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Abstract

The common practice for assessing automatic
evaluation metrics is to measure the correla-
tion between their induced system rankings and
those obtained by reliable human evaluation,
where a higher correlation indicates a better
metric. Yet, an intricate setting arises when an
NLP task is evaluated by multiple Quality Cri-
teria (QCs), like for text summarization where
prominent criteria include relevance, consis-
tency, fluency and coherence. In this paper, we
challenge the soundness of this methodology
when multiple QCs are involved, concretely for
the summarization case. First, we show that the
allegedly best metrics for certain QCs actually
do not perform well, failing to detect even dras-
tic summary corruptions with respect to the con-
sidered QC. To explain this, we show that some
of the high correlations obtained in the multi-
QC setup are spurious. Finally, we propose a
procedure that may help detect this effect. Over-
all, our findings highlight the need for further
investigating metric evaluation methodologies
for the multiple-QC case.

1 Introduction

The broad interest in text generation has triggered
significant progress in the development of respec-
tive automatic evaluation metrics, complementing
costly manual evaluation. In order to assess and
rank various automatic metrics, the conventional
setup compares the ranking of various systems ac-
cording to metric scores and human scores, where
a high correlation between them indicates an effec-
tive metric. In some cases, a task requires evalua-
tion by multiple quality criteria (QCs), as is promi-
nently the case for text summarization, where com-
mon criteria include coherence, fluency, faithful-
ness and saliency. In such cases, comparing metric
scores to human scores separately for each crite-
rion should supposedly determine which metrics

∗ Work was done as an intern at Amazon.

Metric Coherence Consistency Fluency Relevance

ROUGE-3 0.2206 0.7059 0.5092 0.3529
CHRF 0.3971 0.5294 0.4649 0.5882
METEOR 0.2353 0.6324 0.6126 0.4265

Table 1: Correlations (Kendall’s τ ) between metric and
human scores for each QC, as taken from Fabbri et al.
(2021). Only the best metric in each QC is presented.

are most suitable for evaluating each respective
criterion.

To enable such a metric evaluation procedure,
some annotation efforts have been conducted (e.g.,
Bhandari et al., 2020; Fabbri et al., 2021), where
system summaries were manually scored accord-
ing to several QCs. This yielded a “gold ranking”
of systems per QC, to which metric rankings can
be compared. The recent SummEval benchmark
(Fabbri et al., 2021) has attracted interest due to its
thorough data collection of 1,700 annotated system
summaries over 17 systems. Overall, all summaries
were rated over 4 different QCs: Relevance, Con-
sistency, Fluency and Coherence (clarified in §2).
Within this benchmark, the majority of the evalu-
ated metrics were primarily intended to assess Rel-
evance, with a smaller subset comprising statistical
analysis-based metrics such as summary length,
which were not specifically designed to measure
any of the four aforementioned QCs. In our work,
we focus on the major group of metrics that were
designed to measure Relevance. Table 1 presents
correlations between the best evaluation metrics in
each QC and the SummEval human scores. The
full table can be found in Table 6 in Appendix A.1.

Surprisingly, a closer examination of metric per-
formances in SummEval reveals that many of the
high correlations are unlikely to imply high fitness
of the best performing metrics and the respective
QC. For example, ROUGE-1 (Lin, 2004), which
measures the lexical match of unigrams between
the system and reference summaries, appears to
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perform well as a fluency metric. Fluency is typi-
cally not determined based on unigrams alone and
should not depend on the reference summary. This
raises questions such as (1) what was the cause for
these high correlations, and (2) when can correla-
tions be trusted.

In this paper we address these two questions
with thorough analyses providing two contributions.
First, we point out that the conventional scheme
for metric ranking is problematic in the case of
multiple quality criteria. To achieve this we discov-
ered that even the best metrics for each QC fail to
penalize system summaries containing corruptions
that should adversely affect that QC. This suggests
that these metrics are ineffective in measuring the
intended QC. In addition, we show that there are
spurious correlations in a multi-QC setup like sum-
mEval, caused by high performance correlations
across criteria. Second, we suggest a method for
detecting metric-to-human correlation scores that
are suspected as spurious, by removing the effect
of a confounding variable, which reveals a perfor-
mance degradation in many cases. This provides
a first step to cope with this obstacle, while call-
ing for further research on metric evaluation in the
multi-QC case.

2 Background and Related Work

A high-quality summary should satisfy several re-
quirements, including preserving the salient infor-
mation of the source, being faithful to the source,
and being coherent. The DUC benchmarks (NIST,
2002) made an early attempt at capturing these re-
quirements with a human evaluation procedure that
assessed several readability qualities as well as con-
tent responsiveness (Dang, 2005). Later, additional
benchmarks focused on content quality (e.g., Bhan-
dari et al. (2020), TAC (NIST, 2008)) or linguistic
quality (Chaganty et al., 2018) separately. Kryscin-
ski et al. (2019) laid out four Quality Criteria (QCs)
on which to assess summary quality, which were
reinforced in the SummEval summary evaluation
benchmark (Fabbri et al., 2021), annotated over the
CNN/DailyMail (Nallapati et al., 2016) summariza-
tion dataset.

