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Abstract

Multi-component compounding is a prevalent
phenomenon in Sanskrit, and understanding the
implicit structure of a compound’s components
is crucial for deciphering its meaning. Earlier
approaches in Sanskrit have focused on binary
compounds and neglected the multi-component
compound setting. This work introduces the
novel task of nested compound type identifi-
cation (NeCTI), which aims to identify nested
spans of a multi-component compound and de-
code the implicit semantic relations between
them. To the best of our knowledge, this is the
first attempt in the field of lexical semantics to
propose this task.

We present 2 newly annotated datasets includ-
ing an out-of-domain dataset for this task. We
also benchmark these datasets by exploring
the efficacy of the standard problem formu-
lations such as nested named entity recogni-
tion, constituency parsing and seq2seq, etc. We
present a novel framework named DepNeCTI:
Dependency-based Nested Compound Type
Identifier that surpasses the performance of the
best baseline with an average absolute improve-
ment of 13.1 points F1-score in terms of La-
beled Span Score (LSS) and a 5-fold enhance-
ment in inference efficiency. In line with the
previous findings in the binary Sanskrit com-
pound identification task, context provides ben-
efits for the NeCTI task. The codebase and
datasets are publicly available at: https://
github.com/yaswanth-iitkgp/DepNeCTI

1 Introduction

A compound is defined as a group of entities func-
tioning as a single meaningful entity. The process
of identifying the implied semantic relationship be-
tween the components of a compound in Sanskrit is
known as Sanskrit Compound Type Identification
(SaCTI) (Sandhan et al., 2022a) or Noun Com-
pound Interpretation (NCI) (Ponkiya et al., 2021,

∗* denotes the first two authors contributed equally.

2020). Within the literature, the NCI problem has
been approached in two ways, namely, classifica-
tion (Dima and Hinrichs, 2015; Fares et al., 2018;
Ponkiya et al., 2021) and paraphrasing (Lapata and
Keller, 2004; Ponkiya et al., 2018, 2020).

In Sanskrit literature, particularly in poetry, the
use of multi-component compounds is ubiquitous
(Kumar, 2012). According to the Digital Corpus
of Sanskrit, more than 41% of compounds contain
three or more components (Krishna et al., 2016).
However, earlier approaches focus solely on binary
compounds and fail to address the complexities in-
herent in multi-component compounds adequately.
Thus, we propose a new task, the Nested Com-
pound Type Identification (NeCTI) Task, which
focuses on identifying nested spans within a multi-
component compound and interpreting their im-
plicit semantic relationships. Figure 1 illustrates
an example of the NeCTI task, highlighting nested
spans and their associated semantic relations using
distinct colors.

<sumitrā-<ānanda-vardhanaḥ>T6>T6

sumitrā-ānanda-vardhanaḥ
Endocentric (T6)

Endocentric (T6)

T6
T6

Figure 1: Illustration of the NeCTI task for
the multi-component compound sumitrā-ānanda-
vardhanāh. (Translation: Sumitrā-delight-enhancer),
highlighting nested spans and their associated semantic
relations using distinct colors.

The NeCTI task presents multiple challenges:
(1) The number of potential solutions for a multi-
component compound grows exponentially as the
number of components increases. (2) It often relies
on contextual or world knowledge about the enti-
ties involved (Krishna et al., 2016). Even if a multi-
component compound shares the same components
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and final form, the implicit relationship between the
spans can only be deciphered with the aid of avail-
able contextual information (Kulkarni and Kumar,
2013; Krishna et al., 2016). For instance, as de-

' lakṣmaṇaḥ rāmam anujagāma

with context

without context

Enhanced the
delight of Sumitrā

Enrichment of
Sumitrā and Ananda

vardhanaḥānandasumitrā

Endocentric (T6)
Endocentric (T6)

Copulative (Di)
Endocentric (T6)

Figure 2: Illustration of the multi-component com-
pound sumitrā-ānanda-vardhanāh. (Translation: Sum-
itrā-delight-enhancer) with two valid parses depicted
in green and red. The two parses correspond to two
potential meanings. The green solution represents the
correct interpretation within the provided context.

picted in Figure 2, the multi-component compound
sumitrā-ānanda-vardhanāh. (Translation: Sumitrā-
delight-enhancer) can have two valid but distinct
solutions, leading to different meanings. Resolving
ambiguity to select the correct solution requires
reliance on the provided context. Consequently,
downstream Natural Language Processing (NLP)
applications for Sanskrit, such as question answer-
ing (Terdalkar and Bhattacharya, 2019) and ma-
chine translation (Aralikatte et al., 2021), often
exhibit sub-optimal performance when encounter-
ing compounds. Hence, the NeCTI task serves as
a preliminary requirement for developing robust
NLP technology for Sanskrit. Moreover, this de-
pendency on contextual information eliminates the
possibility of storing and conducting a lookup to
identify the semantic types of nested spans.

