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Abstract
Text normalization methods have been com-
monly applied to historical language or user-
generated content, but less often to dialectal
transcriptions. In this paper, we introduce
dialect-to-standard normalization – i.e., map-
ping phonetic transcriptions from different di-
alects to the orthographic norm of the standard
variety – as a distinct sentence-level character
transduction task and provide a large-scale anal-
ysis of dialect-to-standard normalization meth-
ods. To this end, we compile a multilingual
dataset covering four languages: Finnish, Nor-
wegian, Swiss German and Slovene. For the
two biggest corpora, we provide three different
data splits corresponding to different use cases
for automatic normalization. We evaluate the
most successful sequence-to-sequence model
architectures proposed for text normalization
tasks using different tokenization approaches
and context sizes. We find that a character-
level Transformer trained on sliding windows
of three words works best for Finnish, Swiss
German and Slovene, whereas the pre-trained
byT5 model using full sentences obtains the
best results for Norwegian. Finally, we per-
form an error analysis to evaluate the effect of
different data splits on model performance.

1 Introduction

Text normalization refers to a range of tasks that
consist in replacing non-standard spellings with
their standard equivalents. This procedure is ben-
eficial for many downstream NLP tasks, since it
increases data homogeneity and thus reduces the
impact of unknown word forms. Establishing iden-
tity between different variants of the same form
is also crucial for information retrieval tasks, and
in particular for building efficient corpus querying
systems. Furthermore, it can facilitate building ap-
plications for a wider audience, such as spelling
and grammar checkers.

Important progress has been made on normaliza-
tion of historical texts (e.g., Tang et al., 2018; Boll-

mann, 2019) and user-generated content (UGC)
in social media (e.g. van der Goot et al., 2021).
However, the existing work on dialect normaliza-
tion (e.g., Scherrer and Ljubešić, 2016; Abe et al.,
2018; Partanen et al., 2019) remains fragmented: it
typically focuses on a single language and uses dif-
ferent models, experimental setups and evaluation
metrics, making direct comparisons difficult.

In this paper, we aim to establish dialect-to-
standard normalization as a distinct task alongside
historical text normalization and UGC normaliza-
tion. We make the following contributions:

• We compile a multilingual dataset from ex-
isting sources and make it available in a unified
format to facilitate cross-lingual comparisons. The
dataset covers Finnish, Norwegian, Swiss German
and Slovene. These languages come from three
different families and have different morphologi-
cal systems. For the two largest datasets (Finnish
and Norwegian), we provide different data splits
corresponding to different use cases for dialect nor-
malization.

• We test a wide range of sequence-to-
sequence models that performed well in other nor-
malization tasks: statistical machine translation,
RNN-based and Transformer-based neural machine
translation, and byT5, a pre-trained byte-based mul-
tilingual Transformer. We compare character with
subword tokenizations as well as full-sentence con-
texts with sliding windows of three words. We
evaluate the models on word accuracy, but also pro-
vide character error rates and word error reduction
rates to facilitate comparison with previous work.
Finally, we provide an error analysis on two of the
Finnish data splits.1

1The data, scripts and model configurations are
available at https://github.com/Helsinki-NLP/
dialect-to-standard.
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2 Related Work

2.1 Historical text normalization
Historical text normalization consists in modern-
izing the spelling of the text such that it conforms
to current orthographic conventions. Pettersson
et al. (2014) evaluate three different normalization
methods in a multilingual setup: a simple filtering
model, an approach based on Levenshtein distance,
and an approach using character-level statistical
machine translation (CSMT). They find that CSMT
is the overall most promising approach. Scher-
rer and Erjavec (2016) use CSMT in supervised
and unsupervised settings to normalize historical
Slovene data.

Tang et al. (2018) and Bollmann (2019) provide
multilingual comparisons of neural and statistical
MT approaches, whereas Bawden et al. (2022) eval-
uate different normalization methods on historical
French. In most settings, SMT outperformed neu-
ral models. In several settings, BPE-based subword
segmentation led to better results than character-
level segmentation.

2.2 Normalization of user-generated content
UGC, typically found on social media, contains
various non-standard elements such as slang, ab-
breviations, creative spellings and typos. De Clercq
et al. (2013) present various experiments on nor-
malizing Dutch tweets and SMS messages and
show that a combination of character-level and
word-level SMT models yields the optimal results.
Matos Veliz et al. (2019) follow up on this work
and show that data augmentation techniques are
crucial for obtaining competitive results with NMT
models. The MoNoise model (van der Goot, 2019)
significantly improved the state-of-the-art in UGC
normalization. It contains several modules such
as a spellchecker, an n-gram language model and
domain-specific word embeddings that provide nor-
malization candidates.

The first multilingual, homogeneous dataset for
UGC normalization was published in the context
of the MultiLexNorm shared task in 2021 (van der
Goot et al., 2021). The results of the shared task
also supported the usefulness of normalization for
downstream tasks such as PoS-tagging and pars-
ing. The best-performing submission (Samuel and
Straka, 2021) proposed to fine-tune byT5, a byte-
level pre-trained model (Xue et al., 2022), in such
a way that normalizations are produced one word
at a time.

2.3 Dialect-to-standard normalization

There has been comparatively less research in the
domain of dialect normalization. Scherrer and
Ljubešić (2016) apply CSMT to Swiss German.
They create models for normalizing individual
words and entire sentences and show that the larger
context provided by the latter is beneficial for the
normalization of ambiguous word forms. Lusetti
et al. (2018) work on a different Swiss German
dataset and show that neural encoder-decoder mod-
els can outperform CSMT when additional target-
side language models are included.

Abe et al. (2018) work on the NINJAL cor-
pus (Kokushokankokai Inc, 1980), and propose to
translate Japanese dialects into standard Japanese
using a multilingual (or rather, multi-dialectal)
LSTM encoder-decoder model. The transduction
is done on the level of bunsetsu, the base phrase in
Japanese, which corresponds to a content word, po-
tentially followed by a string of functional words.