Described briefly, the four QCs are: Relevance,
measuring the importance of summary content with
respect to the source; Consistency, measuring the
faithfulness of the summary content to the source;
Fluency, measuring the linguistic quality of indi-
vidual sentences in the summary; and Coherence,

measuring the quality of the collective structure of
the sentences in the summary. A summarization
system is rated for each QC by averaging human
scores (1 to 5 scale) over all input instances. Thus,
multiple systems can be scored and ranked sepa-
rately for each QC in accordance with the respec-
tive human scores.

To assess the effectiveness of an automatic eval-
uation metric, it is first applied on the outputs of
several summarization systems, yielding a respec-
tive score per system (averaged over all instances).
The metric performance for a certain QC is then
measured as the correlation between these metric
scores and the corresponding human scores for that
QC. The described meta-evaluation procedure en-
ables to rank multiple evaluation metrics per each
QC separately, as illustrated in Table 1. In our
work, we question whether highly ranked metrics
on a particular QC are indeed suitable for evalu-
ating that QC, claiming that such correlation to
human scores are not necessarily indicative in the
multi-QC setting.

Some studies examined other aspects of this
meta-evaluation scheme. Peyrard (2019) and Bhan-
dari et al. (2020) showed that meta-evaluation us-
ing old systems or datasets, like those of DUC and
TAC, yield erroneous trends on modern summariza-
tion benchmarks. Deutsch et al. (2021) investigated
the preciseness of correlations between metrics and
human annotations in meta-evaluation benchmarks,
and proposed approaches to improve the level of
confidence. Finally, Deutsch et al. (2022) discussed
ways of improving the reliability of system-level
correlations in meta-evaluation.

3 Metric Robustness to Summary
Corruptions

In this section, we aim to investigate whether a met-
ric that was found to strongly correlate with human
scores for a certain QC according to SummEval
reliably measures this specific QC. Specifically,
we suggest that the performance of metrics – that
were designed to measure Relevance – on other
QCs (e.g., using ROUGE to measure Fluency) may
be questionable. To examine this, we artificially
corrupt SummEval (Fabbri et al., 2021) system
summaries in various forms, each specifically de-
signed to degrade a single QC. The corruption is
expected to have a large impact on the correspond-
ing QC measurements, while having minimal effect
on other QCs. Accordingly, we may conclude that
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a metric that fails to penalize corrupted summaries
does not actually measure the specific QC for which
corruption was introduced.

In what follows, we experiment with the fol-
lowing corruptions of the system summaries with
respect to each QC (except for Relevance which
is the QC most metrics were designed to capture).
Fluency: All verbs are replaced with their lemma
form, resulting in ungrammatical sentences. Co-
herence: Sentences are randomly shuffled to dis-
rupt the structure of the summary. This corruption
is inspired by the Shuffle Test (Barzilay and La-
pata, 2008) used to evaluate whether models can
detect incoherent text. Consistency: All PERSON
named entities (using SpaCy NER, Honnibal et al.,
2020) are replaced with different PERSONs from
the source document. This is in fact a common
factual mistake of models (Pagnoni et al., 2021).
An example for each corruption type can be found
in Table 9 in the Appendix.

To test the meta-evaluation of metrics presented
in SummEval, we examine the sensitivity of the
best metric for each QC, according to SummEval
results (from Table 1), to the QC-specific corrup-
tion. More specifically, for each QC, we ranked
all systems with the best metric, corrupted each
system in turn, and examined whether that sys-
tem’s ranking was subsequently downgraded be-
low other systems that were initially scored signifi-
cantly lower. We found that none of the corrupted
systems were downgraded in such relative rank-
ings with the Coherence and Fluency corruptions,
while only two (out of 17) were downgraded with
the Consistency corruption. Assuming our drastic
corruptions should have caused a ranking down-
grade, these results indicate that the top performing
metrics for Coherence, Fluency and Consistency
were mostly unable to penalize the corrupted sys-
tem summaries, suggesting they are not sufficiently
reliable at measuring these QCs.

To validate the aforementioned assumption, that
our corruptions should actually cause a ranking
downgrade, we manually annotated a sample of
9 systems that contain corrupted summaries and
found that all system rankings were downgraded
after corruption. (More details can be found in
Appendix B.) Since the best automatic metric did
not reflect this change in ranking, we conjecture
that SummEval meta-evaluation scores, even when
they appear to be high, are not reliable. In the
next section, we investigate the possibility that this

QC
Anchor

Coherence Consistency Fluency Relevance

Coherence 1.00 .28 / .24 / .11 .48 / .25 / .06 .69 / .53 / .27
Consistency .28 / .24 / .07 1.00 .60 / .36 / .11 .41 / .25 / .07

Fluency .48 / .25 / .08 .60 / .36 / .18 1.00 .61 / .21 / .09
Relevance .69 / .53 / .21 .41 / .25 / .06 .61 / .21 / .04 1.00

Table 2: Kendall’s τ correlations between human QC rat-
ings on the system-level/instance-level/bucketing. The
columns serve as anchors solely for bucketing. Apply-
ing bucketing diminishes correlation between QCs.

is caused by spurious correlations, and propose a
possible means to identify them.