Previous approaches (Kulkarni and Kumar,
2013; Krishna et al., 2016; Sandhan et al., 2019)
addressing SaCTI have predominantly focused on
binary compounds, neglecting the consideration of
multi-component compounds. In multi-component
compounds, the components exhibit semantic re-
lationships akin to dependency relations, repre-
sented as directed labels within the dependency
structure, which also facilitate the identification
of the compound’s headword through the labels
directed towards it. Consequently, dependency for-
mulation enables the simultaneous identification of
both the structure or constituency span and the com-
pound types. Thus, we propose a novel framework
(§ 4) named DepNeCTI: Dependency-based Nested
Compound type Identifier (§3). In summary, our
contributions can be outlined as follows:

• We introduce a novel task called Nested Com-
pound Type Identification (§ 2).

• We present 2 newly annotated datasets and pro-
vide benchmarking by exploring the efficacy of
various standard formulations for NeCTI (§ 5).

• We propose a novel framework DepNeCTI:
Dependency-based Nested Compound type Iden-
tifier (§ 4), which reports an average 13.1 points
F1-score in terms of LSS absolute gain and 5-
fold enhancement in inference efficiency (§ 6)
over the best baseline.

• We publicly release the codebase of DepNeCTI
and benchmarked baselines, along with newly
annotated datasets for the NeCTI task.

2 Problem Formulation

The objective of the NeCTI task is to detect nested
spans within a multi-component compound and de-
cipher the implicit semantic relations among them.
Our study focuses exclusively on this task and does
not address the compound segmentation problem.
It is assumed that the segmented components of the
multi-component compound are already available.
To obtain the segmentation of a compound, we
rely on established resources such as the rule-based
shallow parser (Goyal and Huet, 2016) or exist-
ing data-driven segmentation systems designed ex-
plicitly for Sanskrit (Hellwig and Nehrdich, 2018;
Sandhan et al., 2022b).
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Figure 3: Illustration of a number of ways (as per Cata-
lan number in log scale) in which a multi-component
compound can be parsed. Our dataset contains com-
pounds that have a maximum of 16 components.

Complexity of NeCTI Task: As the number
of components in a multi-component compound
increases, the number of possible parses grows
exponentially. Our dataset encompasses multi-
component compounds ranging from 2 to 16 com-
ponents. Figure 3 visually depicts the exponential
growth of possible parses with increasing compo-
nent count. The parsing of a compound word with
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n + 1 components can be likened to the problem
of fully parenthesizing n+ 1 factors in all possible
ways (Kulkarni and Kumar, 2011). Thus, the total
number of parse-options for a multi-component
compound word with n + 1 components corre-
sponds to the Catalan Number Cn, where n ≥ 0
(Huet, 2009).

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!

where Cn represents the nth Catalan number,(
2n
n

)
is the binomial coefficient, and ! denotes fac-

torial. Finally, the compatibility rules derived from
Pānin. ı̄an grammar (Pan. ini, 500 BCE) and contex-
tual information are needed to disambiguate multi-
ple possibilities.

Formally, in a given sentence X =
{x1, x2, ..., xM} with M tokens, let xp
(1 ≤ p ≤ M ) denote an N -component
compound. It is worth noting that X may
contain multiple instances of multi-component
compounds. A valid solution corresponds to a
full paranthesization of these N components;
let PN encompass all valid solutions for fully
parenthesizing N factors, satisfying the cardi-
nality |PN | = CN−1, where CN−1 represents
the Catalan number. A valid solution for an
N -component compound consists of N − 1 nested
spans. The NeCTI system produces an output
represented as a list of N − 1 tuples for xp, given
by Yp = {[IH1 , IT1 , T1], ..., [I

H
N−1, I

T
N−1, TN−1]},

such that Yp ∈ PN . IHi and ITi denote the head
and the tail indices, respectively, of the ith span,
and Ti corresponds to the label assigned to the
respective span.

How different is NeCTI compared to the
Nested Named Entity Recognition (NNER) task?
NNER is a component of information extraction
that aims to identify and classify nested named
entities within unstructured text, considering their
hierarchical structure. In contrast, the NeCTI task
focuses on identifying nested spans within a multi-
component compound and decoding their implicit
semantic relations. These tasks have several key
differences: (1) NeCTI operates at the intra-word
level, whereas NNER operates at the inter-word
level, considering entities across a phrase. (2) In
NeCTI, a multi-component compound can have
multiple possible parses, requiring disambiguation
through contextual cues and incorporating insights
from Pānin. ı̄an grammar to address incompatibil-

ities. Conversely, we could not find discussions
related to these aspects in NNER literature. (3)
NeCTI benefits from prior knowledge of the com-
pound’s location and segmented components. In
contrast, the NNER task involves the additional
challenge of identifying the location of entities
within the text. Consequently, leveraging exist-
ing NNER frameworks for NeCTI is not straight-
forward due to their inability to provide explicit
support for providing the location of compounds.
Therefore, NeCTI presents unique characteristics
and challenges that differentiate it from the NNER
task, requiring specialized approaches tailored to
its specific requirements.

How different is NeCTI compared to the Multi-
Word Expressions (MWE)? MWEs encompass
various categories such as idioms (e.g., kick the
bucket), named entities (e.g., World Health Orga-
nization), and compounds (e.g., telephone box),
etc. Sanskrit compounds exhibit similarities to
multi-word expressions, particularly multi-word
compounds (nominal, noun, and verb), with respect
to characteristics like collocation of components
based on semantic relations between them and strict
preference for ordering of the components.