Partanen et al. (2019) compare LSTM-based and
Transformer-based character-level NMT models
for normalizing Finnish. The authors use contexts
of one word, three words, or the entire sentence,
the best results being achieved using three words.
On the contrary, Hämäläinen et al. (2020) report
optimal results while using individual words in
normalizing Swedish dialects spoken in Finland.
Hämäläinen et al. (2022) use generated dialectal
Finnish sentences to normalize Estonian dialects.

Machine translation from Arabic dialects to
Modern Standard Arabic (MSA) can also be con-
sidered a dialect normalization task, although Ara-
bic dialects differ from the standard variety to a
greater extent than the languages used in our work
and therefore contain lexical replacements and re-
orderings. The 2023 NADI shared task (Abdul-
Mageed et al., 2023) provides a subtask on Arabic
dialect translation. The MADAR corpus (Bouamor
et al., 2018) is a popular resource for Arabic dialect
translation and covers 25 dialects. Additionally,
Eryani et al. (2020) describe the creation of a nor-
malization corpus for five Arabic dialects, but do
not report any experiments on automatic normal-
ization. Zhao and Chodroff (2022) similarly report
on corpus compilation of Mandarin dialects, but
they focus on acoustic-phonetic analysis.

Each of these works focuses on dialects of a
single language and uses different models and ex-
perimental setups, as well as different evaluation
metrics (including BLEU, word error rate and ac-
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Speak. Loc. Texts Sentences Words Types MSLw MSLch Ambig.

SKN 99 50 99 41,407 630,665 106,452 15.23 88.59 5.54%
NDC 438 111 684 126,460 1,684,059 77,950 13.32 57.16 10.14%

ArchiMob 6 5 6 10,183 82,658 11,110 8.12 42.17 6.36%
GOS 36 10 24 8,621 84,199 12,616 9.77 41.43 8.85%

Table 1: Key figures of the four datasets constituting the multilingual normalization benchmark. Speak. = number
of speakers. Loc. = number of locations. MSLw = mean sentence length in words. MSLch = mean sentence length
in characters. Ambig. = percentage of types having more than one possible normalization.

SKN mä oon syänys seittemän silakkaa aiva niin häntä erellä
(Finnish) minä olen syönyt seitsemän silakkaa aivan niin häntä edellä

‘I have eaten seven herrings, that’s right, tail first’

NDC å får eg sje sjøra vår bil før te påske
(Norwegian) og får jeg ikke kjøre vår bil før til påske

‘and I don’t get to drive our car until Easter’

ArchiMob ich ha das ales inere kasette won ich de schlüssel nüme ha dezue
(Swiss German) ich habe das alles in einer kassette wo ich den schlüssel nicht mehr habe dazu

‘I have it all in a case for which I don’t have the key anymore’

GOS se zjemla je prpravlena pugnujena pa ubdajlana pa puvlajčena
(Slovene) saj zemlja je pripravljena pognojena pa obdelana pa povlečena

‘because the soil is prepared, fertilised and tilled and harrowed’

Table 2: Normalization examples of the four languages. The top row presents the original phonetic transcription, the
middle row the normalized version, and the bottom row provides an English gloss.

curacy). All of these factors make meaningful com-
parisons between different approaches difficult.

3 Datasets

We propose a multilingual dataset that covers
Finnish, Norwegian, Swiss German and Slovene.
The dataset is compiled from existing dialect cor-
pora, which are presented in detail below. The
languages originate from two language families
(Uralic and Indo-European) and three branches
(Finnic, Germanic, Balto-Slavic). All languages
adopt the Latin script. This enables the compari-
son of language structure, rather than differences in
script. Some quantitative information about the in-
dividual corpora is available in Table 1, and Table 2
provides some example sentences.

3.1 Finnish
The Samples of Spoken Finnish corpus (Suomen
kielen näytteitä, hereafter SKN) (Institute for the
Languages of Finland, 2021) consists of 99 inter-
views conducted mostly in the 1960s.2 It includes
data from 50 Finnish-speaking locations, with two
speakers per location (with one exception). The

2http://urn.fi/urn:nbn:fi:lb-2021112221, Li-
cence: CC-BY.

interviews have been transcribed phonetically on
two levels of granularity (detailed and simplified)
and normalized manually by linguists. We only
consider the utterances of the interviewed dialect
speakers, not of the interviewers. Although the
detailed transcriptions have been used for the nor-
malization experiments in Partanen et al. (2019),
we use the simplified transcriptions here to make
the annotations more consistent with the other lan-
guages. The simplified transcriptions do not make
certain phonetic distinctions and share the alphabet
with the normalized text.

3.2 Norwegian

The Norwegian Dialect Corpus (Johannessen et al.,
2009, hereafter NDC) was built as a part of a larger
initiative to collect dialect syntax data of the North
Germanic languages.3 The recordings were made
between 2006 and 2010, and typically four speak-
ers per location were recorded. Each speaker ap-
pears in an interview with a researcher and in an
informal conversation with another speaker. We
concatenate all utterances of a speaker regardless
of the context in which they appear.

3http://www.tekstlab.uio.no/scandiasyn/
download.html, Licence: CC BY-NC-SA 4.0.
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Figure 1: The three data splits (SKN1 on the left, SKN2 in the center, SKN3 on the right) visualized on a subset of
the Finnish dataset. Each dot represents one speaker. There are generally two speakers per location in SKN.