4 Analysis of Spurious Correlations

A possible explanation for the contradicting find-
ings that “high performing” metrics fail to penal-
ize corrupted summaries, is the high correlations
observed between human scores of different QCs
(termed correlationhuman), as seen in system-level
scores in Table 2 (left-most figure in each cell). As
a result, high correlations between metrics and hu-
man scores on all QCs (termed correlationmetric)
are usually due to the high correlationmetric with
one confounding QC combined with the strong
correlationhuman between this confounding QC and
the remaining QCs. As all of the aforemen-
tioned best metrics were initially designed to mea-
sure Relevance, we conjecture that the Relevance
QC acts as a main confounding variable, making
other correlationsmetric spurious. Although spuri-
ous correlationsmetric can be found in different se-
tups, they are more likely in multi-QC setups, like
summarization. In such a setup, models are typ-
ically optimized to excel in all QCs, resulting in
enhanced systems across all QCs that consequently
yield high correlationshuman among these QCs.

Next, we suggest a systematic method to detect a
confounding QC that undermines correlationsmetric
with other QCs. To that end, we propose to remove
the effect of each QC, in turn, on the remaining
QCs by annulling the correlationshuman between
them. To do this, we calculated correlationsmetric
over small subsets (i.e., buckets) of instances in
which the annulled QC has low variance. We show
that for most metrics when the correlationhuman to
Relevance is annulled, the correlationsmetric to Flu-
ency, Coherence and Consistency drops drastically,
while the correlationsmetric to Relevance is immune
to similar manipulations of the other three QCs.
This suggests that Relevance is indeed a confound-
ing factor for the other QCs.

To compute correlationsmetric within buck-
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ets we first note that the original SummEval
correlationsmetric were calculated at the system
level. That is, the 100 instance scores per system
are averaged to produce 17 data points for correla-
tion. However, dividing these 17 data points into
buckets results in statistically unreliable correlation
scores inside each bucket due to the limited number
of data points in it. To address this, we utilized the
instance-level correlation approach (Bojar et al.,
2017; Freitag et al., 2021), which incorporates all
1,700 instance scores as individual data points with-
out averaging per-system. Dividing the entire 1,700
instances into buckets ensures a sufficient number
of data points within each bucket. Since confound-
ing factors are inherent to the data, identifying a
confounding variable at the instance-level implies
its presence at the system level as well.

Inspired by stratification analysis (Mantel and
Haenszel, 1959), in order to remove the effect of
a particular QC (termed anchor QC) to assess its
potential to be a confounding factor, we divide the
system summary instances, which are associated
with human score tuples of <Relevance, Consis-
tency, Fluency, Coherence>, into buckets. Each
bucket contains tuples with roughly equal scores of
the anchor QC. Since scores are on a 1-to-5 scale,
we use 5 buckets. As an example, if we would
like to anchor Relevance, the first bucket will con-
tain tuples with Relevance ≈ 1. Accordingly, the
correlationhuman inside each bucket between the
anchor QC human scores and each other QC de-
grades substantially. As Table 2 shows, averaging
these low correlationshuman over all 5 buckets and
weighting by bucket size, results in “bucketing"
value in each cell that reduces the initial instance-
level correlationshuman between QCs by 2-5 times.

Next, we used this approach to calculate the
correlationsmetric inside each bucket, thus neutral-
izing the effect of the anchor QC. Again, the five
bucket correlationsmetric are averaged and weighted
by bucket size. Finally, to measure whether
the obtained bucketing value has changed signif-
icantly with respect to the original instance-level
correlationmetric, we calculate the absolute relative
difference between the two scores. A high rela-
tive difference means that the correlationmetric has
changed significantly after removing the anchor
QC. This undermines the reliability of the original
correlationmetric scores, and suggests the anchor QC
as a confounding factor. While our work does not
provide a specific threshold for detecting spurious

correlationmetric based on relative difference, this
process does alert for potential unreliability when
the relative difference is relatively high.

The relative difference scores by each one of
the anchor QCs and each metric are shown in Ap-
pendix A.3. To summarize these detailed findings,
we focused on the majority of metrics that were de-
signed to measure Relevance. For each anchor and
evaluated QC, we computed the median relative
difference of all metrics. As can be seen in Table
3, we observe that the largest relative differences
occur when Relevance serves as the anchor QC, as
presented in the blue column. This means that the
original correlationsmetric to Coherence, Fluency
and Consistency were strongly affected by Rele-
vance, as a strong confounding variable. However,
when Relevance serves as the evaluated QC, as
demonstrated in the yellow row, the relative dif-
ferences are quite low, regardless of the anchor
QC. This means that other QCs are probably not
confounding variables for Relevance.