Multi-word compounds in various languages
involve adjacent lexemes juxtaposed with poten-
tial semantic relations. In contrast, Sanskrit com-
pounds are intuitively constructed based on the
semantic compatibility of their components. Ad-
ditionally, in Sanskrit, compounds always appear
as a single word, requiring mandatory sandhi (eu-
phonic transformations) between their components.
Conversely, certain categories of MWEs (idioms,
complex function words, verb-particles, and light-
verbs) have relatively fixed structures, predomi-
nantly with components separated by spaces. Fur-
thermore, nesting within multi-word expressions
is considered syntactic overlaps, while the nested
structures of Sanskrit compounds result from suc-
cessive combinations of components based on se-
mantic relations, thereby clearly distinguishing
Sanskrit compounds from MWEs.

3 Why NeCTI as a Dependency Parsing
Task?

The decision to formulate NeCTI as a dependency
parsing task is driven by several considerations.
Compounds with more than two components are
typically formed through successive binary combi-
nations, following specific semantic relations. This
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hsumitrā hānanda hvardhanaḥ hrāmam hanujagāma hGlobal

vardhanaḥ Global

hlakṣmaṇaḥ

Endocentric
Endocentric

Compound Root

Global Relation

sumitrā ānanda rāmamlakṣmaṇaḥ anujagāma

Bi-LSTM
ENCODER

ht = Bi-LSTM (ft)

ft = [Wt ; Ct ; St]

Wt StCt
WORD
PIECES

Word Embedding

Span Encoding
Char Embedding

ht = XLMR (ft)

XLMR
ENCODER

IFBi-LSTM

Globalsumitrā ānanda vardhanaḥ rāmam anujagāmalakṣmaṇaḥ

Global Relation

Global Relation

XLMR

Word Piece

OR

Figure 4: Illustration of DepNeCTI with an example “sumitrā-ānanda-vardhanah. laks.man. ah. rāmam anujagāma”
(Translation: “Laks.man. a, the one who enhanced the delight of Sumitrā, followed Rāma”) where ‘sumitrā-ānanda-
vardhanah. ’ is a multi-component compound word. We assume prior knowledge of compound segmentation and treat
the individual components of multi-component compounds as separate words. That means the compound and its
components are known apriori. However, the associations of the components, i.e. spans, are not known apriori. We
propose two variants of DepNeCTI depending on the choice of encoder: DepNeCTI-LSTM and DepNeCTI-XLMR.
To inform DepNeCTI-LSTM about compound (highlighted with color) and non-compound (highlighted with

color) tokens, we employ span encoding. The span encoding uses two randomly initialized vectors (compound
or non-compound) to inform the model whether the corresponding instance is a compound or non-compound
word. On the other hand, DepNeCTI-XLMR is informed about compound’s location in the input string using
bracketing (for example, <sumitrā-ānanda-vardhanah. >) and it lacks span encoding component. Next, to transform
the compound-level parsing task into standard dependency parsing, we introduce (1) an additional token called
“Global” ( color) as a global head for all words in the sentence. (2) The compound head and non-compound words
are connected to the Global token using the “Compound Root” and “Global Relation” relations, respectively. The
hidden representations of the tokens are obtained using a Bi-LSTM or XLMR encoder. Finally, a Bi-affine (Dozat
and Manning, 2017) dependency module is applied on top of the hidden representations.

process creates a nested structure of binary com-
pounds, except for a few exceptions, where the
structure represents a constituency tree. However,
treating this as a constituency parsing task poses
challenges. The nested structure of compounds
does not adhere to a syntactic structure but instead
follows a semantic structure based on component
relations. If we substitute the intermediate nodes
with semantic relations, the same spans can be
represented as dependency structures by annotat-
ing the types as directed relations. Moreover, the
headwords in constituency spans are not explicitly
marked but can be identified through their corre-
sponding types. In contrast, dependency structures
allow the determination of the headword based on
labels directed towards it within the compound.
Notably, dependency structures faithfully capture

constituency information and can be mutually con-
verted with their corresponding spans (Goyal and
Kulkarni, 2014).

Summarily, the semantic relations among com-
pound components resemble dependency relations,
which can be represented as directed labels within
the dependency parse structure. This approach suc-
cinctly represents the semantic relations without
introducing intermediary nodes. Lastly, it enables
the simultaneous identification of the structure or
constituency span alongside the identification of
compound types. We encourage readers to refer to
Appendix § A for a more detailed illustration.

4 DepNeCTI: The Proposed Framework

Figure 4 illustrates the proposed framework with
an example “sumitrā-ānanda-vardhanah. laks.man. ah.
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rāmam anujagāma” (Translation: “Laks.man. a, the
one who enhanced the delight of Sumitrā, fol-
lowed Rāma”) where ‘sumitrā-ānanda-vardhanah. ’
is a multi-component compound word. We as-
sume prior knowledge of compound segmenta-
tion and treat the individual components of multi-
component compounds as separate words. We
propose two variants of DepNeCTI depending on
the choice of encoder: DepNeCTI-LSTM and
DepNeCTI-XLMR. In DepNeCTI-LSTM, to dif-
ferentiate between compound (highlighted with

color) and non-compound (highlighted with
color) tokens, we employ span encoding. The
span encoding uses two randomly initialized vec-
tors (compound or non-compound) to inform the
model whether the corresponding instance is a com-
pound or non-compound word. On the other hand,
DepNeCTI-XLMR is informed about compound’s
location in the input string using bracketing (for ex-
ample, <sumitrā-ānanda-vardhanah. >) and it lacks
span encoding component. In order to convert the
compound-level dependency parsing task into stan-
dard dependency parsing, we introduce two mod-
ifications. First, we introduce an additional token
called “Global” ( color) which serves as the global
head for all words in the sentence. Second, we es-
tablish connections between the compound head
and non-compound words to the Global token us-
ing the “Compound Root” and “Global Relation”
relations, respectively.

