
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 13999–14015
December 6-10, 2023 ©2023 Association for Computational Linguistics

BYOC: Personalized Few-Shot Classification
with Co-Authored Class Descriptions

Arth Bohra∗

University of California Berkeley
Berkeley, CA, USA

arthbohra@berkeley.edu

Govert Verkes
Artem Harutyunyan
Pascal Weinberger

Giovanni Campagna
Bardeen, Inc.

San Francisco, CA, USA
{govert,artem,pascal,giovanni}@bardeen.ai

Abstract

Text classification is a well-studied and versa-
tile building block for many NLP applications.
Yet, existing approaches require either large an-
notated corpora to train a model with or, when
using large language models as a base, require
carefully crafting the prompt as well as using a
long context that can fit many examples. As a
result, it is not possible for end-users to build
classifiers for themselves.

To address this issue, we propose a novel ap-
proach to few-shot text classification using an
LLM. Rather than few-shot examples, the LLM
is prompted with descriptions of the salient fea-
tures of each class. These descriptions are coau-
thored by the user and the LLM interactively:
while the user annotates each few-shot example,
the LLM asks relevant questions that the user
answers. Examples, questions, and answers are
summarized to form the classification prompt.

Our experiments show that our approach yields
high accuracy classifiers, within 79% of the per-
formance of models trained with significantly
larger datasets while using only 1% of their
training sets. Additionally, in a study with 30
participants, we show that end-users are able
to build classifiers to suit their specific needs.
The personalized classifiers show an average
accuracy of 90%, which is 15% higher than the
state-of-the-art approach.

1 Introduction

Text classification – the task of mapping a sentence
or document to one class of a predefined set – is a
well-studied, fundamental building block in natural
language processing (Maron, 1961; Li et al., 2022),
with applications such as textual entailment (Da-
gan et al., 2005; Bowman et al., 2016), sentiment
analysis (Wang and Manning, 2012; Socher et al.,
2013), topic classification (Hingmire et al., 2013),
intent and dialog act classification (Godfrey et al.,

∗ Work done while at Bardeen

Purpose: I want to
separate spam from
my important
emails.

important

unimportant

work emails, friends..

promotions, other..

Dear Alice,
Here is an update on your health. Your medical tests indicate you need to
purchase the following treatment: turmeric. Also, feel free to schedule an
appointment next week!
- Dr. Nate

Alice hasn’t mentioned
anything about medical
emails..

Hey Alice, do health emails
classify under the ‘other class’.
Are they important?

Actually, emails about my health don’t belong
in the other category.. they are important

So medical appointments
are important. What about
other appointments?

Is it just medical
appointments that are
important?

Let me clarify for you! All my
appointments are important to me!

important

unimportant

work emails, friends, health emails, appointments

promotions, other (not including …), ..

Before Alice answered
my questions, I thought..
but now..

Predicted: important

Correct! You were right
because…

Based on this example, I would
update the class descriptions by…

2. User annotates a selected example

2a. Generating and answering questions about the example

2b. Validating the model

2c. Refining class descriptions

3. Using the Classifier

Dear Alice,
Your biology degree requires you to get at least four credits of mathematics.
Join a ‘Math Call’ with your major advisor to figure out what you can take!
- University

important
Alice mentioned that

appointments were important.
This email also …

1. User sets context and initial class descriptions of their task

Figure 1: Overview of how a user can construct and use
a classifier with BYOC.

13999

1992; Reithinger and Klesen, 1997; Tur et al., 2010;
Coucke et al., 2018; Xu et al., 2021), and more.

Because a classification task targets a fixed set
of classes, each of these many applications of clas-
sification must be built separately. Furthermore,
classes are often highly domain-specific, and in
certain scenarios must be personalized to each user.
Consider the example of classifying an email as
“Important” or “Not Important”. Many users would
consider family emails to be important, but some
might decide to only prioritize work emails, or only
emails that require immediate action such as a re-
ply. As a more extreme example, most users would
consider coupons to be junk mail, but some might
actively search for savings.

There exist a plethora of use cases where person-
alized classification is necessary:

• Classifying product or business reviews as
useful according to someone’s preferences.

• Classifying user support requests as being per-
tinent to a particular product component, so
they can be routed to the relevant team.

• Classifying an academic paper as likely rele-
vant or not to someone’s research.

In all of these contexts, annotating a large dataset
and then training a domain-specific model is in-
tractable. It is too expensive and time-consuming
for individual end-users to label the hundreds of
examples needed to train a high-quality classifier,
and even more so if the criteria change frequently,
because each time the training set would need to be
rebuilt from scratch. Hence, we need a technique
that can work well in a few-shot regime, where the
user only labels a limited number of examples.

To overcome this challenge, we propose to lever-
age Large Language Models (LLMs), which have
been shown to perform very well on a variety of
classification tasks (Radford et al., 2019; Raffel
et al., 2020; Brown et al., 2020; Gao et al., 2021).

Prior work using LLMs for few-shot text classi-
fication proposed using task demonstrations con-
sisting of examples and their labels, and proposed
to include as many as possible to fit in the context
length (Brown et al., 2020; Gao et al., 2021). There
are two issues with this approach: (1) the context
length is limited, and with longer text only few ex-
amples can fit, and (2) the prompt length can be
significantly larger than the size of a single input,
increasing the computational cost.

At the same time, for many of these tasks, the
mapping from text to classes can be expressed in
relatively simple rules. LLMs based on instruction
tuning (Ouyang et al., 2022) can classify according
to instructions expressed as text. The challenge
then becomes: how can we help end-users write
meaningful and sufficient instructions? End-users
are not prompt engineers, and struggle to write
good instructions. In our experiments we found
that users often forget about relevant situations or
conditions, leading to poor quality classification.

We also observe that LLMs can be prompted
to elicit information and ask clarifying questions.
Hence, we propose an interactive approach to
help users write high-quality classification prompts,
which we call Build Your Own Classifier (BYOC):

1. The user provides the purpose of the classifier
and the list of classes.

2. They annotate a small amount of data. For
each example, the LLM generates questions
that would be helpful to classify the example.
The user answers the questions, then selects
the correct class for the example and explains
why they selected that class.

3. The examples, questions, answers, labels, and
explanations are summarized into class de-
scriptions: succinct textual representations of
the classification criteria and relevant aspects
of the training data.