We also used the bucketing analysis to evalu-
ate two other metric groups that roughly estimate
other QCs, and observed the same phenomenon.
The first group contains metrics that measure the
percentage of repeated n-grams in the system sum-
mary. As a summary with repeated information
is less coherent, these metrics are more suitable
as rough estimates for Coherence. Accordingly,
Table 4 shows high relative differences when Co-
herence functions as the anchor (marked as a blue
column), meaning that when neutralizing Coher-
ence, the correlationsmetric to other QCs change
dramatically. On the other hand, when other QCs
function as anchors, the correlationmetric with Co-
herence is almost unchanged. This is expressed by
the low relative difference (marked as the yellow
row). Overall, this analysis suggests that Coher-
ence is the confounding factor of this metric group
and the original correlationsmetric are spurious.

The second group contains metrics measuring
the percentage of novel n-grams in the summary
that are not found in the input document. These
metrics capture abstractiveness, making them po-
tentially useful as rough (negative) estimates for
Consistency and Fluency. This is due to the capa-
bility of these metrics to identify extractive sum-
maries, which inherently possess consistency and
fluency. Accordingly, we show the same phe-
nomenon in Table 5 where bucketing by Consis-
tency or Fluency as anchors yields high relative
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QC
Anchor

Coherence Consistency Fluency Relevance

Coherence N/A .20 (.17-.23) .20 (.14-.24) .82 (.74-.94)
Consistency .25 (.20-.34) N/A .30 (.18-.49) .66 (.53-.70)
Fluency .50 (.40-.59) .62 (.43-.72) N/A .72 (.44-.85)
Relevance .18 (.13-.24) .15 (.11-.20) .08 (.03-.16) N/A

Table 3: Median (quantile 25-quantile 75) of the abso-
lute relative difference between original correlation and
bucketing correlation, over metrics that were designed
to measure Relevance.

QC
Anchor

Coherence Consistency Fluency Relevance

Coherence N/A .14 (.09-.14) .18 (.16-.25) .14 (.07-.14)
Consistency .79 (.74-.89) N/A .58 (.51-.68) .38 (.35-.44)
Fluency .73 (.71-.78) .46 (.45-.49) N/A .15 (.14-.23)
Relevance .76 (.72-1.06) .31 (.23-.58) .37 (.33-.48) N/A

Table 4: Median (quantile 25-quantile 75) of the abso-
lute relative difference between original correlation and
bucketing correlation, over metrics that roughly mea-
sure Coherence.

differences (blue columns), while bucketing by
other QCs leaves low relative differences to Con-
sistency and Fluency (yellow rows). As in this case
we found two confounding factors, we conjecture
that there is another unmeasured human QC that
assesses abstraciveness directly that eventually in-
fluences Consistency and Fluency. In such a case,
this abstraciveness QC therefore functions as a con-
founding factor.

Overall, this analysis points out the problem-
atic conventional scheme of metric evaluation in a
multi-QC setting. We found that except for the QC
that the metrics were designed to measure, most of
the correlationsmetric to other QCs are spurious. Fur-
ther exploration of adjusting this analysis for other
scenarios, such as cases involving two confounding
factors, is left as future work.

It is worth noting that spurious correlations can
alternatively be detected with the partial correla-
tion approach (Whittaker, 2009). The confounding
variable is neutralized by calculating the correlation
between the residuals resulting from the linear re-
gression of each of the variables to the confounding
variable. The partial correlation scores in our set-
ting indeed display the same trend as our bucketing
method, detecting Relevance as the confounding
variable in most metrics. In contrast to the partial
correlation approach, bucketing has the advantages
of being more interpretable and not assuming linear
dependency between variables. See Appendix C
for an analysis and comparative discussion between
the methods.

QC
Anchor

Coherence Consistency Fluency Relevance

Coherence N/A .78 (.75-1.05) .82 (.78-0.87) .32 (.26-.44)
Consistency .05 (.03-.09) N/A .22 (.22-.25) .11 (.07-.12)
Fluency .04 (.02-.13) .39 (.38-.45) N/A .07 (.06-.09)
Relevance .52 (.40-.76) .79 (.55-2.52) .96 (.85-1.88) N/A

Table 5: Median (quantile 25-quantile 75) of the abso-
lute relative difference between original correlation and
bucketing correlation, over metrics that roughly mea-
sure Consistency and Fluency.

5 Conclusion

We challenged the conventional manner of evaluat-
ing and ranking summarization metrics according
to correlation with human scores in the multi-QC
setting. We found that human ratings over recent
state-of-the-art systems tend to correlate between
different QCs, which leads to unreliable metric per-
formance scores. To demonstrate this, we showed
that metrics that allegedly measure a QC, negligibly
decrease their score for corrupted summaries with
respect to this QC. To cope with this obstacle, we
proposed a bucketing method that removes the ef-
fect of the confounding variable and detects unreli-
able correlations.While this work mostly highlights
the problem, we strongly encourage the develop-
ment of additional approaches to tackle it.
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Limitations

This study highlights a phenomenon that occurs
when assessing summarization metrics across vary-
ing quality criteria. The findings are empirically
shown only on SummEval, which is a relatively
large-scale and high-quality meta-evaluation bench-
mark. Furthermore, there do not exist other ma-
jor benchmarks that would enable a similar anal-
ysis. Nevertheless, the findings would be further
strengthened if they could be examined on addi-
tional benchmarks.