The recordings were transcribed phonetically
and thereafter normalized to Norwegian Bokmål.
The normalization was first done with an automatic
tool developed specifically for this corpus, and its
output was manually corrected afterwards. The
publicly available phonetic and orthographic tran-
scriptions are not well aligned; we automatically
re-aligned them at utterance and word level.4

3.3 Swiss German

The ArchiMob corpus of Swiss German
(Samardžić et al., 2016; Scherrer et al., 2019)
consists of oral history interviews conducted
between 1999 and 2001.5 The corpus contains 43
phonetically transcribed interviews, but only six
of them were normalized manually. We use the
interviewee’s utterances of these six documents for
our experiments. The selected texts originate from
five dialect areas, covering approximately one third
of the German-speaking part of Switzerland.

3.4 Slovene

Our Slovene dataset is based on the GOS corpus
of spoken Slovene (Verdonik et al., 2013).6 The
original corpus contains 115h of recordings. Two
transcription layers are included: a manually tran-
scribed phonetic layer and a semi-automatically
normalized layer (with manual validation).

Since the degree of non-standardness in the full
corpus was relatively low (16%), we select a subset
of the data for our experiments. We retain speak-
ers whose productions contain at least 30% non-
standard tokens and who have produced at least
1000 words. This results in a set of 36 speakers
from 10 dialect regions.

4The alignment script and re-aligned data is available at
https://github.com/Helsinki-NLP/ndc-aligned/.

5https://www.spur.uzh.ch/en/departments/
research/textgroup/ArchiMob.html, Licence: CC
BY-NC-SA 4.0.

6http://hdl.handle.net/11356/1438, Licence: CC
BY-NC-SA 4.0.

3.5 Preprocessing

To ensure the datasets are comparable, we have ap-
plied several preprocessing steps: removing punctu-
ation and pause markers, substituting anonymized
name tags with X, and excluding utterances consist-
ing only of filler words. The Slovene data includes
some utterances in Italian and German which are
normalized to the corresponding standard. They
have been excluded from the data.

4 Experimental Setup

4.1 Data splits

The Finnish and Norwegian datasets contain multi-
ple speakers per location, which provides a possi-
bility to test the generalization capabilities of the
models in different scenarios. We create three dif-
ferent data splits:

1. Normalizing unseen sentences of seen
speakers. We divide each speaker’s data in such
a way that 80% of sentences are used for training,
10% for development and 10% for testing. The
sentences are selected randomly.

2. Normalizing unseen speakers of seen di-
alects. We pick speakers from selected locations
for the development and test sets, while the rest of
the speakers are used for training. For each loca-
tion, at least one speaker is present in the training
set. In other words, 80% of speakers are used for
training, 10% for development and 10% for testing.

3. Normalizing unseen dialects. All speakers
from a given location are assigned to either the
training, development or test set. In other words,
80% of locations are used for training, 10% for
development and 10% for testing.

The different data splits are visualized in Fig-
ure 1. For the smaller and less geographically di-
verse Swiss German and Slovene datasets, we only
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use split 1. For each split, we create three folds
with random divisions into train, development and
test sets.

While previous work (Scherrer and Ljubešić,
2016; Partanen et al., 2019) mostly relies on split
1, this setup potentially overestimates the models’
normalization capabilities: in a given conversation,
utterances, phrases and words are often repeated,
so that similar structures can occur in the training
and test sets. We argue that splits 2 and 3 more re-
alistically reflect dialectological fieldwork, where
new texts are gradually added to the collection and
need to be normalized.

4.2 Tokenization and context sizes

Text normalization is generally viewed as a charac-
ter transduction problem (Wu et al., 2021), and it
seems therefore most natural to use single charac-
ters as token units. Character tokenization has also
been shown to work well for normalization tasks
in various recent studies.

Most other character transduction problems,
such as transliteration or morphological inflection,
are modelled out-of context, i.e., one word at a time.
This assumption does not seem accurate for text
normalization: as shown in Table 1, between 5 and
10% of word types have more than one possible nor-
malization, and disambiguating these requires ac-
cess to the sentential context. Moreover, depending
on the annotation scheme, there are sandhi phenom-
ena at the word boundaries (cf. the SKN example
in Table 2: syänys instead of syänyt because of
assimilation with the following s) that cannot be
taken into account by models that operate word
by word. Thus, the most obvious strategy for text
normalization is to consider entire sentences and
break them up into single character tokens.

This strategy combining long contexts with short
tokens leads to rather long token sequences, and
NMT approaches especially have been shown to
underperform in such scenarios (Partanen et al.,
2019). We include two alternative ways of address-
ing this issue: (1) by shortening the instances from
full sentences to sliding windows of three consecu-
tive words, and (2) by lengthening the tokens using
subword segmentation.

Sliding windows. Partanen et al. (2019) propose
to split each sentence into non-overlapping chunks
of three consecutive words. We adapt this approach
and use overlapping chunks of three words to
ensure that the model always has access to exactly

one context word on the left and one on the right.
At prediction time, only the word in the middle of
each chunk is considered.

The preprocessing needed to create input for
both entire-sentence and sliding-window models is
illustrated in Appendix D.

Subword segmentation. Tang et al. (2018) and
Bawden et al. (2022) found that subword segmenta-
tion could outperform character-level segmentation
on the task of historical text normalization. We
follow this work and experiment with subword seg-
mentation as well. Several segmentation schemes
have been proposed for general machine transla-
tion, e.g. byte-pair encoding (Sennrich et al., 2016,
BPE) or the unigram model (Kudo, 2018). Kan-
jirangat et al. (2023) found the unigram model to
perform better than BPE on texts with inconsistent
writing. This is the case for our speech transcrip-
tions and we thus opt to use the unigram model.
We train our models with the SentencePiece library
(Kudo and Richardson, 2018), and optimize the
vocabulary size separately for each dataset.

