (StuID, LName, Fname,
Age, Sex, Major, Advisor, city_code)

Table Pets (PetID, PetType, pet_age,
weight)

Table Has_Pet (StuID, PetID)

Rich Schema Encoding: pets_1

CREATE TABLE Student (
StuID number,
LName text,
Fname text,
Age number,
Sex text,
Major number,
Advisor number,
city_code text,
primary key ( StuID ))

CREATE TABLE Pets (
PetID number,
PetType text ( dog ),
pet_age number,
weight number,
primary key ( PetID ))

CREATE TABLE Has_Pet (
StuID number,
PetID number,
foreign key ( StuID )
references Student ( StuID ),

foreign key ( PetID )
references Pets ( PetID ))

Values are added after each column when an
n-gram from the question is found as one of the
values in one of the rows of the table. For example,
for the question "How much does the youngest dog
weigh?", the n-gram "dog" is found in the values
of the column PetType. In this case, the value
annotation PetType text ( dog ) is encoded.

A.3 Question Decomposer Model
The prompt given to ChatGPT (gpt-3.5-turbo)
to decompose a question given QPL is listed in
Fig. 5. The full prompt (including BNF and all 6
examples) is available on GitHub.

A.4 QPL Syntax
We show the BNF of the QPL language we have
designed in Fig. 6. This grammar is used as part
of the PICARD parser used for the decoder of all
QPL predictor models.

A.5 Errors by Schema
Table 9 shows error rate for the Q → QPL model
with Rich Schema Encoding by schema for each
of the 20 schemas present in Spider’s development
set.

We observe that 5 of the 20 schemas (car_1,
flight_2, student_transcripts_tracking, world_1 and
wta_1) account for 41.8% of the examples in the
development set and 70.1% of the errors. Most of
the errors in these specific schemas can be traced
to missing key declarations, inconsistent column
naming and typing (strings used to encode boolean
or number values).
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QPL is a formalism used to describe data retrieval operations over an SQL schema in a modular manner.
A QPL plan is a sequence of instructions for querying tabular data to answer a
natural language question.
Forget everything you know about SQL, only use the following explanations.

A schema is specified as a list of <table> specification in the format:
<table>: <comma separated list of columns>

A plan contains a sequence of operations.
All operations return a stream of tuples.
All operations take as input either a physical table from the schema (for the Scan operation)
or the output of other operations.

Let's think step by step to convert QPL plan to natural language plan given schema,
question, and QPL that describe the question.

In the natural language plan:
1. You must have exactly the same number of questions as there are steps in the QPL.
2. The questions you generate must follow exactly the same order as the steps in the QPL.

This is the formal specification for each operation:

(BNF goes here, elided for brevity)

Example 1:

Schema:
Table Visitor (ID, Name, Age, Level_of_membership)
Table Museum (Museum_ID, Name, Open_Year, Num_of_staff)
Table Visit (Visitor_ID, Museum_ID, Total_Spent, Num_of_Ticket)

Question:
What is the total ticket expense of the visitors whose membership level is 1?

QPL Plan:
#1 = Scan Table [ visitor ] Predicate [ Level_of_membership = 1 ] Output [ ID ]
#2 = Scan Table [ visit ] Output [ visitor_ID , Total_spent ]
#3 = Join [ #1, #2 ] Predicate [ #1.ID = #2.visitor_ID ] Output [ #2.Total_spent ]
#4 = Aggregate [ #3 ] Output [ SUM(Total_spent) AS Sum_Total_spent ]

Natural Language Plan:
#1 = Scan the table Visitor to find who are the visitors with membership level 1
#2 = Scan the table Visit to find what is the total spent by visitors during their visits
#3 = Join #1 and #2 to find what is the total spent by each visitor with

membership level 1 during their visits
#4 = Group #3 by Visitor and aggregate the sum of total spent to find what is the total spent

by all visitors with membership level 1 during their visit

(5 more examples are given)

Now your turn:

Schema:
{schema}

Question:
{question}

QPL Plan:
{qpl}

Natural Language Plan:

Figure 5: Prompt used to generate QD
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<qpl> ::= <line>+
<line> ::= #<integer> = <operator>
<operator> ::= <scan>

| <aggregate>
| <filter>
| <sort>
| <topsort>
| <join>
| <except>
| <intersect>
| <union>

-- Leaf operator
<scan> ::= Scan Table [ <table-name> ] <pred>? <distinct>? <output-non-qualif>

-- Unary operators
<aggregate> ::= Aggregate [ <input> ] <group-by>? <output-non-qualif>
<filter> ::= Filter [ <input> ] <pred> <distinct>? <output-non-qualif>
<sort> ::= Sort [ <input> ] <order-by> <withTie>? <output-non-qualif>
<topsort> ::= TopSort [ <input> ] Rows [ <number> ] <order-by>

<withTies>? <output-non-qualif>

-- Binary operators
<join> ::= Join [ <input> , <input> ] <pred>? <distinct>? <output-qualif>
<except> ::= Except [ <input> , <input> ] <pred> <output-qualif>
<intersect> ::= Intersect [ <input> , <input> ] <pred>? <output-qualif>
<union> ::= Union [ <input> , <input> ] <output-qualif>

<group-by> ::= GroupBy [ <column-name> (, <column-name>)* ]
<order-by> ::= OrderBy [ <column-name> <direction> (, <column-name> <direction>)* ]
<withTies> ::= WithTies [ true | false ]
<direction> ::= ASC | DESC
<pred> ::= Predicate [ <comparison> (AND | OR <comparison)* ]
<distinct> ::= Distinct [ true | false ]
<output-non-qualif> ::= Output [ <column-name> (, <column-name>)* ]
<output-qualif> ::= Output [ <qualif-column-name> (, <qualif-column-name>)* ]
<qualif-column-name> ::= # <number> . <column-name>

Figure 6: QPL Grammar
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QD-QPL Alignment Support Correct Exec Acc Avg QPL Gold Len.

[0.0, 0.4] 1 0 0 5.0
(0.4, 0.5] 19 4 21.1 4.6
(0.5, 0.6] 9 2 22.2 6.3
(0.6, 0.7] 43 9 20.9 5.0
(0.7, 0.8] 63 21 33.3 4.2
(0.8, 0.9] 93 33 35.5 4.6
(0.9, 1] 779 624 80.1 2.8

Table 8: Q+QD → QPL model trained with QDs predicted by Trained Question Decomposer

Schema ID Errors Samples Error Rate

battle_death 1 16 6%
car_1 27 92 29%
concert_singer 5 45 11%
course_teach 0 30 0%
cre_Doc_Template_Mgt 8 84 10%
dog_kennels 12 82 15%
employee_hire_evaluation 1 38 3%
flight_2 15 80 19%
museum_visit 2 18 11%
network_1 9 56 16%
orchestra 0 40 0%
pets_1 2 42 5%
poker_player 0 40 0%
real_estate_properties 1 4 25%
singer 1 30 3%
student_transcripts_tracking 16 78 21%
tvshow 5 62 8%
voter_1 3 15 20%
world_1 44 120 37%
wta_1 15 62 24%

Grand Total 167 1034 16%

Table 9: Breakdown of errors by Schema ID: 5 schemas out of the 20 present in Spider’s development set account
for 70% of the errors. These schemas do not follow best practices in data modeling and lack proper foreign key
declarations.
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