Additionally, although our analysis offers strong
empirical evidence that the Relevance QC is the
confounding variable in most metrics in the Sum-
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mEval setting, there could be other external factors
that cause the strong correlations among the QCs.

We also rely, to a certain degree, on logical in-
tuition and understanding of the proposed metrics
in order to convince the reader of our findings. For
example, it is very reasonable to assume that cer-
tain summarization metrics do not actually have
the ability to measure a specific QC. In the case of
ROUGE-1, there should not be a true relationship
between the number of overlapping unigrams with
another text and the Fluency of the evaluated text.
Any corresponding chance correlation is presum-
ably not due to a direct intent of the metric.
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A Experiment Technicalities

A.1 Running Systems and Metrics
All of our experiments were based on the re-
sources provided by the SummEval benchmark
(in the GitHub repository at https://github.com/

Yale-LILY/SummEval). System summaries and hu-
man scores were present in the GitHub repository.
We ran the metrics on summaries using the code
provided in the repository, with a few minor adapta-
tions. The original correlation table of SummEval
is presented in Table 6.

A.2 Corruptions
An example of all corruption types is presented in
Table 9.

A.3 Bucketing
To map the 1-5 scores into 5 buckets we rounded
the scores to the nearest integer. All metrics’ buck-
eting correlations for each anchor are presented in
Tables 10, 11, 12, 13.

To compute the absolute relative difference be-
tween the original correlationsmetric and the buck-
eting correlationsmetric, we first computed the ab-
solute values of each correlation score. This al-
lowed us to assess the metric’s ability to capture
the human scores, whether in a positive or negative
relationship. Next, we calculated the absolute dif-
ference between the two correlation values. A high
absolute difference indicates a significant modifi-
cation in the original correlation after bucketing,
either in an upward or downward direction, high-
lighting the unreliability and spurious nature of the
original correlation. While the majority of cases
showed a positive difference, indicating that the
original correlation was higher than the bucketing
correlation, there were rare instances where the dif-
ference was negative. A negative difference implies
that the original correlation was initially low but
experienced a significant increase after bucketing.

B Manual Annotation for Corrupted
Systems

In Section 3, we aim to validate the assumption
that substantially corrupted systems should be pe-
nalized in human ranking. To support this claim,
we conducted a manual annotation process on a ran-
domly selected subset of 20 documents from a total
of 100. Specifically, for each QC, we chose three
corrupted systems (with 20 documents) that were
not identified for degradation by the best automatic

Metric Coherence Consistency Fluency Relevance

ROUGE-1 0.2500 0.5294 0.5240 0.4118
ROUGE-2 0.1618 0.5882 0.4797 0.2941
ROUGE-3 0.2206 0.7059 0.5092 0.3529
ROUGE-4 0.3088 0.5882 0.5535 0.4118
ROUGE-L 0.0735 0.1471 0.2583 0.2353
ROUGE-su* 0.1912 0.2941 0.4354 0.3235
ROUGE-w 0.0000 0.3971 0.3764 0.1618
ROUGE-we-1 0.2647 0.4559 0.5092 0.4265
ROUGE-we-2 -0.0147 0.5000 0.3026 0.1176
ROUGE-we-3 0.0294 0.3676 0.3026 0.1912
S3-pyr -0.0294 0.5147 0.3173 0.1324
S3-resp -0.0147 0.5000 0.3321 0.1471
BertScore-p 0.0588 -0.1912 0.0074 0.1618
BertScore-r 0.1471 0.6618 0.4945 0.3088
BertScore-f 0.2059 0.0441 0.2435 0.4265
MoverScore 0.1912 -0.0294 0.2583 0.2941
SMS 0.1618 0.5588 0.3616 0.2353
BLEU 0.1176 0.0735 0.3321 0.2206
CHRF 0.3971 0.5294 0.4649 0.5882
CIDEr 0.1176 -0.1912 -0.0221 0.1912
METEOR 0.2353 0.6324 0.6126 0.4265
SummaQAˆ 0.1176 0.6029 0.4059 0.2206
BLANCˆ 0.0735 0.5588 0.3616 0.2647
SuPERTˆ 0.1029 0.5882 0.4207 0.2353
Novel unigramˆ 0.1471 -0.2206 -0.1402 0.1029
Novel bi-gramˆ 0.0294 -0.5441 -0.3469 -0.1029
Novel tri-gramˆ 0.0294 -0.5735 -0.3469 -0.1324
Repeated unigramˆ -0.3824 0.1029 -0.0664 -0.3676
Repeated bi-gramˆ -0.3824 -0.0147 -0.2435 -0.4559
Repeated tri-gramˆ -0.2206 0.1471 -0.0221 -0.2647

Table 6: SummEval Kendall’s τ correlations between
metrics and human annotations for each QC (taken from
(Fabbri et al., 2021)). ^ denotes reference-free metrics.
The most-correlated metric in each column is in bold.

metric as described in Section 3. These systems
were then annotated against sampled lower-ranked
systems, ensuring a ranking difference of at least 6
places (above one-third of the number of systems)
based on the best automatic metric. Additionally,
we confirmed that the corrupted systems, when not
corrupted, achieved higher rankings compared to
the lower-ranked systems according to summEval
manual annotation. Finally, for each QC, we anno-
tated 3 pairs of systems, consisting of one corrupted
system (corrupted with the QC-specific corruption)
and one lower-ranked uncorrupted system.