4. At inference time, the LLM is prompted with
only the generated class descriptions.

Our experiments show that with only a small
amount of additional work for each training exam-
ple, BYOC yields higher accuracy than including
training data in the LLM prompt. Indeed, we can
improve the accuracy of few-shot text classifica-
tion to the point where we can be within 79% of
fine-tuning a dedicated model on a full dataset.

Our method is also suitable for personalization.
In an experiment conducted directly with end users,
our approach improves over manually provided
class descriptions by 23%, and over the state of the
art by 15%, while consuming 37% fewer tokens at
inference time.

1.1 Contributions

The contributions of this paper are as follows:

14000

• A novel approach to few-shot text classifica-
tion using class descriptions in lieu of task
demonstrations. This approach is more com-
putationally efficient due to a shorter prompt.

• A method, called BYOC, to interactively con-
struct class descriptions for classification, by
prompting the LLM to ask relevant questions
to the user. Ours is the first approach to use
LLM-generated questions to help users craft
high quality prompts.

• Experimental results on the Web of Science
dataset (Kowsari et al., 2017) show that a clas-
sifier built with BYOC is 9% better than the
few-shot state of the art, and reaches 79%
of the accuracy of the state-of-the-art model
trained on a full dataset, using only 1% of
their training set.

• BYOC enables non-experts to build classi-
fiers with high-accuracy, with an average accu-
racy of 90%, 15% higher than the equivalent
few-shot baseline and 23% higher than asking
users to write prompts directly. Additionally,
the classifiers built with BYOC outperform
a model trained for all users at once, which
underscores the need for personalization.

• We built an end-to-end version of BYOC
within the Bardeen web automation platform1.
In a study with 30 participants, we find that
users find our approach interpretable, and 80%
would consider using it.

2 Related Work

Few-Shot Text Classification Text classification
using few-shot training sets has been studied before.
Previous methods proposed dedicated model archi-
tectures, based on prototype networks (Snell et al.,
2017; Sun et al., 2019) or contrastive representation
learning (Yan et al., 2018; Chen et al., 2022). These
methods cannot take advantage of large language
models, especially API-based LLMs that are only
available as a text-based black box.

With LLMs, text classification is usually either
zero-shot through providing instructions and class
names (Radford et al., 2019; Raffel et al., 2020;
Ouyang et al., 2022; Sun et al., 2023), through
transfer learning from existing tasks (Wang et al.,
2021), or few-shot by task demonstrations (Brown

1https://bardeen.ai

et al., 2020; Gao et al., 2021), optionally with ex-
planations (Lampinen et al., 2022). Task demon-
strations are computationally expensive and limited
by the language model context window size. Addi-
tionally, it is unclear whether the model can learn
from demonstrations effectively (Min et al., 2022).
Finally, it is known that end-users struggle to write
high accuracy classification prompts (Reynolds and
McDonell, 2021; Jiang et al., 2022).

Prompt Construction Concurrent to this work,
Pryzant et al. (2023) proposed automatically op-
timizing the prompt given few-shot data, using
a search algorithm and LLM-generated feedback.
Wang et al. (2023) proposed summarizing few-shot
examples to obtain succinct prompts. Neither of
those methods incorporates user feedback to dis-
ambiguate challenging examples.

Kaneko et al. (2023) also proposed leveraging
question generation for classification. They pro-
pose to use interactivity at inference time; our goal
instead is to be able to classify non-interactively,
and only use questions at training time.

Finally, we note that natural language feedback
was also proposed for explainability (Marasović
et al., 2021; Yordanov et al., 2022; Wiegreffe et al.,
2022), but those approaches did not lead to an im-
provement in accuracy.

Data Augmentation A different line of work pro-
posed to augment the training data with automati-
cally generated or automatically labeled data.

In particular, one line of work observed that
often a large unlabeled corpus is available, and
proposed using programmatic rules to label it in
a weakly supervised fashion (Ratner et al., 2016,
2017). Later work then proposed learning those
rules from natural language explanations (Hancock
et al., 2018) or extracting those rules from a pre-
trained language model (Schick and Schütze, 2021;
Pryzant et al., 2022). Weak supervision is not prac-
tical for end-user personalized classification, be-
cause crafting the rules requires a high level of
expertise. Refining the rules also requires a large
labeled validation set, which is often not available.

A different line of work proposed to use LLMs to
synthesize training data, which is then used to train
a smaller classifier (Yoo et al., 2021; Ye et al., 2022;
Gao et al., 2023; Møller et al., 2023). As with using
LLMs directly for classification, the challenge is
to instruct the LLM so the resulting training data
is personalized, and not a statistical average across

14001

https://bardeen.ai

many users. At the same time, our approaches are
complementary, and synthesis could be used in the
future to distill the LLM to a more computationally
efficient model.

3 Overview of BYOC

In this section, we present the process through
which a user can build a personalized classifier
using BYOC. We do so by way of an example:
Alice wants to build an email classifier to catego-
rize emails as “Important” and “Unimportant”. The
overall flow is summarized in Fig. 1.

3.1 High Level Planning

As the first step towards building a classifier, Alice
provides a high-level plan of what she wishes to
classify, which provides the model with an initial
understanding of her objective. First, Alice writes
a short purpose statement of what she would like
to accomplish: “I want to separate spam from my
important emails”. Then, she specifies the list of
classes she wants to classify into – two classes, in
this example. For each class, Alice can optionally
write an initial description of what kind of text fits
in each class. For example, she can say that work
emails are important, and promotions are not. The
descriptions play an important role in BYOC and
will be iteratively improved in later steps.

3.2 Interactive Training

Without training, the model would have a limited
understanding of Alice’s specific needs for clas-
sification. Instead, Alice interactively trains the
model with a small amount of data. The goal is two-
fold: for Alice to understand the model’s decision-
making process to refine the prompt, and for the
model to learn about difficult examples and specific
criteria relevant to the task.

Training Data First, the user selects a source
of data to use for training. In our example, Al-
ice selects her email account, and BYOC uses her
credentials to fetch and show her an email.

Interactive QA Below the email, BYOC
presents Alice with a question, automatically gen-
erated from the text of the email. The goal of the
question is to clarify the meaning of the text in the
context of classification. Along with the question,
BYOC displays the model’s reasoning for asking
the question, whether it is to clarify, broaden, or

confirm what is stated in the class descriptions. Al-
ice answers the question, addressing any confusion
the model may have. Then Alice is presented with
another question related to the same email, either
a follow-up question or a new question altogether.
Alice answers again, and the process repeats up to
a configurable number of questions for each email.