Formally, in a given sentence X =
{x1, x2, ..., xM} with M tokens, let xp
(1 ≤ p ≤ M ) denote an N -component
compound. Notably, X may contain multiple
occurrences of multi-component compounds. The
N -component compound (xp) is further split
into its components (xp = {x1p, x2p, ..., xNp }).
Next, we pass the overall sequence
(X = {x1, x2, ..., x1p, x2p, ..., xNp ..., xM}) to
the encoder to obtain hidden representations.
The LSTM encoder concatenates a token’s word,
character and span embedding to obtain its repre-
sentation and the XLMR encoder uses word-pieces.
Finally, a Bi-affine (Dozat and Manning, 2017)
dependency module is applied on top of it.

5 Experiments

5.1 Datasets

Table 1 presents data on the total number of multi-
component compounds (Figure 5) and their statis-
tics. Our primary focus is on compounds with

more than two components (n > 2), while also
considering binary compounds if they occur in the
context. These datasets comprise segmented com-
pound components, nested spans, context, and se-
mantic relations among the nested spans. We offer
two levels of annotations for these datasets: coarse
(4 broad types) and fine-grained (86 sub-types).
There are 4 broad semantic types of compounds:
Avyayı̄bhava (Indeclinable), Bahuvrı̄hi (Exocen-
tric), Tatpurus.a (Endocentric) and Dvandva (Cop-
ulative). Again, each broader class is divided
into multiple subclasss, leading to 86 fine-grained
types.1 Figure 6 shows class-wise label frequency
in NecTIS fine-grained.

Datasets #Nested #Train #Test #Dev #Types
NeCTIS 17656 12431 3493 2405 4 (86)

NeCTIS OOD 1189 − 1189 − 4 (86)

Table 1: Data statistics for NeCTIS and NeCTIS-OOD
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Figure 5: Frequency of n-component compounds.
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Figure 6: Frequency in NeCTIS fine-grained.

We introduce two context-sensitive datasets:
NeCTIS and NeCTIS OOD. The purpose of the
additional dataset (NeCTIS OOD) is to create an
out-of-domain testbed. The multi-component com-
pound instances are extracted from various books

1The list of fine-grained labels and the cor-
responding examples can be found at: https:
//sanskrit.uohyd.ac.in/scl/GOLD_DATA/Tagging_
Guidelines/samaasa_tagging16mar12-modified.pdf
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categorized into 4 types based on subject content:
philosophical, paurān. ic (Translation: Epic is a
genre of ancient Indian literature encompassing
historical stories, traditions, and legends.), literary,
and āyurvedā. The NeCTIS dataset encompasses
compounds from books falling under the Philosoph-
ical, Literary, and āyurvedā categories. The multi-
component compound instances extracted from
the paurān. ic category are included in the NeCTIS
out-of-domain (NeCTIS OOD) dataset. Further-
more, the multi-component instances in NeCTIS
belong to the prose domain, while NeCTIS-OOD
pertains to the poetry domain. Poetry commonly
uses multi-component compounding extensively
(more exocentric compounds) to adhere to metrical
constraints and convey complex concepts. Con-
versely, prose uses compounds in a more direct and
less condensed manner. Furthermore, poets in the
realm of poetry often enjoy the freedom to form
novel compounds or employ unconventional ones
to conform to meter requirements, rendering these
compounds infrequent in regular usage.

Dataset Annotation Process: We established a
data creation process to address the unavailabil-
ity of annotated context-sensitive multi-component
compound data in Sanskrit. We employ a suffi-
cient annotation budget sponsored by DeitY, 2009-
2012 for the Sanskrit Hindi Machine Translation
project to employ 6 institutes, each consisting of
approximately 10 team members. Each team was
organized in a hierarchical manner. There were
3 levels in the hierarchy: Junior linguist (Mas-
ters degree in Sanskrit), Senior linguist (Ph.D. in
Sanskrit) and professional linguist (Professor in
Sanskrit). The annotations from lower expertise
were further checked as per the above-mentioned
hierarchy. Subsequently, the annotated data un-
derwent an exchange process with another team
for correctness verification. Any ambiguities en-
countered during the annotation process were re-
solved through collective discussions conducted
by the correctness-checking team. The available
books were distributed among these teams, and
each team was responsible for annotating their allo-
cated books. The annotation guidelines2 are essen-
tially based on Sanskrit grammar which provides
the syntactic and semantic criteria for annotation.