During the annotation process, we compared
each system pair in terms of the relevant QC at
the instance level, and aggregated the results to
identify the system with more preferred instances.
Specifically, for a specific pair of systems, the anno-
tator gets two system summaries (one per system)
of the same document, and should select the best
summary in terms of the corrupted QC. After anno-
tating all pairs, the system with the most preferred
summaries is considered better than the other sys-
tem.

For the annotation of Coherence, one of the au-
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Sys Pair
QC Coherence Consistency Fluency

I 65 60 100
II 80 50 100
III 75 75 100
Mean 73 62 100

Table 7: Percent of the uncorrupted system summaries
that were manually preferred in each pair of systems.
Notice that the system pairs are different for each QC,
therefore the columns are not comparable.

QC
Anchor

Coherence Consistency Fluency Relevance

Coherence N/A .21 (.16-.24) .11 (.09-.13) .87 (.63-.90)
Consistency .22 (.19-.28) N/A .14 (.10-.22) .42 (.36-.46)
Fluency .43 (.36-.50) .63 (.40-.80) N/A .63 (.35-.86)
Relevance .19 (.15-.30) .11 (.10-.14) .03 (.03-.09) N/A

Table 8: Median (quantile 25-quantile 75) of the abso-
lute relative difference between original correlation and
partial correlation, over metrics that were designed to
measure Relevance.

thors annotated all 3 system pairs. However, since
the Fluency and Consistency corruptions (lemma-
tizing all verbs and replacing all PERSON entities
with others) can be easily noticeable by the authors
of the paper, we used Amazon Mturk1 workers
for their annotation. We used workers from a list
of 90 pre-selected workers from English speak-
ing countries. These workers accomplished high
quality work in other NLP-related tasks we have
conducted in the past. Each pair of summaries was
annotated by three workers, and the majority vote
was considered for the final score.

Table 7 presents the rate of uncorrupted low-
ranked system summaries that were preferred over
the corrupted summaries in each system pair. As
can be measured clearly, in all pairs the uncorrupted
summaries were preferred in 50 percent or more al-
though they were ranked lower prior to corruption.
This indicates that the corrupted systems indeed
should be downgraded in their ranking. The conclu-
sion is therefore that our corruptions are effective
in degrading the corrupted system’s ranking.

C Partial Correlation

When examining the statistics literature for meth-
ods for detecting spurious correlations, we focused
on the two prominent approaches: partial correla-
tion (Whittaker, 2009) and data stratification (Man-
tel and Haenszel, 1959). Our bucketing method,
presented in Section 4, is a form of stratification.

1https://www.mturk.com

Methodologically, we identified two advantages
of the bucketing approach in comparison to par-
tial correlation. First, bucketing arranges the data
into sets (buckets), where the confounding variable
is neutralized in each set. This allows for further
interpretability and analysis of the data, e.g., exam-
ining correlations and other statistics within each
set. Meanwhile the partial correlation method only
provides a final score without any further interpre-
tation of the score or of the data. In other words,
while provides debiased correlation, the bucketing
method provides debiased data. Second, partial cor-
relation is based on linear regression between the
assessed variables and the confounding variable,
and hence assumes a potentially linear correlation
between these variables. Bucketing, on the other
hand, generally allows the neutralization of any
type of spurious correlation, making this method
more robust for future extensions (even if in the
current work we measured only linear correlations
within each bucket).

Empirically, the partial correlation scores show
the same trend as the bucketing scores. Table 8
displays the median (with the 25th and 75th per-
centiles) differences between the original and par-
tial correlationsmetric for a group of metrics de-
signed to measure Relevance, using the same for-
mat as described in Section 4 for the bucketing
method. Similar to the bucketing method, we ob-
serve significant differences in cases where Rele-
vance serves as the anchor QC (the column marked
in blue), while minimal differences are observed
for the Relevance as an evaluated QC (yellow row).
This indicates the Relevance QC’s role as a poten-
tial confounding factor.

D Licenses

All system summaries, reference summaries and
human-annotated ratings were taken from the
SummEval repository under the MIT license.
Some of the reference summaries are originally
from the CNN/DailyMail dataset. The docu-
ments corresponding to the summaries, also from
CNN/DailyMail, were retrieved via the Hugging-
face distribution. All CNN/DailyMail data is re-
leased under the Apache-2.0 License.