Prediction and Labeling After Alice answers
all questions, the model uses the responses to pre-
dict the class of the current email. BYOC displays
the prediction and its reasoning, which enables Al-
ice to assess the model’s decision-making process.
Alice then enters the correct classification of the
email, and also corrects the model’s reasoning, if
necessary.

Prompt Refinement Given the text, questions,
answers, classification, and explanation for the cur-
rent example, BYOC automatically updates the
class descriptions, adding or removing any infor-
mation to improve classification accuracy. Alice
then repeats this process on a new email, until she
chooses to stop adding new data to the training set.

After annotating all training examples, Alice can
review the final refined class descriptions. She can
optionally edit the class descriptions to her liking,
making any corrections or adding any information
that might be missing.

Finally, Alice assigns a name to the classifier
and saves it so she can use it later.

3.3 Using the Classifier

After Alice creates the classifier, she can use it as
an action in Bardeen. For instance, she builds a pro-
gram that scans her inbox, applies the constructed
classifier to each email, and if the email is classi-
fied as “not important”, it is marked as read and
archived. Alternatively, she can use a program that
triggers any new email and sends her a text mes-
sage when the email is classified as important. The
same classifier, once built, can be used in different
programs. Moreover, she can share it with others,
like family members with similar email needs.

4 Prompting for Personalized
Classification

In this section, we first present the formal definition
of a classifier model that uses class descriptions,
and then present a method to interactively compute
those class descriptions.

14002

4.1 Problem Statement
Given a sample (x, y), where x is the input text to
be classified and y ∈ C is the class, our goal is to
learn a function f parameterized on nC and dC

f(x;nC , dC) = ŷ

such that, with high probability ŷ = y, that is, the
predicted class is equal to the true class. nC is the
set of user-defined names of all classes c ∈ C, and
dC is the set of all class descriptions dc.

We learn dC from the user-provided classifier
purpose p, the class names nC , and a small set of
labeled samples (xi, yi) ∈ D:

dC = BYOC(p, nC ,D)

The function BYOC that computes the class de-
scriptions is an interactive function: in addition
to the given inputs, it has access to an oracle (the
user) who can answer any question posed to them
in natural language.

4.2 Computing Class Descriptions
BYOC proceeds iteratively for each sample (xi, yi),
updating dC,i at each step. The initial dC,0 is pro-
vided by the user.

At each step, we ask the user questions in succes-
sion. The set of question and answers Qi is initially
empty, and it gets updated with each question qi,t
and answer ai,t (1 ≤ t ≤ M):

Qi,0 = ∅
qi,t = GenQuestion(x, dC,i−1, Qi,t−1)

ai,t = User(qi,t)

Qi,t = Qi,t−1 ∪ {(qi,t, ai,t)}

“User” denotes the user answering the question.
After collecting M questions, where M is a hy-

perparameter, BYOC computes:

ŷi, êi = InteractivePredict(xi, p, nC , dC,i−1, Qi,M)

dc,i = Update(dC,i−1, c, xi, Qi,M , ŷi, yi, ei)

where êi is a model-provided explanation for why
the sample has the given class, which we obtain
through self-reflection (Shinn et al., 2023), and ei
is the user’s own rewriting of êi.

The above procedure makes use of the following
functions implemented with LLMs:

• GenQuestion: The model generates a question
to clarify the specification of the classifica-
tion task. We prompt the model to generate

questions that refine or broaden the scope of
the current class descriptions, and improve the
LLM’s general understanding of the classifica-
tion task. In particular, we prompt the model
to produce questions that uniquely depend on
the user, that are not answerable based on the
given text, that are not too similar across ex-
amples, and that are not too specific to a given
example. The model is also provided the pre-
vious questions and answers, and instructed
to avoid producing redundant questions. The
prompt was refined based on our initial experi-
ments, in order to improve the informativeness
of questios.

• InteractivePredict: The model attempts to
make its own classification of the text based
on the current class descriptions and the ques-
tions answered by the user for this sample.
Access to the answers from the user, which is
not available for regular prediction, improves
the accuracy and the quality of the reflection
obtained from the model.

• Update: The model computes a new class
description for a given class, given the cur-
rent class descriptions, the input, questions
and answers, model- and user-generated label,
and user explanation. The model is prompted
to incorporate the information from the new
answers, without discarding relevant informa-
tion from the existing descriptions.

The model sees both the correct and predicted
labels. It is important to include both because
it allows the model to update both the class
description of the correct class and the de-
scription of the incorrect one that was initially
predicted.

These functions are implemented with individual
calls to a black box LLM. All functions incorpo-
rate chain of thought prompting (Wei et al., 2022).
Detailed prompts are included in Appendix B.

4.3 Classifying With Class Descriptions
After obtaining the final class descriptions dC , we
compute a classification on a new sample x as:

f(x) = Predict(x, p, nC , dC)

The function Predict concatenates a fixed pream-
ble, the class names, descriptions, and classifier
purpose, and the input x as a prompt to the LLM,

14003

and then returns the class c ∈ C whose name nc

corresponds to the output of the LLM. If no class
corresponds to the output of the LLM, an error is
returned; note that this rarely happens in practice.
As before, we apply chain of thought to the LLM.

4.4 Handling Long Inputs
For certain problems a single input x can be too
long to fit in the LLM prompt. To account for this,
we propose to replace x with a summarized version,
up to a threshold size K in the number of tokens:

x̂ =

{
Summarize(x, nC , p) |x| > K
x otherwise

where nC are the class names and p is the classi-
fier purpose. The threshold K strikes a balance
between computation cost, space in the context for
the class descriptions, and space for the input.

We propose a novel summarization approach
specifically optimized for classification. First, we
split the input into chunks xj of equal size, approx-
imately respecting paragraph and word boundaries.
We then compute the summary of each chunk sj ,
given the previous summary and the overall pur-
pose of the classifier p:

s1 = SummarizeChunk(p, x1)

sj = SummarizeChunk(sj−1, p, xj)

SummarizeChunk is implemented by a call to
the LLM. The prompt is included in the appendix.

5 Evaluation

In this section, we evaluate the quality of our pro-
posed approach. Our main experiment is a person-
alized classification use-case where we attempt to
classify emails according to the user’s provided cri-
teria. For comparison, we also evaluate against an
existing dataset for the classification of long text.