4.3 Evaluation

We evaluate the models on word-level accuracy,
i.e., the percentage of correctly normalized words.
Since the reference normalizations are tied to the
words in the source sentences, and since the mod-
els’ output can differ in length from the source sen-
tence, we need to re-align the model output with
the reference normalization. We apply Levenshtein
alignment to the entire sequence pair and split the
system output at the characters aligned with word
boundaries of the input (see Appendix D for an
illustration).7

Word-level accuracy lacks granularity and does
not distinguish between normalizations that are
only one character off and normalizations that are
completely wrong. Therefore, we include char-
acter error rate (CER) as a more fine-grained
metric.8 CER is defined as the Levenshtein dis-
tance between the system output and the reference,
normalized by the length of the reference. Another
advantage of CER is that it can be computed di-
rectly on sentence pairs without re-alignment.9

7The re-alignment code is provided at https:
//github.com/Helsinki-NLP/dialect-to-standard/
blob/main/scripts/align.py.

8Following Partanen et al. (2019), we use the implementa-
tion available at https://github.com/nsmartinez/WERpp.

9Re-alignment is still necessary for the sliding window
models in order to extract the center word of each chunk.
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Following van der Goot et al. (2021), we also
report error reduction rates in Appendix C.

We compare the systems to two baselines: the
leave-as-is (LAI) baseline corresponds to the per-
centage of words that do not need to be modified.
The most frequent replacement (MFR) baseline
translates each word to its most frequent replace-
ment seen in the training data, and falls back to
copying the input for unseen words.

5 Methods and Tools

We utilize both statistical and neural machine trans-
lation tools trained from scratch, as well as a pre-
trained multilingual model. We train (or fine-tune)
the models for each of the four languages sepa-
rately. Our hyperparameter choices largely follow
recent related work on text normalization. The
main characteristics of the models are summarized
below, and a detailed description of the hyperpa-
rameters is given in Appendix A. The methods used
in the experiments are:

SMT. Our statistical machine translation
method corresponds mostly to the one imple-
mented in the CSMTiser tool.10 It uses the Moses
SMT toolkit (Koehn et al., 2007) with a 10-gram
KenLM language model trained on the training
sets.11 Scherrer (2023) found eflomal (Östling
and Tiedemann, 2016) to produce better character
alignment than the more commonly used GIZA++,
and we adopt this method. Minimum error rate
training (MERT) is used for tuning the model
weights, using WER (word error rate, which
effectively becomes character error rate in a
character-level model) as the objective.

RNN-based NMT. This model uses a bidirec-
tional LSTM encoder and a unidirectional LSTM
decoder with two hidden layers each. The attention
mechanism is reused for copy attention.

TF-based NMT. This model has 6 Transformer
layers in the encoder and the decoder, with 8 heads
each. We found in preliminary experiments that
position representation clipping was beneficial to
the results. All NMT models are trained with the
OpenNMT-py toolkit (Klein et al., 2017).

ByT5. ByT5 is a multilingual pre-trained model
of the T5 family (Raffel et al., 2020). These models

10https://github.com/clarinsi/csmtiser
11Contrarily to related work, we did not include any addi-

tional target-side language models.

use a Transformer architecture and are pretrained
on a masked language modeling task. ByT5 (Xue
et al., 2022) is a variant of T5 that does not use any
subword tokenization model, but rather encodes
all text as UTF-8 encoded byte sequences.12 It is
pre-trained on the multilingual m4C corpus (Xue
et al., 2021), which includes the four languages
of our dataset. We use the byt5-base model and
fine-tune it separately on each normalization task
for ten epochs.

We run all models on our base setup (entire sen-
tence instances with character or byte tokenization).
In addition, the SMT, RNN and TF models are also
trained on subword-segmented data. Finally, the
character-level RNN and TF models are trained on
sliding windows.13

6 Results and Discussion

We evaluate the models presented in Section 5 with
the metrics described in Section 4.3. We run the
models on the three folds of each data split, and
present the average scores and standard deviations
for each metric.

The word-level accuracies are presented in Ta-
ble 3 and the character error rates in Table 4. We
also provide accuracy scores for the development
sets in Appendix C. Transformer-based methods
appear as the most robust: the Transformer trained
on sliding windows is best for SKN, ArchiMob and
GOS, while the Transformer-based byT5 produces
the best results for Norwegian. For all other cor-
pora, byT5 is a close second in accuracy, and is
thus the best alternative for entire sentences.

While CSMT and RNN-based methods do not
yield the best score for any dataset, they still per-
form reasonably well. For the NMT models, using
the sliding window instead of sentences enhances
the results for all corpora but NDC. Regarding tok-
enization, the subwords improve the performance
on the large corpora (SKN and NDC) but worsen
it on the small corpora (Archimob and GOS). For
all datasets, the best results are obtained on the
character (or byte) level.

We expected rising levels of difficulty between
data split 1 and 3, but neither the baselines nor the
model outputs confirmed our expectations. The

12In our setup, we view character-level and byte-level seg-
mentation as largely equivalent. Our datasets have vocabulary
sizes ranging between 42 and 90 and thus lie largely below
the byte-level upper bound of 256.

13In preliminary experiments, the sliding window setup did
not yield any benefits for SMT and byT5 models.
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Model SKN1 SKN2 SKN3 NDC1 NDC2 NDC3 ArchiMob GOS

LAI 44.63±0.37 46.01±1.10 47.96±2.53 32.88±0.08 33.31±1.35 33.72±0.48 21.37±0.33 58.08±0.71

MFR 84.87±0.22 82.75±0.26 83.19±0.24 86.90±0.06 86.48±1.15 86.72±0.17 83.82±0.20 83.93±0.52

Full sentence models with character or byte segmentation
SMT 91.22±0.17 89.96±0.39 90.36±0.21 91.85±0.08 91.44±0.47 91.55±0.08 88.06±0.31 85.82±0.96

RNN 89.90±1.14 89.35±0.88 88.56±1.04 93.42±0.06 93.03±0.39 93.21±0.09 88.98±0.56 83.59±0.68

TF 92.90±0.35 91.38±0.86 89.75±1.73 93.99±0.09 93.68±0.47 93.41±0.67 89.14±0.38 85.65±0.61

ByT5 92.95±0.11 91.77±1.11 91.90±0.77 94.68±0.10 94.51±0.28 94.54±0.10 90.57±0.54 87.26±0.55