13836

https://www.mturk.com


Original Coherence
Shuffle Sentences

Consistency
Replace PER

Fluency
Lemmatize Verbs

Paul Merson has
restarted his row with
andros townsend . The
Tottenham midfielder
was brought on with
only seven minutes
remaining in his team
’s 0-0 draw with
Burnley. Andros
Townsend scores
England ’s equaliser in
their 1-1 friendly draw
with Italy in Turin .

The Tottenham
midfielder was brought
on with only seven
minutes remaining in
his team ’s 0-0 draw
with Burnley . Andros
Townsend scores
England ’s equaliser in
their 1-1 friendly draw
with Italy in Turin .
Paul Merson has
restarted his row with
Andros Townsend .

Roy Hodgson has
restarted his row with
Andros Townsend .
The Merson midfielder
was brought on with
only seven minutes
remaining in his team
’s 0-0 draw with
Burnley . Andros
Townsend scores
England ’s equaliser in
their 1-1 friendly draw
with Italy in Turin .

Paul Merson have
restart his row with
Andros Townsend .
The Tottenham
midfielder be bring on
with only seven
minutes remain in his
team ’s 0-0 draw with
Burnley . Andros
Townsend scores
England ’s equaliser in
their 1-1 friendly draw
with Italy in Turin .

Table 9: An example of a system summary with all corruption types. A replaced PERSON named entity is marked
in red. A lemmatized verb is marked in blue. Capital letters were inserted manually to facilitate reading.

Metric Coherence Consistency Fluency Relevance

ROUGE-1 0.9873 0.6668 0.8966 N/A
ROUGE-2 0.9467 0.5746 0.9121 N/A
ROUGE-3 0.9495 0.5157 0.9128 N/A
ROUGE-4 0.9333 0.4924 0.7202 N/A
ROUGE-L 0.7566 0.7873 0.8087 N/A
ROUGE-su* 0.9766 0.7332 0.8916 N/A
ROUGE-w 0.7739 0.6902 0.8969 N/A
ROUGE-we-1 0.9700 0.6850 0.9958 N/A
ROUGE-we-2 0.7927 0.7886 0.5013 N/A
ROUGE-we-3 0.7065 0.8060 2.1853 N/A
S3-pyr 0.7438 0.6577 0.6174 N/A
S3-resp 0.7828 0.6336 0.7507 N/A
BertScore-p 0.8962 0.6265 0.2925 N/A
BertScore-r 0.9659 0.5216 0.4641 N/A
BertScore-f 0.9786 0.5970 0.4343 N/A
MoverScore 0.8043 0.5236 0.4258 N/A
SMS 0.6851 0.2668 0.2962 N/A
BLEU 0.9598 0.3942 0.3544 N/A
CHRF 0.8419 0.7789 0.7533 N/A
CIDEr 0.0546 15.7989 0.1060 N/A
METEOR 0.8080 0.5610 0.5993 N/A
SummaQAˆ 0.9738 0.4100 0.3489 N/A
BLANCˆ 0.7650 0.3520 0.5176 N/A
SuPERTˆ 0.9157 0.2762 0.3375 N/A
Novel unigramˆ 0.1920 0.0255 0.0368 N/A
Novel bi-gramˆ 0.5511 0.1119 0.0742 N/A
Novel tri-gramˆ 0.3208 0.1185 0.0991 N/A
Repeated unigramˆ 0.0114 0.3146 0.1355 N/A
Repeated bi-gramˆ 0.1406 0.3776 0.3073 N/A
Repeated tri-gramˆ 0.1370 0.4934 0.1540 N/A

Table 10: Absolute relative difference between original
performance and bucketing performance anchored by
Relevance.

Metric Coherence Consistency Fluency Relevance

ROUGE-1 N/A 0.2875 0.5543 0.1741
ROUGE-2 N/A 0.1757 0.4923 0.1103
ROUGE-3 N/A 0.2024 0.6400 0.2105
ROUGE-4 N/A 0.2132 0.5158 0.2139
ROUGE-L N/A 0.2682 0.3730 0.0694
ROUGE-su* N/A 0.3403 0.5799 0.1774
ROUGE-w N/A 0.1865 0.3761 0.0814
ROUGE-we-1 N/A 0.3266 0.6588 0.1890
ROUGE-we-2 N/A 0.3184 0.8864 0.1472
ROUGE-we-3 N/A 0.3165 0.0882 0.1278
S3-pyr N/A 0.1955 0.6394 0.1139
S3-resp N/A 0.1842 0.5944 0.1109
BertScore-p N/A 0.4076 0.2373 0.1252
BertScore-r N/A 0.1969 0.3071 0.2121
BertScore-f N/A 0.3136 0.3128 0.1613
MoverScore N/A 0.3076 0.3440 0.1792
SMS N/A 0.2328 0.2847 0.3521
BLEU N/A 0.1242 0.0914 0.0771
CHRF N/A 0.4792 0.7247 0.3331
CIDEr N/A 17.7140 0.1139 0.1322
METEOR N/A 0.1712 0.3405 0.1287
SummaQAˆ N/A 0.1774 0.1952 0.1933
BLANCˆ N/A 0.1668 0.3377 0.2045
SuPERTˆ N/A 0.1559 0.2265 0.2771
Novel unigramˆ N/A 0.1366 0.2128 0.9964
Novel bi-gramˆ N/A 0.0239 0.0029 0.2730
Novel tri-gramˆ N/A 0.0456 0.0386 0.5205
Repeated unigramˆ N/A 0.9790 0.6875 1.3634
Repeated bi-gramˆ N/A 0.6764 0.7280 0.6880
Repeated tri-gramˆ N/A 0.7937 0.8259 0.7572