Elaborate commentaries accompany the majority

2The guidelines are available at: https://sanskrit.
uohyd.ac.in/scl/GOLD_DATA/Tagging_Guidelines/
samaasa_tagging16mar12-modified.pdf

of the texts, that discuss the semantics associated
with the compounds, which are typically studied by
students as a part of their coursework. Given these
considerations, it is very unlikely for professional
linguists, often professors instructing these texts,
to make mistakes. The dataset was curated around
12 years ago, primarily with the aim of producing
error-free gold-standard data. Consequently, the
errors made by junior annotators were not recorded
or measured, aligning with our focus on achieving
error-free quality. The benchmark for determining
correctness was based on the Pānin. ı̄an grammar.

5.2 Baselines

We investigate the efficacy of various standard for-
mulations (originally proposed for nested named
entity recognition for English) for the proposed
task. We adapt these systems to the NeCTI task by
providing the location of the compounds to ensure a
fair comparison with DepNeCTI. Since these base-
lines are leveraged from the nested named entity
recognition task, they do not have explicit chan-
nels to provide the location of a compound word.
Therefore, we provide this information in the input
string itself with the help of brackets (for example,
<sumitrā-ānanda-vardhanah. >):

• Constituency Parsing (CP): Following Fu et al.
(2020), we formulate NeCTI as constituency pars-
ing with partially-observed trees, with all labeled
compound spans as observed nodes in a con-
stituency tree and non-compound spans as latent
nodes. We leverage TreeCRF to model the ob-
served and the latent nodes jointly.

• Bottom-up Constituency Parsing (BotCP): Fol-
lowing Yang and Tu (2021), we formulate NeCTI
as a bottom-up constituency parsing, where a
pointer network is leveraged for post-order traver-
sal within a constituency tree to enhance parsing
efficiency, enabling linear order parsing.

• Span Classifier (SpanCL): Following Yuan et al.
(2022), we formulate NeCTI as a span classifi-
cation problem, where triaffine mechanism is
leveraged to learn a better span representation by
integrating factors such as inside tokens, bound-
aries, labels, and related spans.

• Lexicalized Constituency Parsing (LexCP):
Following Lou et al. (2022), we formulate NeCTI
as lexicalized constituency parsing, which em-
beds a constituency and a dependency trees
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Coarse Fine Grain
w/o context w/ context w/o context w/ context

Models USS LSS EM USS LSS EM USS LSS EM USS LSS EM
BotCP 72.90 58.78 32.26 76.22 63.97 35.10 74.28 33.50 18.58 75.72 41.80 23.05

CP 76.83 61.71 39.97 64.73 46.27 30.14 77.38 41.86 27.22 70.56 32.26 21.11
LexCP 93.39 84.74 72.88 93.39 85.16 74.41 88.70 45.86 14.72 87.86 48.87 19.67

Seq2seq 92.54 84.11 59.90 91.18 80.45 52.89 92.67 65.63 30.65 92.94 68.19 34.35
SpanCL 92.84 84.80 69.12 93.13 84.74 69.67 93.12 69.38 52.17 92.69 68.05 50.82

NeCTIS

DepNeCTI-LSTM 95.46 89.06 76.82 97.42 89.24 77.00 95.38 79.49 57.46 97.49 79.72 56.83
DepNeCTI-XLMR 96.21 90.83 79.85 96.16 90.67 79.45 96.35 83.36 63.92 96.34 83.19 63.30

BotCP 72.81 48.08 21.63 73.89 51.18 22.57 72.30 20.52 8.64 73.87 30.10 13.32
CP 71.43 52.65 34.57 68.17 38.63 25.15 76.12 29.68 19.77 69.57 24.10 15.43

LexCP 89.90 71.44 50.00 91.57 72.60 52.73 83.45 32.85 7.53 83.38 34.18 8.31
Seq2Seq 84.26 71.71 45.33 90.13 71.41 44.00 92.16 53.55 24.51 92.87 53.61 24.96
SpanCL 91.51 72.69 56.30 90.24 71.89 54.46 89.19 50.21 32.66 90.88 50.50 34.00

NeCTIS OOD

DepNeCTI-LSTM 93.32 78.94 57.40 95.67 79.26 57.90 93.88 67.96 36.60 95.88 67.26 36.26
DepNeCTI-XLMR 95.56 84.24 65.50 95.56 84.45 65.00 95.56 74.26 45.70 95.45 73.54 44.37

Table 2: Evaluation on the NeCTIS datasets, considering 2 levels of annotations (coarse and fine-grained) and in
2 settings (with and without context). The best-performing results are in bold, while the second-best results are
underlined. The results are averaged over 3 runs. To assess the significance between the proposed system and the
best baselines for each setting, a significance test in Accuracy metrics was conducted: p < 0.01 (as per t-test).

together. This formulation leverages the con-
stituents’ heads into the architecture which is
crucial for the NeCTI task.

• Seq2Seq: Following Yan et al. (2021), we for-
mulate NeCTI as an entity span sequence genera-
tion task using the pretrained seq2seq framework.
This generative framework can also identify dis-
continuous spans; however, NeCTI does not have
such instances.

• DepNeCTI: We propose two variants of our
system (§4) depending on the choice of en-
coders: DepNeCTI-LSTM and DepNeCTI-
XLMR (Nguyen et al., 2021). The compound’s
location is provided in DepNeCTI-LSTM us-
ing span encoding; however, DepNeCTI-XLMR
lacks span encoding and leverages this informa-
tion from the input similar to other baselines.