Full sentence models with subword segmentation
SMT 90.18±0.02 88.64±0.36 89.26±0.13 92.57±0.06 92.16±0.48 92.20±0.12 87.38±0.13 85.23±0.73

RNN 91.29±0.09 89.51±1.33 88.90±1.85 92.60±0.20 92.13±0.07 92.41±0.10 86.81±0.38 80.64±1.34

TF 92.23±1.80 90.84±2.10 91.21±1.59 94.20±0.01 93.85±0.37 93.96±0.12 87.63±0.37 84.72±0.83

Sliding window models with character segmentation
RNN 92.46±0.07 90.74±0.24 91.42±0.24 92.31±0.15 92.23±0.64 92.31±0.20 90.39±0.33 86.26±0.58

TF 93.44±0.04 92.10±0.52 92.38±0.35 93.24±0.10 93.02±0.40 93.19±0.09 90.95±0.21 87.30±0.56

Table 3: Word-level accuracy (↑). We report averages and standard deviations over the three folds of each data split.

Model SKN1 SKN2 SKN3 NDC1 NDC2 NDC3 ArchiMob GOS

LAI 14.60±0.11 14.04±0.42 13.21±0.95 24.54±0.05 24.28±0.72 23.78±0.20 32.45±0.08 14.95±0.27

MFR 4.68±0.06 5.35±0.13 5.18±0.10 5.71±0.02 5.94±0.63 5.75±0.12 7.10±0.11 6.31±0.30

Full sentence models with character or byte segmentation
SMT 2.64±0.07 3.00±0.18 2.91±0.11 3.07±0.03 3.28±0.21 3.16±0.04 3.63±0.19 5.30±0.39

RNN 4.46±1.64 5.88±1.31 5.21±1.49 2.65±0.09 3.49±0.50 3.10±0.52 4.21±1.37 23.20±10.72

TF 2.39±0.20 3.13±0.67 4.57±1.38 2.32±0.03 2.48±0.22 2.59±0.33 3.49±0.27 5.71±0.21

ByT5 2.96±0.13 3.67±1.12 3.75±0.99 2.11±0.06 2.19±0.12 2.19±0.08 3.21±0.36 5.28±0.19

Full sentence models with subword segmentation
SMT 2.97±0.03 3.46±0.19 3.30±0.12 2.96±0.04 3.20±0.25 3.14±0.02 4.20±0.08 5.92±0.35

RNN 7.38±0.44 9.57±5.20 12.38±4.46 3.34±0.65 3.20±0.17 3.14±0.03 4.84±0.34 28.66±1.06

TF 2.23±0.10 2.82±0.18 2.93±0.63 2.27±0.02 2.44±0.18 2.37±0.07 4.64±0.15 7.05±0.10

Sliding window models with character segmentation
RNN 2.38±0.01 2.90±0.11 2.73±0.10 3.06±0.07 3.12±0.34 3.02±0.06 3.22±0.09 5.38±0.23

TF 2.06±0.02 2.73±0.64 2.40±0.13 2.68±0.06 2.79±0.20 2.68±0.01 3.02±0.08 4.98±0.18

Table 4: Character error rates (↓).

differences between splits are very small, and most
models achieve the lowest results on split 2.

The character error rates presented in Table 4
follow the same pattern as the word accuracies
when it comes to the best models. However, for
SKN, byT5 drops below sliding window RNN and
SMT with this metric. Some of the Finnish byT5
models generate much shorter predictions than the
other models, but it remains to be investigated why
this occurs and why it only affects some training
runs. Table 4 also highlights poor performance
and large standard deviation with sentence-level
RNN on GOS. This is in line with earlier findings

about neural models’ tendency to overmodify the
predictions (Bawden et al., 2022).

6.1 Comparison with previous work

Partanen et al. (2019) worked on the normalization
of the Finnish SKN dataset, reporting word error
rate (WER) as their main metric. Although they use
the detailed SKN transcriptions instead of the sim-
plified ones, their results are roughly comparable
with our SKN1 data split (see Table 5). While they
were not able to successfully train sentence-level
models, our parameterization closes the gap to the
chunk models. Their best reported word error rates
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Partanen et al. (2019) This work

RNN (full sentences) 46.52 11.11
RNN (3-word chunks) 5.73 7.59
TF (full sentences) 53.23 7.07
TF (3-word chunks) 6.10 6.59

Table 5: Comparison with previous work on Finnish
(SKN1 data split, all models with character tokeniza-
tion). Metric: word error rate (↓).

are however slightly lower than ours.
Scherrer and Ljubešić (2016) presented normal-

ization experiments on the ArchiMob corpus. Our
results are largely comparable to theirs. A detailed
comparison is provided in Appendix B.

6.2 Error analysis
We examine the effects of different data splits by
looking at the output of the sliding window Trans-
former on splits 1 and 3 of the Finnish SKN corpus.
As a reminder, the test set in split 1 contains un-
seen sentences from seen texts (and therefore seen
dialects), whereas in split 3 it comes from unseen
locations. It can be expected (1) that the model
trained on SKN1 performs better on dialect-specific
phenomena, such as normalizations involving diph-
thongs, consonant grade and inflection marks; and
(2) that the two models behave similarly on phe-
nomena that are not dialect-specific, such as capi-
talization and proper names.

Error type SKN1 SKN3

Capitalization 2 1.1% 2 0.6%
Character 13 6.8% 31 9.8%
Consonant grade 3 1.6% 15 4.7%
Diphthong 9 2.7% 4 1.3%
Indiscernible 17 8.9% 32 10.1%
Inflection 88 46.3% 127 39.9%
Proper name 10 5.3% 16 5.0%
Wrong target 48 25.3% 91 28.6%

Total 190 100% 318 100%

Table 6: Comparison of error types between the models
trained on SKN1 and SKN3.