Table 11: Absolute relative difference between original
performance and bucketing performance anchored by
Coherence.
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Metric Coherence Consistency Fluency Relevance

ROUGE-1 0.1788 N/A 0.6285 0.1240
ROUGE-2 0.2036 N/A 0.7033 0.1575
ROUGE-3 0.2259 N/A 0.8096 0.1703
ROUGE-4 0.2597 N/A 0.6754 0.1877
ROUGE-L 0.1708 N/A 0.4912 0.0983
ROUGE-su* 0.2094 N/A 0.6218 0.1400
ROUGE-w 0.2149 N/A 0.5807 0.1112
ROUGE-we-1 0.1732 N/A 0.7033 0.1244
ROUGE-we-2 0.1617 N/A 0.8458 0.1100
ROUGE-we-3 0.1901 N/A 0.3386 0.0913
S3-pyr 0.2117 N/A 0.7951 0.1051
S3-resp 0.2179 N/A 0.7999 0.1154
BertScore-p 0.2282 N/A 0.3091 0.2205
BertScore-r 0.2380 N/A 0.3994 0.1521
BertScore-f 0.2373 N/A 0.4073 0.1574
MoverScore 0.2043 N/A 0.3979 0.1413
SMS 0.2951 N/A 0.3782 0.2810
BLEU 0.3225 N/A 0.3063 0.2167
CHRF 0.1540 N/A 0.4818 0.1147
CIDEr 0.7280 N/A 0.4464 3.5150
METEOR 0.2585 N/A 0.4722 0.1406
SummaQAˆ 0.5407 N/A 0.4021 0.3948
BLANCˆ 0.5268 N/A 0.6045 0.2827
SuPERTˆ 0.5649 N/A 0.5151 0.4122
Novel unigramˆ 0.7754 N/A 0.5059 4.2404
Novel bi-gramˆ 1.3341 N/A 0.3823 0.3147
Novel tri-gramˆ 0.7344 N/A 0.3851 0.7910
Repeated unigramˆ 0.1479 N/A 0.4639 0.8627
Repeated bi-gramˆ 0.1379 N/A 0.4344 0.3066
Repeated tri-gramˆ 0.0485 N/A 0.5129 0.1521

Table 12: Absolute relative difference between original
performance and bucketing performance anchored by
Consistency.

Metric Coherence Consistency Fluency Relevance

ROUGE-1 0.1913 0.3133 N/A 0.0859
ROUGE-2 0.2077 0.2974 N/A 0.0749
ROUGE-3 0.1677 0.2251 N/A 0.0594
ROUGE-4 0.2238 0.2356 N/A 0.0834
ROUGE-L 0.2303 0.3583 N/A 0.0729
ROUGE-su* 0.1984 0.3625 N/A 0.0919
ROUGE-w 0.2008 0.2693 N/A 0.0534
ROUGE-we-1 0.1748 0.3421 N/A 0.0820
ROUGE-we-2 0.1192 0.2809 N/A 0.0349
ROUGE-we-3 0.0896 0.2595 N/A 0.0044
S3-pyr 0.1251 0.1525 N/A 0.0205
S3-resp 0.1483 0.1734 N/A 0.0286
BertScore-p 0.4468 0.8169 N/A 0.2524
BertScore-r 0.2830 0.3041 N/A 0.1017
BertScore-f 0.3259 0.5184 N/A 0.1306
MoverScore 0.2813 0.4900 N/A 0.1438
SMS 0.3156 0.2286 N/A 0.1994
BLEU 0.5043 0.3209 N/A 0.1893
CHRF 0.1778 0.4029 N/A 0.0921
CIDEr 0.2162 212.7716 N/A 7.1651
METEOR 0.2902 0.2951 N/A 0.0764
SummaQAˆ 0.5623 0.3900 N/A 0.3046
BLANCˆ 0.5358 0.3069 N/A 0.2018
SuPERTˆ 0.5096 0.2679 N/A 0.2778
Novel unigramˆ 0.7387 0.2786 N/A 2.8030
Novel bi-gramˆ 0.8233 0.2192 N/A 0.9587
Novel tri-gramˆ 0.9199 0.2140 N/A 0.7485
Repeated unigramˆ 0.3130 0.7697 N/A 0.5830
Repeated bi-gramˆ 0.1783 0.5826 N/A 0.3677
Repeated tri-gramˆ 0.1338 0.4467 N/A 0.2944

Table 13: Absolute relative difference between original
performance and bucketing performance anchored by
Fluency.
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