5.1 Experimental Setup
We compare the following approaches:

• Zero-Shot: the model is prompted with class
names and class descriptions provided by
users directly, followed only by the input to
classify. Inputs longer than the LLM context
window are truncated.

• + Summary: we use the same prompt as in
Zero-Shot, but additionally inputs longer than
the LLM context window are summarized as
described in Section 4.4.

• + Few-Shot: in addition to the Zero-Shot
prompt, the prompt includes few-shot training
examples, up to the token limit. Each few-
shot example consists of input and label. All
inputs are summarized, if necessary.

• + Explanation: as in the previous model, but
additionally the explanation from the user is
included for each few-shot example. This is
similar to the approach used by Lampinen
et al. (2022).

• + QA: as in the previous model, but each few-
shot example includes both the explanation
and all questions generated by BYOC for that
example and the answers from the user.

• BYOC (our approach): the model is prompted
with class names and class descriptions ob-
tained as described in Section 4.2.

We use the GPT-3.5-Turbo model as the LLM
while constructing the classifier interactively, and
the GPT4 model (OpenAI, 2023) as the LLM dur-
ing evaluation on the validation and test set. We
used GPT-3.5-Turbo in the interactive part for rea-
sons of speed, where it can be a factor for usability.
We use a temperature of 0 for classification to maxi-
mize reproducibility, whereas we use a temperature
of 0.3 to generate questions, in order to make them
more varied and creative.

5.2 Personalized Classification
Our main goal is to support personalized classi-
fication. To evaluate BYOC ability to do so, we
perform a user study, in which we ask a group of
users to try and use BYOC to classify their emails.
The study is both a way to collect real data to eval-
uate BYOC as a model, and a way to study how
well end-users can interact with BYOC.

Experimental Setting We have built an end-to-
end prototype of BYOC with a graphical user-
interface, based on the Bardeen web browser au-
tomation platform. We recruit 30 English-speaking
users, 16 women and 14 men, to participate in our
study. 10% of the users are above the age of 50
years old, 20% are between the ages of 30 and 50,
and 70% are under the age of 30. 13 users are
in a technical field, 9 are pursuing business, 6 are
studying medicine, and 2 are in the arts.

We ask each user to build a personal classifier to
categorize their emails as important or unimportant.
We use 30 emails from each user as the data source,

14004

Train Dev Test

Examples 300 300 300
Tokens 473,155 586,165 668,438

Table 1: Size of the BYOC email classification dataset.

Tokens
Approach Build Run Accuracy

Zero-Shot 0 1,628 66.7%
+ Summary 0 3,447 71.0%
+ Few-Shot 0 5,535 74.7%
+ Explanation 0 5,590 74.7%
+ QA 93,282 5,818 76.7%
BYOC 170,411 3,681 90.0%
Fine-tuned n/a n/a 78.3%

Table 2: Test-set accuracy and token counts of our pro-
posed approach against the different baselines for per-
sonalized email classification. Fine-tuned refers to a
single model trained on all training data simultaneously,
while other models are trained for each user separately.

out of their most recent 100. For HTML emails,
we remove HTML tags and only use plain text.

10 of those emails are used in training: the user
annotates them during the interactive training flow
(Section 3.2), together with the answers to the ques-
tions generated by BYOC and the explanation for
the classification. Each user answers 3 questions
for each training email. The remaining 20 emails
are used for validation and testing; users annotate
them at the end after constructing the classifier
with BYOC. 10 of emails for each user are used for
validation and 10 for testing.

Dataset We acquired a dataset of 900 emails
from the 30 users participating in our study. Due to
the nature of most emails in an inbox being spam
or unimportant to users, 36% of the emails are clas-
sified as important, with the rest being unimportant.
Statistics of the dataset are shown in Table 1.

Overall Accuracy Table 2 shows the results of
our experiment. The table shows the accuracy of
the classifier on the test sets, as the percentage of
examples classified correctly across all users. The
table also shows the number of prompt tokens nec-
essary to construct the classifier on average across
users (“# Tokens Build”), and to perform the classi-
fication on average across emails (“# Tokens Run”).

BYOC improves over the state of the art of clas-

sification with user explanations (Lampinen et al.,
2022) by more than 15%. The zero-shot approach
achieves a respectable accuracy of 67%. Adding
summarization improves by 4% by avoiding sud-
den truncation. Few-shot examples further improve
accuracy by 3%, but we find no measurable im-
provement by adding explanations. Asking ques-
tions to the user is marginally effective.

Overall, our results are two-fold. First, it is clear
that merely asking users to provide class descrip-
tions is not sufficient, and training data is necessary.
Second, our results show that the manner in which
the training data is annotated and is provided to
the model is critical to achieve good accuracy. Not
only the questions answered by the user make a dif-
ference compared to the existing approach of expla-
nations, the biggest improvement appears when the
information collected during the annotation stage
is summarized into co-authored class descriptions.
BYOC is the first method that enables the model to
extract key insights from every example in the train-
ing set, and discard the large amount of otherwise
irrelevant information.

BYOC is also more token-efficient when com-
pared to previous approaches. Even though it takes
on average 170,411 tokens to build an email clas-
sifier for a user, this cost is fixed. BYOC uses
1,909 fewer tokens for every example compared
to few-shot examples, and is comparable in cost
to zero-shot with summarization. In summary, be-
sides the initial fixed cost when building the clas-
sifier, BYOC is more accurate and cost-effective
than the state of the art.

Importance of Personalization In many scenar-
ios, it would be impractical for each users to ac-
quire enough training data to fine-tune a personal-
ized model. Hence, we also wish to evaluate the
tradeoff between a few-shot personalized model,
compared to a fine-tuned model that uses more
training data across different users. To do so, we
train single fine-tuned model using all 300 emails
in the training set at once. We use a distilled BERT
model (Sanh et al., 2019) with a classifier head
connected to the embedding of the first token.

Results for this experiment are shown in Table 2,
in the “Fine-Tuned” line. The fine-tuned model
achieves higher accuracy than LLM baselines, but
BYOC still improves the accuracy by 13%. The
increase in accuracy is likely due to everyone’s
differences in perception of what makes an impor-
tant or unimportant email. BYOC is more accurate

14005

because it enables the LLM to receive personal
information about each user.