We analyze model output on the sentences that
appear in both test sets and focus on words for
which at least one model produced an erroneous
normalization. We identify 382 such cases. On
this set of words, the SKN3 model produces a
much higher number of errors (318) than the SKN1

model (190). The higher number of errors on SKN3
is coherent with the intuition that this split is more
difficult, but the nature of the errors produced by
the two models does not fully conform to the expec-
tations (see Table 6). In absolute terms, the model
trained on SKN3 does produce more inflection and
consonant grade errors, but fewer diphthong errors.
In relative terms, the SKN3 model produces a lower
percentage of inflection errors than its counterpart
(40% vs 46%). This seems to indicate that split 3
does not preclude the model from learning dialect-
related patterns. We hypothesize that this is due to
the fact that the training set contains material from
the same dialect area as the test set (although not
from the exact same location).

To identify the critical point beyond which the
cross-lectal model performance would be clearly
affected, it could be useful to introduce a fourth
data split which would exclude larger dialect areas
from the train set and test on unseen dialects.

6.3 Comparison with other tasks

Task LAI ERR

Historical norm. 17.5 – 85.4 72.1 – 89.9
UGC norm. 63.0 – 93.1 47.5 – 80.1
Dialect norm. 21.4 – 58.1 69.7 – 92.1

Table 7: Word-level accuracy ranges of the leave-as-
is baselines (LAI) and word-level error reduction rate
ranges (ERR) for historical normalization (Bollmann,
2019), UGC normalization (van der Goot et al., 2021)
and dialect normalization (this work, cf. Appendix C).

As mentioned above, dialect-to-standard normal-
ization shares fundamental properties with histor-
ical text normalization and UGC normalization.
Here, we compare the respective difficulties of
these three tasks. Table 7 reports the LAI ranges
and ERR ranges of the best systems reported in
Bollmann (2019) and van der Goot et al. (2021).

It can be seen that dialect normalization has the
lowest LAI rates on average and thus requires the
most changes of the three tasks. The models per-
form roughly equally well on both historical and
dialectal normalization, whereas UGC normaliza-
tion seems to be a more difficult task.

7 Conclusions

In this paper, we present the dialect-to-standard nor-
malization task as a distinct task alongside histori-
cal text normalization and UGC normalization. We
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introduce a dialect normalization dataset contain-
ing four languages from three different language
branches, and use it to evaluate various statistical,
neural and pre-trained neural sequence-to-sequence
models.

In our base setup with models trained on entire
sentences with character (or byte) segmentation,
the pre-trained byT5 model performs best for all
languages and data splits. Moving from character
segmentation to subword segmentation increases
the accuracies for the large datasets (SKN and
NDC), but not enough to surpass byT5. In contrast,
the sliding window approach outperforms byT5
on all languages except Norwegian. The superior
performance of byT5 on Norwegian cannot be di-
rectly explained by the amount of training data,14

but it is likely that the closely related languages
Swedish and Danish enhance its performance. A
further analysis on character error rate shows that
the neural models sometimes offer very poor pre-
dictions, which are not visible when using accuracy
as a metric.

In this work, we have evaluated the most com-
mon and most popular model architectures, but it
would be interesting to test specific model architec-
tures for character transduction tasks, e.g. models
that put some monotonicity constraint on the at-
tention mechanism (Wu and Cotterell, 2019; Rios
et al., 2021). We defer this to future work.

Another point to be investigated in future work
is data efficiency. Our training sets are relatively
large in comparison with other character transduc-
tion tasks, and it would be useful to see how much
the data requirements can be reduced without sig-
nificantly affecting the normalization accuracy.

Limitations

We see the following limitations of our work:

• The proposed multilingual dataset is biased
towards European languages and European dialec-
tal practices. It may therefore not generalize well
to the types of dialectal variation present in other
parts of the world and to transcriptions in non-Latin
scripts. In particular, there is an extensive amount
of research on the normalization of Arabic and
Japanese dialects (e.g., Abe et al., 2018; Eryani
et al., 2020). We address some of these issues
in Scherrer et al. (2023).

14German accounts for 3.05% of the byT5 training data,
Finnish for 1.35%, Norwegian for 1.33% and Slovene for
0.95%.

• We voluntarily restrict our dataset to “clean”
corpora, i.e., interviews transcribed and normalized
by trained experts. This contrasts with other data
collections specifically aimed at extracting dialectal
content from social media (e.g., Ueberwasser and
Stark, 2017; Mubarak, 2018; Barnes et al., 2021;
Kuparinen, 2023). Such datasets compound the
features and challenges of both dialect-to-standard
normalization and UGC normalization.

• We did not perform extensive hyperparame-
ter tuning in our experiments, but rather use set-
tings that have performed well in other normal-
ization tasks. It is therefore conceivable that the
performance of NMT models in particular could
be improved. Furthermore, specific model architec-
tures for character transduction tasks have been
proposed, e.g. constraining the attention to be
monotonic (Wu and Cotterell, 2019; Rios et al.,
2021). We did not include such architectures in
our experiments since they generally only showed
marginal improvements.

Ethics statement

All our experiments are based on publicly avail-
able datasets that were costly to produce. It
is important to ensure that these are appropri-
ately acknowledged. Anybody wishing to use our
dataset will also need to cite the publications of
the original datasets. Details are given on the
resource download page: https://github.com/
Helsinki-NLP/dialect-to-standard.

The datasets have been anonymized where nec-
essary. Text normalization is explicitly mentioned
as a possible research task in the literature present-
ing the ArchiMob corpus (Samardžić et al., 2016;
Scherrer and Ljubešić, 2016), and the SKN dataset
has been previously used to evaluate normaliza-
tion models. We are not aware of any malicious or
harmful uses of the proposed dialect-to-standard
normalization models.
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A Experimental details

We trained all neural models on a single NVIDIA
V100 GPU. The SMT models were trained on a
Xeon Gold 6230 CPU. Table 8 presents the average
training time and number of parameters for a single
fold of the largest of our datasets, the Norwegian
NDC.