Evaluation Metrics: We evaluate the perfor-
mance using the Labeled/Unlabeled Span Score
(LSS/USS) in terms of micro-averaged F1-score.
We define LSS as a micro-averaged F1-score ap-
plied on tuples of predicted spans including their
labels. We exclude labels of the spans while calcu-
lating USS. Additionally, we report the exact match
(EM) which indicates the percentage of the com-
pounds for which the predictions of all spans and
their semantic relations are correctly identified. Re-
fer to Appendix B for hyper-parameters and details
of the computing infrastructure used.

5.3 Results

Table 2 presents the performance of the top-
performing configurations among all baselines on
the NeCTIS benchmark datasets’ test set. The eval-
uation includes 2 levels of annotations (coarse and
fine-grained) and in 2 settings (with and without
context). While all baseline systems demonstrate
competitiveness, no single baseline consistently
outperforms the others across all settings. Conse-
quently, we underline the best-performing numbers
within each specific setting.

Our proposed system DepNeCTI surpasses all
competing systems across all evaluation metrics,
demonstrating an absolute average gain of 13.1
points (LSS) and 11.3 points (EM) compared to
the best-performing baseline in each setting. No-
tably, our proposed system exhibits substantial per-
formance superiority over the best baseline in fine-
grained settings, particularly in low-resourced sce-
narios. This validates the effectiveness of our pro-
posed system in low-resourced settings with fine-
grained labels. The significant performance gap
between our proposed system and the best base-
lines highlights the efficacy of employing a simple
yet effective architecture inspired by the depen-
dency parsing paradigm. These results establish
new state-of-the-art benchmarks by integrating the
contextual component into our novel framework.
While most baselines (except BotCP) do not bene-
fit from contextual information, DepNeCTI-LSTM
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demonstrates slight improvements and DepNeCTI-
XLMR shows on par improvements when leverag-
ing contextual information. Furthermore, as the
number of components grows, the number of po-
tential solutions increases exponentially, leading to
poor performance by the systems in such scenar-
ios. Due to this exponential possibility, contextual
information provides limited improvements com-
pared to binary compound identification settings
(Sandhan et al., 2022a). In other words, unlike
the context-free setting, the introduction of context
information does not warrant an expectation for
the system to precisely generate the correct solu-
tion from the exponential candidate space. Figure
3 provides a visual representation that elucidates
the concept of this exponential candidate space.
A similar performance trend is observed for the
NeCTIS-OOD dataset.

6 Analysis

Here, we examine the proposed system, focusing
on a comprehensive analysis and its applicability.
For this purpose, we utilize the NeCTIS coarse
dataset under the w/ context configuration. We
report LSS in terms of macro-average F1-scores.

(1) Ablation analysis: In this study, we analyze
the impact of different system components on the
overall enhancements of DepNeCTI-LSTM. Ab-
lations, documented in Table 3, present the eval-
uation metrics when a specific component is de-
activated within DepNeCTI-LSTM. For instance,
the absence of the span encoding component is de-
noted as “- Span Encoding”. The results indicate
that removing any component leads to a decline
in performance. Notably, Table 3 highlights the
significance of the “Span Encoding” component in
driving the improvements.

System P R F1 EM
DepNeCTI-LSTM 89.24 89.24 89.24 77.00

- FastText (FT) 88.84 88.84 88.84 76.50
- Span Encoding (SE) 86.18 85.53 86.85 70.54

- FT - SE 84.25 84.23 84.24 67.86

Table 3: Each ablation involved the removal of a sin-
gular component from DepNeCTI-LSTM. The ablation
denoted as “-Span Encoding” entailed eliminating the
span encoding component from the proposed system.

(2) How robust is the system when the number
of components of a compound increases? We
analyze the relationship between the F1-score and

the number of components in compounds. For
compounds with a small number of components,
all systems demonstrate high performance, but our
proposed systems consistently outperforms other
baselines. However, as the number of components
increases, the number of examples in each category
decreases. Additionally, the number of potential
solutions grows exponentially, following the Cata-
lan number. Consequently, all systems experience
a decline in performance.

2 3 4 5 6 7 8 9 10
Number of components

0

20

40

60

80

F1
 sc

or
e

F1 score vs Number of components
CP
BotCP
SpanCL
LexCP
Seq2Seq
DepNeCTI-LSTM
DepNeCTI-XLMR

Figure 7: F1-Score against the number of components.
The compounds with components N > 10 are excluded.

(3) Error analysis: We investigate whether all
the systems are able to identify the location of a
multi-component compound correctly. The motiva-
tion behind this experiment is to evaluate the capa-
bility of the baselines and the proposed architecture
to leverage the information about the compound’s
location effectively. We define the span of text that
corresponds to a compound as a global span which
we know apriori. Figure 8 illustrates the effective-
ness of each system in correctly identifying the
global span of multi-component compounds. In
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Figure 8: Performance of the systems on identifying the
global span of a compound.