User Evaluation At the end of the study, we ask
each user to also complete a short survey to gather
feedback on their interaction with BYOC.

Overall, on average on a scale of 1 to 10, users
rate their experience with BYOC an 8.6. When
asked about whether they would actually take the
time to build a classifier, on a scale of 1 to 10,
users rate their willingness a 9. P1 reported, “Yes,
although tedious, the questions made it capable of
differentiating junk and important emails.”

Furthermore, on a Likert scale between 1 and
5, on average users report their likeliness to use
the classifier in the future a 4.6, with 50% of them
saying they would use the classifier for personal
use-cases, 40% using the classifier for education,
and 20% for work. Many users found use cases
for BYOC beyond emails. P2 reports: “I could see
myself using it in order to give me specific recom-
mendations on things to eat, watch, or do and also
to sort emails.” P3 stated a more specific use-case
for themselves: “I could use a personalized classi-
fier to classify homework assignments in college to
figure out which ones should be prioritized.”

Beyond the higher level questions we asked
about BYOC, we also asked users about their expe-
rience with specific parts of the experiment. Users
noticed how the questions asked by the model re-
minded them about a lot of the cases that they had
forgotten about in their initial class descriptions.
P4 states, “Yes, the process was smooth because
the questions allowed me to realize further ways
to classify the emails that I had initially forgot-
ten.” Furthermore, when talking about whether
they liked the interactive experience of answering
questions, P5 reports: “I did, because they were
used to determine what groups certain things went
in. The process felt like sorting in real life.”

Additionally, all users believe that the model ul-
timately produced more descriptive and accurate
class descriptions than they had written initially.
P6 reports, “Yes, the model gave me better descrip-
tions and allowed the classifications to be more
accurate to what I wanted.”

5.3 Comparison With Existing Approaches

For comparison with previous classification litera-
ture, we also wish to evaluate BYOC on an existing
dataset. We choose the task of academic paper
topic classification, in which the abstract of an aca-

demic paper is classified into one of a fixed set
of topics. We choose this task because it requires
domain-specific knowledge, especially around the
specific usage of each class, impairing the zero-
shot ability of LLMs. The task also involves longer
text, which limits the number of few-shot examples
that an LLM can process.

Dataset We use the WOS-5736 dataset by
Kowsari et al. (2017). The dataset contains eleven
classes of research paper abstract topics, with three
parent classes: biochemistry, electrical engineering,
and psychology.

For each sub-class, we selected 3 abstracts at
random belonging to that class, and annotated them
with BYOC, answering 3 questions each.

As we are not experts in the fields covered by
the dataset, we consulted online sources, includ-
ing Google and ChatGPT, to provide the initial
class descriptions and answer the model’s gener-
ated questions. Answering each question took us
around 3-5 minutes on average. We assume that
that end-users will be classifying text that they are
familiar with. It is reasonable to assume that do-
main experts, with access to the same resources
and knowledge bases, would have better answers
with a less amount of effort to annotate the data.
Note that incorrect answers can only impair accu-
racy; our results is thus a lower-bound of what can
be achieved by a domain expert. An example of
question and answer is in Fig. 2.

The state-of-the-art approach on this dataset
leverages a hierarchical model, classifying first the
text into one of the parent classes, and then into
one of the sub-classes. We use the same approach
for this experiment. As the abstracts are short, no
summarization was necessary for this experiment.

The questions, answers, and generated class de-
scriptions for the experiments are available online2.

Results Table 3 compares BYOC against the
state of the art. Our best result improves over the
few-shot approach by 9%, while consuming an av-
erage of 1,167 fewer tokens per sample.

When compared to the state-of-the-art approach
for this dataset (Javeed, 2023), which used the full
training set of 4,588 examples, our model is only
20% worse. If we take the state-of-the-art result as
an upper bound over this dataset, BYOC achieves
79.2% of the maximum possible accuracy with less
than 1% of their training set.

2https://github.com/bardeenai/byoc-dataset

14006

https://github.com/bardeenai/byoc-dataset

Approach # Tokens Accuracy

Zero-Shot 631 58.7%
+ Few-Shot 3,873 65.9%
Non-hierarchical 2,276 67.0%
BYOC (GPT-3.5) 2,706 74.8%
BYOC (GPT-4) 4,656 63.2%
HDLTex n/a 90.9%
ConvexTM n/a 92.42%
Hawk n/a 94.45%

Table 3: Accuracy and token counts on the Web of
Science test set. Results for HDLTex are as reported
by Kowsari et al. (2017), ConvexTM by Bhattarai et al.
(2022) and Hawk by Javeed (2023). Our approaches
use a few-shot training set while the others use the full
training set.

We also compare the use GPT-3.5 during con-
struction of class descriptions, as in previous exper-
iments, with the use of GPT4 throughout. Note that
GPT4 was in all cases used for the classification
after obtaining the class descriptions. We observe
that class descriptions obtained from GPT4 achieve
lower accuracy. From our observations we see that
GPT4 tends to generate class descriptions that are
longer and more specific to the given training ex-
amples, leading to a form of overfitting.

Finally, we also evaluated BYOC in a non-
hierarchical setting where it attempts to directly
predict one of 11 classes, using the same class de-
scriptions. We found it materially worse than the
hierarchical case, with an accuracy of 67% on the
test set. This suggests that there is a limit to the
number of classes that an LLM can predict using
class descriptions, and the hierarchical approach is
to be preferred.

6 Conclusion

This paper presented a novel approach to few-
shot text classification using large language models
(LLM). By having the user cooperate with an LLM
we were able to build highly accurate classifiers
while annotating a very minimal amount of data.

For many practical applications of classification,
our method eliminates the need for large annotated
corpora. We have achieved high accuracy classi-
fiers that are competitive with models trained with
orders of magnitude larger datasets.

We also allow end-users to create their own clas-
sifiers without expecting them to be proficient in
prompt engineering. Through an interactive pro-

cess of question-answering and minimal annotation
we are able to make LLM capture the essential fea-
tures of each class, enabling a precise classification.

Our experiments highlights the importance of
both personalizing and user-interaction with the
LLM. First, we show that users do not know how
to instruct LLMs. Second, we demonstrate the need
for personalization. A fine-tuned model trained on
all users at once is outperformed by BYOC by 13%,
despite outperforming all few-shots baselines. This
suggests that there is no one-size-fits-all model that
can be applied to every-user. Our study involving
real participants also confirms the usability and
effectiveness of our approach. End-users are able
to build classifiers for themselves exhibiting an
average accuracy of 90%, rating their experience
8.6 out of 10.