Model Runtime (hh:mm) Parameters

SMT 28:16 —
RNN (full sentences) 12:12 9.6 M
RNN (sliding window) 42:28 9.6 M
TF (full sentences) 17:27 25.4 M
TF (sliding window) 30:19 25.4 M
ByT5 27:27 581 M

Table 8: Training runtime (average) and number of
parameters for a single character-level NDC model.

Additional details about the model architectures
and hyperparameter settings are provided in Ta-
ble 12.

B Comparison with previous work on
Swiss German

Scherrer and Ljubešić (2016) presented normaliza-
tion experiments with CSMT models on the Archi-
Mob corpus, albeit with a different data split than
in our present work. The most comparable model,
a CSMT model trained on entire sentences, ob-
tains an almost identical accuracy score compared
to our results (see Table 9). Their best model, a
CSMT model with an additional language model
and constraints, achieves performance on par with
our best model, the Transformer trained on sliding
windows.

Scherrer and Ljubešić (2016) This work

CSMT 1LM 87.59 88.06
CSMT 2LM+constraints 90.46 —
TF (sliding window) — 90.95

Table 9: Comparison with previous work on Swiss Ger-
man. Metric: accuracy (↑). 1LM = one language model,
2LM = two language models.

C Additional results

Table 10 shows the word-level error reduction
rates (ERR). ERR was introduced by van der Goot
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Model SKN1 SKN2 SKN3 NDC1 NDC2 NDC3 ArchiMob GOS

MFR 72.67±0.27 68.04±0.99 67.63±1.96 80.48±0.09 79.74±1.33 79.97±0.22 79.40±0.17 61.67±1.08

Full sentence models with character or byte segmentation
SMT 84.14±0.21 81.42±0.37 81.43±1.05 87.87±0.11 87.17±0.49 87.25±0.05 84.79±0.44 66.20±1.82

RNN 81.75±2.14 80.29±1.27 78.01±1.98 90.20±0.10 89.56±0.38 89.76±0.10 85.97±0.80 60.84±2.06

TF 87.19±0.57 84.05±1.30 80.34±2.75 91.04±0.12 90.53±0.51 90.05±0.96 86.17±0.56 65.77±1.28

ByT5 87.26±0.12 84.74±2.33 84.38±2.21 92.07±0.14 91.78±0.30 91.76±0.17 87.99±0.76 69.60±1.34

Full sentence models with subword segmentation
SMT 82.27±0.08 78.96±0.28 79.33±0.94 88.93±0.09 87.97±0.16 88.29±0.11 77.53±0.25 64.77±1.56

RNN 84.27±0.18 80.59±2.11 78.66±3.58 88.98±0.31 88.32±0.06 88.51±0.22 83.21±0.47 53.79±3.78

TF 87.79±0.31 84.94±0.44 84.14±1.27 91.35±0.02 90.57±0.06 90.89±0.30 84.25±0.38 63.54±2.23

Sliding window models with character segmentation
RNN 86.37±0.08 82.83±0.51 83.48±0.88 88.54±0.23 88.36±0.72 88.41±0.22 87.76±0.45 67.22±1.07

TF 88.16±0.09 85.37±0.67 85.31±1.31 89.93±0.15 89.54±0.40 89.73±0.13 88.48±0.33 69.72±0.95

Table 10: Error reduction rates (↑) relative to the LAI baseline.

Model SKN1 SKN2 SKN3 NDC1 NDC2 NDC3 ArchiMob GOS

LAI 44.74±0.33 46.90±1.56 45.13±2.77 32.61±0.06 32.79±0.52 32.70±0.88 21.38±0.34 57.29±0.48

MFR 84.94±0.20 83.42±1.14 81.88±2.53 86.84±0.09 86.45±0.17 86.14±0.17 83.59±0.15 83.92±0.38

Full sentence models with character or byte segmentation
SMT 91.83±0.79 90.55±0.25 89.87±1.98 91.75±0.40 91.64±0.45 90.92±0.21 88.43±0.19 86.03±0.15

RNN 90.09±1.58 90.02±1.06 89.18±2.15 93.45±0.15 93.20±0.38 92.62±0.14 89.33±0.27 82.63±0.86

TF 92.89±0.38 92.07±0.58 90.12±3.09 94.04±0.07 93.80±0.42 92.76±0.36 89.46±0.30 85.58±0.10

ByT5 93.31±0.13 92.34±1.45 91.72±1.70 94.64±0.12 94.58±0.33 93.85±0.16 90.55±0.51 86.95±0.87

Full sentence models with subword segmentation
SMT 90.34±0.16 89.39±0.40 88.53±2.17 92.62±0.13 92.20±0.47 91.52±0.19 87.62±0.31 85.35±0.40

RNN 91.51±0.18 90.20±0.99 89.52±2.15 92.60±0.30 92.34±0.28 91.67±0.25 87.22±0.34 80.48±1.00

TF 93.51±0.08 92.55±0.41 91.76±1.89 94.24±0.08 93.96±0.36 93.29±0.14 88.13±0.65 84.49±0.44

Sliding window models with character segmentation
RNN 92.58±0.12 91.39±0.35 90.71±2.18 92.32±0.05 92.25±0.46 91.64±0.23 90.28±0.06 86.03±0.24

TF 93.56±0.04 92.79±0.11 91.79±1.93 93.23±0.17 93.07±0.38 92.53±0.23 90.91±0.16 87.33±0.26

Table 11: Accuracies obtained on the development sets (↑).