DepNeCTI-LSTM, our span encoding effectively
captures this information, resulting in a perfect
100% score. However, even after providing the
baselines with this information, they fail to use it
due to limitations in their architectures. Interest-
ingly, DepNeCTI-XLMR does not contain a span
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encoding component and leverages the compound’s
location information from the input as provided for
the baselines. Still, DepNeCTI-XLMR reports the
best performance due to its powerful word repre-
sentation ability. It is worth noting that the NeC-
TIS dataset exhibits an inherent bias towards left
branching, as indicated by the nested tree structure.
Consequently, all systems display a bias towards
left branching as well. Therefore, due to the dom-
inance of left-branching instances and increased
variance due to less number of instances, a spike is
observed in the results.

(4) Efficiency of our proposed system: Figure
9 present the computational efficiency of our sys-
tem measured in terms of the number of sentences
processed per second. We compare the inference
speed of different baselines on the NeCTI task.
Our systems, DepNeCTI-LSTM and DepNeCTI-
XLMR are leveraging a simple architecture and uti-
lizing dependency parsing as an appropriate prob-
lem formulation, exhibits a 5-fold/3-fold improve-
ment over the most efficient baseline, BotCP.
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Figure 9: Inference speed of the competing systems.

7 Related Works

Lexical semantics is a dedicated field focused on
word meaning. Various tasks such as word-sense
disambiguation (Bevilacqua and Navigli, 2020;
Barba et al., 2021; Maurya et al., 2023; Maurya
and Bahadur, 2022), relationship extraction (Tian
et al., 2021; Nadgeri et al., 2021; Hu et al., 2022;
Wang et al., 2022), and semantic role labeling (He
et al., 2018; Kulkarni and Sharma, 2019; Zhang
et al., 2022) play essential roles in determining
word meaning. Moreover, when dealing with com-
plex word structures such as compounds, named
entities, and multi-word expressions, relying solely
on basic word senses and relationships is inad-
equate. While efforts have been made in Noun
Compound Identification (Ziering and van der Plas,

2015; Dima and Hinrichs, 2015; Fares et al., 2018;
Shwartz and Waterson, 2018; Ponkiya et al., 2018,
2020, 2021), multi-word expression (MWE) (Con-
stant et al., 2017; Gharbieh et al., 2017; Gooding
et al., 2020; Premasiri and Ranasinghe, 2022) and
named entity recognition (Fu et al., 2020; Yang and
Tu, 2021; Lou et al., 2022; Yuan et al., 2022), the
nested compounds remains unexplored.

Sanskrit Compound Type Identification has at-
tracted significant attention over the past decade.
Decoding the meaning of a Sanskrit compound
requires determining its constituents (Huet, 2009;
Mittal, 2010; Hellwig and Nehrdich, 2018), un-
derstanding how these constituents are grouped
(Kulkarni and Kumar, 2011), identifying the se-
mantic relationship between them (Kumar, 2012),
and ultimately generating a paraphrase of the com-
pound (Kumar et al., 2009). Previous studies pro-
posed rule-based approaches (Satuluri and Kulka-
rni, 2013; Kulkarni and Kumar, 2013), a data-
driven approach (Sandhan et al., 2019) and a hybrid
approach (Krishna et al., 2016) for SaCTI. Sandhan
et al. (2022a) proposed a context-sensitive architec-
ture for binary compounds.

Earlier works in Sanskrit solely focused on bi-
nary compounds, neglecting the identification of
multi-component compound types; however, our
proposed framework fills this research gap.

8 Conclusion

In this work, we focused on multi-component com-
pounding in Sanskrit, which helps to decode the
implicit structure of a compound to decipher its
meaning. While previous approaches have primar-
ily focused on binary compounds, we introduced
a novel task called nested compound type identifi-
cation (NeCTI). This task aims to identify nested
spans within multi-component compounds and de-
code the implicit semantic relations between them,
filling a gap in the field of lexical semantics. To fa-
cilitate research in this area, we created 2 newly an-
notated datasets, designed explicitly for the NeCTI
task. These datasets were utilized to benchmark
various problem formulations. Our novel frame-
work DepNeCTI outperformed the best baseline
system by achieving a stupendous absolute gain of
13.1 points F1-score in terms of LSS. Similar to
the previous findings on binary Sanskrit compound
identification, we discovered that our proposed sys-
tem exhibits substantial performance superiority
over the best baseline in low-resourced scenarios.
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Limitations

We could not extend our framework to other lan-
guages exhibiting multi-component compounding
phenomena due to the lack of availability of anno-
tated datasets. It would be interesting to measure
the effectiveness of rules from Pānin. ı̄an grammar to
discard incompatible semantic relations (Kulkarni,
2019, 2021).

Ethics Statement

This work introduces a new task, along with an-
notated datasets and a framework, to address the
nested compounding phenomenon in Sanskrit. The
proposed resources aim to enhance the understand-
ing of multi-component compounds and contribute
to the improvement of machine translation sys-
tems. Regarding potential effects, we anticipate
no harm to any community resulting from the use
of our datasets and framework. However, we ad-
vise users to exercise caution, as our system is not
flawless and may generate mispredictions. To en-
sure transparency and future research, we have pub-
licly released all our annotated NeCTIS datasets
and source codes. We confirm that our data col-
lection adheres to the terms of use of the sources
and respects the intellectual property and privacy
rights of the original authors. Our annotation team
consisted of qualified individuals, including Mas-
ter’s and Ph.D. degree holders, some of whom are
Sanskrit professors. Annotators were compensated
appropriately and provided with detailed instruc-
tions to ensure consistency in the annotation pro-
cess. We remain committed to addressing ethical
implications as we refine our systems and welcome
feedback from the community to enhance our ethi-
cal practices.
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A Why NeCTI as a Dependency Parsing
Task?