Overall, our methodology enables users to lever-
age the power of LLMs for their specific needs,
opening up new possibilities for practical applica-
tions of text classification in various domains.

This work is available as a commercial product
in the Bardeen web automation platform3, where
BYOC enables end-users to classify several forms
of data. Popular use-cases include sales lead, inbox
classification, and support request categorization.

Limitations and Future Work

We have identified the following limitations of our
approach:

• BYOC uses the LLM as a text-based interface.
This is a design decision driven by the avail-
ability of API-based LLMs, but it might limit
the maximum achievable accuracy, compared
to fine-tuning the model or using a method
that has access to LLM embeddings or log-
its. Additionally, using an LLM without fine-
tuning exposes a risk of hallucination, and it is
possible that the user is misled during training.

• For long inputs it is possible that, due to the
summarization step, relevant criteria are omit-
ted from the input of the model, which would
lead to a wrong classification. While our sum-
marization technique is preferable over trun-
cating the input, future work should explore
additional summarization methods or alterna-
tively encodings of the input.

• Practically speaking, the number of samples
that the user is willing to annotate is usually

3https://bardeen.ai

14007

https://bardeen.ai

very low, and it is therefore likely that rare fea-
tures of the text would not be accounted for in
the classification prompt because they would
not be seen by the model during training and
not brought up by the user. We envision future
work will investigate ways to improve the clas-
sifier while in use, perhaps by detecting if the
text does not seem to conform to any of the
classes according to the given descriptions.

Additionally, in order to keep the experiment
consistent across users, we only evaluate in the
personalized setting with one binary classification
task, namely classifying important and unimpor-
tant emails. Future work should investigate how
the approach generalizes to different tasks, whether
there are tasks that benefit more or less from per-
sonalization, and whether the number and detail of
classes affect the quality.

Ethics Statement

We see two main risks of personalized classification
in the real world. First, it is possible that users, who
are not machine learning experts, are unable to
correctly estimate the quality of the classifier, and
rely on it always being correct. This is particularly
problematic if the validation set used to assess the
model quality is small and not representative. As
discussed in the limitations sections, to mitigate
this issue, we expect that real-world deployment of
BYOC will include a mechanism to detect when the
model should abstain from making a classification.

The second concern is the privacy risk from the
use of third-party APIs on sensitive personal data.
OpenAI does not store or train on data processed
through their API. In the future, we expect partic-
ularly sensitive applications will use open-source
models such as LLaMa (Touvron et al., 2023), run-
ning on a device of the user’s choice.

Specifically regarding our user study, the study
was conducted with willing adult participants that
expressed informed consent in writing, recruited
through direct connections. Participants were com-
pensated for taking part in the study. The email
dataset will not be released. Examples provided in
the paper are from the authors and not the study
participants.

References
Bimal Bhattarai, Ole-Christoffer Granmo, and Lei Jiao.

2022. ConvTextTM: An explainable convolutional

tsetlin machine framework for text classification. In
Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 3761–3770, Mar-
seille, France. European Language Resources Asso-
ciation.

Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi,
Raghav Gupta, Christopher D. Manning, and Christo-
pher Potts. 2016. A fast unified model for parsing
and sentence understanding. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1466–1477, Berlin, Germany. Association for Com-
putational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Junfan Chen, Richong Zhang, Yongyi Mao, and Jie Xu.
2022. Contrastnet: A contrastive learning framework
for few-shot text classification. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 10492–10500.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine learning challenges workshop,
pages 177–190. Springer.

Jiahui Gao, Renjie Pi, LIN Yong, Hang Xu, Jiacheng
Ye, Zhiyong Wu, WEIZHONG ZHANG, Xiaodan
Liang, Zhenguo Li, and Lingpeng Kong. 2023. Self-
guided noise-free data generation for efficient zero-
shot learning. In The Eleventh International Confer-
ence on Learning Representations.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

14008

https://aclanthology.org/2022.lrec-1.401
https://aclanthology.org/2022.lrec-1.401
https://doi.org/10.18653/v1/P16-1139
https://doi.org/10.18653/v1/P16-1139
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295

John J Godfrey, Edward C Holliman, and Jane Mc-
Daniel. 1992. Switchboard: Telephone speech cor-
pus for research and development. In Acoustics,
Speech, and Signal Processing, IEEE International
Conference on, volume 1, pages 517–520. IEEE Com-
puter Society.

Braden Hancock, Paroma Varma, Stephanie Wang, Mar-
tin Bringmann, Percy Liang, and Christopher Ré.
2018. Training classifiers with natural language ex-
planations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1884–1895, Mel-
bourne, Australia. Association for Computational
Linguistics.

Swapnil Hingmire, Sandeep Chougule, Girish K Pal-
shikar, and Sutanu Chakraborti. 2013. Document
classification by topic labeling. In Proceedings of
the 36th international ACM SIGIR conference on
Research and development in information retrieval,
pages 877–880.

Arshad Javeed. 2023. Hawk: An industrial-strength
multi-label document classifier.

Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra
Molina, Aaron Donsbach, Michael Terry, and Carrie J
Cai. 2022. Promptmaker: Prompt-based prototyping
with large language models. In Extended Abstracts
of the 2022 CHI Conference on Human Factors in
Computing Systems, CHI EA ’22, New York, NY,
USA. Association for Computing Machinery.

Masahiro Kaneko, Graham Neubig, and Naoaki
Okazaki. 2023. Solving nlp problems through
human-system collaboration: A discussion-based ap-
proach. arXiv preprint arXiv:2305.11789.

Kamran Kowsari, Donald E Brown, Mojtaba Hei-
darysafa, Kiana Jafari Meimandi, , Matthew S Gerber,
and Laura E Barnes. 2017. Hdltex: Hierarchical deep
learning for text classification. In Machine Learning
and Applications (ICMLA), 2017 16th IEEE Interna-
tional Conference on. IEEE.

Andrew Lampinen, Ishita Dasgupta, Stephanie Chan,
Kory Mathewson, Mh Tessler, Antonia Creswell,
James McClelland, Jane Wang, and Felix Hill. 2022.
Can language models learn from explanations in con-
text? In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 537–563,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu
Yang, Lichao Sun, Philip S Yu, and Lifang He. 2022.
A survey on text classification: From traditional to
deep learning. ACM Transactions on Intelligent Sys-
tems and Technology (TIST), 13(2):1–41.