(2019) and it represents, roughly speaking, the im-
provement of a model relative to the LAI baseline.
Thus, it makes it easier to compare models across
datasets, which may not be the case with accuracy
due to different LAI values. ERR is defined as
follows:

𝐸𝑅𝑅 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑠𝑦𝑠𝑡𝑒𝑚 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

1.0 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

By and large, these results follow the same pat-
tern as the accuracy and CER scores reported in
Section 6.

Table 11 shows the accuracies on the develop-
ment sets. They are comparable with the test set

accuracies.
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Model Parameter Selected values Considered alternatives

Subwords Methodology Unigram (SentencePiece) BPE
Vocabulary size 200 (SKN) 200, 500, 1000, 2000,

500 (Archimob, GOS) 4000
2000 (NDC)

SMT Alignment tool Eflomal GIZA++
Alignment symmetrization grow-diag-final-and —
Language model n-gram size 10 —
Maximum phrase length 10 —
Distortion disabled —
Tuning method MERT —

RNN Encoder + decoder layers 2 + 2 —
Encoder + decoder types Bi-LSTM + LSTM —
Attention type MLP with reused copy attention —
Embedding dimensions 512 —
Hidden layer dimensions 512 —
Dropout 0.1 —
Optimizer Adagrad —
Batch size / accumulate gradient 1 * 10000 tokens 1 * 5000, 1 * 25000
Learning rate 0.5 0.01, 0.1, 0.2
Max. training sequence length 1000 —
Max. prediction sequence length 1000 —
Early stopping 10 * 500 steps —
Early stopping criterion validation accuracy —
Maximum training time 50000 steps —

TF Encoder + decoder layers 6 + 6 —
Attention heads 8 —
Embedding dimensions 512 —
Hidden layer dimensions 512 —
Position representation clipping 4 no clipping
Dropout 0.1 —
Label smoothing 0.1 —
Optimizer Adam —
Adam 𝛽2 0.998 —
Batch size / accumulate gradient 8 * 5000 tokens 8 * 1000, 8 * 10000
Batch normalization tokens —
Initial learning rate 4 0.1, 1.0, 2.0
Decay Noam, 8000 warmup steps —
Max. training sequence length 1000 —
Max. prediction sequence length 1000 —
Early stopping 10 * 500 steps —
Early stopping criterion validation accuracy —
Maximum training time 50000 steps —

ByT5 Foundation model google/byt5-base google/byt5-small
Max. training sequence length 512 (SKN), 256 (others) —
Max. prediction sequence length 1024 —
Batch size 4 (SKN), 8 (others) sentences —
Early stopping disabled —
Training time 10 epochs —
Model selection criterion validation loss —

Table 12: Hyperparameter settings.
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D Data pre- and post-processing

ùnd und
dère dieser
hani habe ich
a auch
e eine
nèèmaschine nähmaschine
gliferet geliefert

Original verticalized
data, one word per line.

Gloss: ‘and I also delivered
a sewing machine to her.’

_ ù n d _ d è r e _ h a n i _ a _ e _ n è è m a s c h i n e _ g l i f e r e t _
_ u n d _ d i e s e r _ h a b e _ i c h _ a u c h _ e i n e _ n ä h m a s c h i n e _ g e l i e f e r t _

Resulting training instance for the full sentence models (original
sentence in the top row, normalized sentence in the bottom row).

_ ^_ ù n d _ d è r e _
_ ^_ u n d _ d i e s e r _

_ ù n d _ d è r e _ h a n i _
_ u n d _ d i e s e r _ h a b e _ i c h _

_ d è r e _ h a n i _ a _
_ d i e s e r _ h a b e _ i c h _ a u c h _

_ h a n i _ a _ e _
_ h a b e _ i c h _ a u c h _ e i n e _

_ a _ e _ n è è m a s c h i n e _
_ a u c h _ e i n e _ n ä h m a s c h i n e _

_ e _ n è è m a s c h i n e _ g l i f e r e t _
_ e i n e _ n ä h m a s c h i n e _ g e l i e f e r t _

_ n è è m a s c h i n e _ g l i f e r e t _ $ _
_ n ä h m a s c h i n e _ g e l i e f e r t _ $ _

Resulting training instances for the sliding window models.
The number of training instances corresponds to

the number of source words in the verticalized data.

Figure 2: Data preprocessing for full sentence and sliding window models, illustrated on an example of the Swiss
German ArchiMob corpus.

SRC: _ ù n d _ d è r e _ h a n i _ a _ e _ n è è m a s c h i n e _ g l i f e r e t _
| | | | | | | | | . | | | | . . | . . | | . . . | | . . . | | | | | | | | | | | | | | . | | . | | | . | |

OUT: _ u n d _ d e r e n _ h a b e _ i c h _ a u c h _ e i n e _ n ä h m a s c h i n e _ g e l i e f e r t _

ùnd und
dère deren
hani habe ich
a auch
e eine
nèèmaschine nähmaschine
gliferet geliefert

SRC: _ ^ _ ù n d _ d è r e _
| | | | | | | | | | | . |

OUT: _ ^ _ u n d _ d e r e n _

SRC: _ ù n d _ d è r e _ h a n i _
| | | | | | | | | . | | | | . . | . . |

OUT: _ u n d _ d e r e n _ h a b e _ i c h _

. . .
SRC: _ n è è m a s c h i n e _ g l i f e r e t _ $ _

| | | | | | | | | | | | | | . | | . | | | . | | | |
OUT: _ n ä h m a s c h i n e _ g e l i e f e r t _ $ _

ùnd und
dère deren
hani habe ich
a auch
e eine
nèèmaschine nähmaschine
gliferet geliefert

Figure 3: Realignment of normalization output (full sentence model in top half, sliding window model in bottom
half). The SRC row represents the source text, the OUT row represents the system output (with erroneous deren
instead of dieser). The two strings are character-aligned using Levenshtein distance, and the alignment links of the
SRC word boundaries are used to separate the output words, leading to the verticalized representations.

13828