Compounds in language are semantic construc-
tions. While a limited number of rules derived
from Sanskrit Grammar aid in determining the syn-
tactic structure of a compound, they offer limited
assistance in uncovering its meaning. The mean-
ing of a compound primarily arises from the se-
mantic relationship between its components. This
semantic relationship, known as “sāmarthya,” is
expressed through various types of semantic com-
pounds. These compound types also facilitate the
identification of the headword within a compound.
The headword can be one of the constituents or
an entirely distinct word modified by the resulting
compound. Compounds consisting of more than
two components are typically formed through suc-
cessive binary combinations of the components,
following specific relations. As a result, a nested
structure of binary compounds is created, with a
few exceptions. Therefore, the semantic compound
types play a vital role in determining the correct
nested structure amidst the various possible struc-
tures of a compound. Each of these structures rep-
resents a constituency span, and a parser equipped
with compound type identification assists in ac-
curately identifying the appropriate constituency
span.

Treating this as a constituency parsing task
presents several challenges. Figure 10 illustrates
the potential constituency spans for a 3-component
compound a− b− c, with ab and bc representing
the intermediate compounds. First, the nested struc-
ture of compounds does not conform to a syntactic
structure; instead, it follows a semantic structure
based on the relations between the components
rather than their position or relative co-occurrence.
Second, the intermediate compounds within the
structure are not categories but stem forms. Each
intermediate compound serves as an entity that
modifies the meanings of one of its constituents,
subsequently combining with another component
to form a larger compound.

Kumar (2012) formulated this as constituency
parsing, where the identification of semantic com-
patibility was performed based on the relative co-
occurrence and relative position of the compo-
nents. As shown in Figure 11, the intermediate
compounds, which lacked additional information,
were substituted with their respective semantic
compound types in the type identification stage.
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(a) < < a - b > - c > (b) < a - < b - c > >

Figure 10: Possible constituency spans for a three com-
ponent compound a-b-c

(a) < < a - b > T1 - c > T2 (b) < a - < b - c > T3 > T4

Figure 11: Possible constituency spans for a three com-
ponent compound a-b-c with semantic types

The semantic types serve as semantic construc-
tions for compounds, rather than being syntactic
categories and play a crucial role in determining the
meaning of the compound. For example the com-
pound vidyālayaghan. t.ā has the nested structure
«vidyā-ālaya>T6-ghan. t.ā>T6. The type T6 indi-
cates s. as. t.hī tatpurus. a compound (6th case determi-
native compound) inferring a possessive relation-
ship. Vidyā (knowledge) and ālaya (place) combine
to form the intermediate compound vidyālaya (the
place of knowledge, viz. school), which combines
with ghan. t.ā (bell) to form the whole compound
indicating school-bell. The possessive relation ex-
pressed by the compound type (T6) is akin to a
dependency relation, and this holds true for other
compound types as well.

Consequently, when represented with compound
types, the same constituency spans can be depicted
as dependency structures by annotating the types
as directed relations and removing the extra nodes
indicating the types. The dependency structures
for the previous example (a − b − c) are shown
in Figure 12. Furthermore, the head words are
not explicitly marked in constituency spans and
can only be identified through their corresponding
types. However, with dependency structures, the

head word can be determined by the labels directed
towards it within the compound. Notably, these
dependency structures faithfully capture the con-
stituency information and are mutually convertible
with their corresponding constituency spans.

(a) << a− b > T1− c > T2

(b) < a− < b− c > T3 > T4

Figure 12: Dependency Structure for the three compo-
nent compound a-b-c with semantic types as labels

There are several considerations behind the de-
cision to treat NeCTI as a dependency parsing
task. First, the semantic relations among com-
pound components resemble dependency relations
and can be represented as directed labels within
the dependency parse structure. Second, this ap-
proach concisely represents the semantic relations
between compound components without introduc-
ing extra intermediary nodes. Lastly, it enables
the simultaneous identification of the structure or
constituency span alongside the identification of
compound types.

B Experiment Details

Hyper-parameters: For our proposed system,
we build on the top of the codebase from BiAFF,
as developed by Ma et al. (2018). We configure the
hyperparameters as follows: a batch size of 16, 100
training iterations, a dropout rate of 0.33, 2 stacked
Bi-LSTM layers, a learning rate of 0.002, and the
remaining parameters set identically to those used
in the work of Ma et al. (2018). We use man-
ual tuning for the hyper-parameter selection and
F1-score criteria on dev set’s performance . Our
codebase is publicly available and released under
a creative-common license. We use FastText word
embeddings for the proposed framework.

Computing Infrastructure Used: We perform
our experiments using a single GPU equipped with
an NVIDIA A40, 48 GB GPU memory, and 10752
CUDA cores. We employ a single GPU with an
NVIDIA Quadro RTX 4000, 8 GB GPU memory,
and 2304 CUDA cores for our proposed system.
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