Ana Marasović, Iz Beltagy, Doug Downey, and
Matthew E Peters. 2021. Few-shot self-
rationalization with natural language prompts.
arXiv preprint arXiv:2111.08284.

Melvin Earl Maron. 1961. Automatic indexing: an
experimental inquiry. Journal of the ACM (JACM),
8(3):404–417.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Anders Giovanni Møller, Jacob Aarup Dalsgaard, Ari-
anna Pera, and Luca Maria Aiello. 2023. Is a prompt
and a few samples all you need? using gpt-4 for data
augmentation in low-resource classification tasks.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-
guang Zhu, and Michael Zeng. 2023. Automatic
prompt optimization with" gradient descent" and
beam search. arXiv preprint arXiv:2305.03495.

Reid Pryzant, Ziyi Yang, Yichong Xu, Chenguang Zhu,
and Michael Zeng. 2022. Automatic rule induction
for efficient semi-supervised learning. arXiv preprint
arXiv:2205.09067.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. In Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases,
volume 11, page 269. NIH Public Access.

Alexander J Ratner, Christopher M De Sa, Sen Wu,
Daniel Selsam, and Christopher Ré. 2016. Data pro-
gramming: Creating large training sets, quickly. In
Advances in neural information processing systems,
pages 3567–3575.

Norbert Reithinger and Martin Klesen. 1997. Dialogue
act classification using language models. In Fifth
European Conference on Speech Communication and
Technology.

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-
gramming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the

14009

https://doi.org/10.18653/v1/P18-1175
https://doi.org/10.18653/v1/P18-1175
http://arxiv.org/abs/2301.06057
http://arxiv.org/abs/2301.06057
https://doi.org/10.1145/3491101.3503564
https://doi.org/10.1145/3491101.3503564
https://aclanthology.org/2022.findings-emnlp.38
https://aclanthology.org/2022.findings-emnlp.38
http://arxiv.org/abs/2304.13861
http://arxiv.org/abs/2304.13861
http://arxiv.org/abs/2304.13861
http://arxiv.org/abs/2303.08774

2021 CHI Conference on Human Factors in Comput-
ing Systems, pages 1–7.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Noah Shinn, Beck Labash, and Ashwin Gopinath.
2023. Reflexion: an autonomous agent with dy-
namic memory and self-reflection. arXiv preprint
arXiv:2303.11366.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Shengli Sun, Qingfeng Sun, Kevin Zhou, and Tengchao
Lv. 2019. Hierarchical attention prototypical net-
works for few-shot text classification. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 476–485, Hong
Kong, China. Association for Computational Lin-
guistics.

Xiaofei Sun, Xiaoya Li, Jiwei Li, Fei Wu, Shangwei
Guo, Tianwei Zhang, and Guoyin Wang. 2023. Text
classification via large language models.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Gokhan Tur, Dilek Hakkani-Tür, and Larry Heck. 2010.
What is left to be understood in atis? In 2010 IEEE
Spoken Language Technology Workshop, pages 19–
24.

Huaxiaoyue Wang, Gonzalo Gonzalez-Pumariega,
Yash Sharma, and Sanjiban Choudhury. 2023.
Demo2code: From summarizing demonstrations to
synthesizing code via extended chain-of-thought.
arXiv preprint arXiv:2305.16744.

Sida I Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 90–94.

Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao,
and Hao Ma. 2021. Entailment as few-shot learner.
arXiv preprint arXiv:2104.14690.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Sarah Wiegreffe, Jack Hessel, Swabha Swayamdipta,
Mark Riedl, and Yejin Choi. 2022. Reframing
human-AI collaboration for generating free-text ex-
planations. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 632–658, Seattle, United States.
Association for Computational Linguistics.

Liang Xu, Xiaojing Lu, Chenyang Yuan, Xuanwei
Zhang, Huilin Xu, Hu Yuan, Guoao Wei, Xiang Pan,
Xin Tian, Libo Qin, et al. 2021. Fewclue: A chi-
nese few-shot learning evaluation benchmark. arXiv
preprint arXiv:2107.07498.

Leiming Yan, Yuhui Zheng, and Jie Cao. 2018. Few-
shot learning for short text classification. Multimedia
Tools and Applications, 77:29799–29810.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao
Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong.
2022. Zerogen: Efficient zero-shot learning via
dataset generation. arXiv preprint arXiv:2202.07922.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-Woo
Lee, and Woomyoung Park. 2021. GPT3Mix: Lever-
aging large-scale language models for text augmen-
tation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2225–2239,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yordan Yordanov, Vid Kocijan, Thomas Lukasiewicz,
and Oana-Maria Camburu. 2022. Few-shot out-of-
domain transfer learning of natural language expla-
nations in a label-abundant setup. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 3486–3501, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

A Question Generation Example

14010

https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/D19-1045
https://doi.org/10.18653/v1/D19-1045
http://arxiv.org/abs/2305.08377
http://arxiv.org/abs/2305.08377
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.1109/SLT.2010.5700816
https://doi.org/10.18653/v1/2022.naacl-main.47
https://doi.org/10.18653/v1/2022.naacl-main.47
https://doi.org/10.18653/v1/2022.naacl-main.47
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://aclanthology.org/2022.findings-emnlp.255
https://aclanthology.org/2022.findings-emnlp.255
https://aclanthology.org/2022.findings-emnlp.255

Text
The significant co-occurrence between men’s violence against female partners and child abuse and neglect
is well documented. It is less clear how child safety should be managed in family violence research
with their mothers. This issue is salient to isafe, a New Zealand-based Internet intervention study testing
improvement in safety decisions and mental health outcomes for women experiencing intimate partner
violence. This article discusses the legislative, professional, and ethical considerations that contribute
to the development of the child safety protocols and discusses the development of the isafe protocol.
Hypothetical scenarios of the application of the isafe protocol are used to illuminate the issues and provide
a basis for future discussion.

Questions

1. Question: Are there any specific keywords or phrases in the text that are commonly associated with
any of the classes?
Answer: abuse; children; ethics; responsible conduct of research

2. Question: In the context of this text, what criteria would differentiate the child abuse class from the
depression class?
Answer: The criteria differentiating the child abuse class from the depression class include the
nature of the behavior (physical, emotional, or sexual abuse towards a child), the perpetrator-victim
relationship (parent or caregiver abusing the child), the focus on child safety and well-being, and
legal obligations surrounding child protection.

3. Question: Are there any specific ethical considerations mentioned in the text that could help us better
understand the criteria for the child abuse class?
Answer: The specific ethical considerations mentioned in the text are not provided, making it difficult
to precisely identify criteria for the child abuse class. However, based on the text’s context, it can
be inferred that ethical considerations could include ensuring the safety and well-being of the child,
protecting their rights, maintaining confidentiality, adhering to professional standards, and navigating
the complexities of intervening in cases of child abuse. These considerations likely inform the
development of child safety protocols and guide decision-making processes in the iSafe study.

Figure 2: Example of questions and answers generated on one abstract from the Web of Science dataset (Kowsari
et al., 2017).

14011

B Prompts Used for Experiments

B.1 Question Generation

System Instructions:

You are taking part in an interactive study where the goal is to build a personalizable classifier
for a user. This means strictly following the user’s class descriptions and criteria for
classification. If a user doesn’t cover a certain case, it means trying to find patterns in the
user’s thoughts or criteria to make a best guess.

The goal of this stage in the process of building a classifier is to annotate some training data, so
we can refine the user’s class description and better understand their criteria. The way we choose
to annotate our training data is by asking user’s questions about the text to better help us
understand the classification task at large.

This doesn’t mean asking questions about what the current text means or the specific context of the
text, as answering these questions won’t always allow us to generalize the answer to other examples.

The questions that you ask must be ones that if answered, could help us broaden and improve the
scope of the user’s class descriptions. The questions should relate to the class names and
descriptions provided, and should even ask clarifying questions about the class descriptions if
needed. The questions should not be vague or obvious. They should be questions that only the user
who is trying to perform classification would know, not questions with answers that are obvious to
anyone.

Some other questions may include how might you differentiate between classes, if you are deciding
between two classes for this specific text.

You could also ask if there are any specific keywords or phrases that are commonly associated with a
certain class. Also, do not just directly ask the user what class the text belongs to - this is not
the goal of this stage. Don’t just ask these question, since these are just examples of questions
you could ask.

In the prompt, we also display questions that were previously asked by the model, followed by the
user’s responses to those questions. If needed, your questions should build upon previously asked
questions and answers, so you can better understand the user’s intent.

Additionally, along with the question you ask, also explain why you asked the given question and
what you hope to understand from the user by asking the question.
Your response should be formatted like:

Thoughts: <thoughts>
Question: <question>
Explanation: <explanation>

User Instructions

For this classification task, the classes that the user chose were: <class_1>, <class_2>,
<class_n> name. Here is a description of the task at hand (why the user wants to build this
classification task): <classification_task_description>

Each class also has a corresponding class description, which describes the criteria the text must
follow to belong to a given class. Here are the class descriptions of each class.

<class_1_name>: <class_1_description>
<class_2_name>: <class_2_description>
..
<class_n_name>: <class_n_description>

Here is the current text that we are annotating:
--- Start of text ---
${text}
--- End of text ---

Based on this text and the classes we are trying to classify the text under, we generated the
following questions and answers about the text to help us classify it. There might be no questions
generated yet.

14012

<question_1>
<answer_1>

<question_2>
<answer_2>

<question_m-1>
<answer_m-1>

We want to ask another question about the text to help us improve or broaden the scope of the class
descriptions, as per the instructions provided. The question could also be a follow up question to
the previous questions. What should it be and why?;

B.2 Few-shot Classification (During Interactive Annotation)

System Instructions:

You are taking part in an interactive study where the goal is to build a personalizable classifier
for a user. More specifically, you need to create a classifier that classifies the text of a user
into classes of their own choosing. This means strictly following the user’s class descriptions and
criteria for classification. If a user doesn’t cover a certain case, it means trying to find
patterns in the user’s thoughts / criteria to make a best guess.

The goal of this stage in the process is to classify training data, so we can understand if the
current class descriptions are covering enough use-cases for them to be generalized and deployed for
all texts. In this prompt, we are focusing on a single text and trying to classify it into one of
the classes the user has inputted.

Additionally, for your reference, we have also asked the user a series of questions to help us
classify this text. Use those questions in order to make your classification.

If you are not provided any information or questions, then make your best guess as to what class the
text belongs to.

Furthermore, beyond just the classification, also explain your thoughts as you decide what class the
text belongs to. After making the classification, then reflect on why you chose that class. Your
response should be formatted like:

Thoughts: <thoughts>
Class: <class>
Reflection: <reflection>

User Instructions:

For this classification task, the classes that the user chose were: <class_1>, <class_2>,
<class_n> name. Here is a description of the task at hand (why the user wants to build this
classification task): <classification_task_description>

Each class also has a corresponding class description, which describes the criteria the text must
follow to belong to a given class. Here are the class descriptions of each class.

<class_1_name>: <class_1_description>
<class_2_name>: <class_2_description>
..
<class_n_name>: <class_n_description>

Here is the current text that we are annotating:
--- Start of text ---
${text}
--- End of text ---

Based on this text and the classes we are trying to classify the text under, we generated the
following questions and answers about the text to help us classify it. There might be no questions
generated yet.

<question_1>
<answer_1>

14013

<question_2>
<answer_2>

<question_m>
<answer_m>

Now, given this information, classify the text above - make sure to incorporate your thoughts and a
reflection as well.‘;

B.3 Refining Class Descriptions

System Instructions:

You are taking part in an interactive study where the goal is to build a personalizable classifier
for a user. More specifically, you need to create a classifier that classifies the text of a user
into classes of their own choosing. This means strictly following the user’s class descriptions and
criteria for classification. If a user doesn’t cover a certain case, it means trying to find
patterns in the user’s thoughts / criteria to make a best guess.

The goal of this stage in the process is to update the class descriptions that the user has
inputted, based on the training data we are annotating. In this prompt, we are focusing on a single
text, which the user has answered questions about and explained to us why that example belongs in a
given class.

Using this information, and the correct class of the text, we need to update the class description
of the correct class, to broaden it’s scope to contain more examples/possibilities.
Furthermore, beyond just the classification, also explain your thoughts as you decide what class the
text belongs to. After making the classification, then reflect on why you chose that class. Your
response should be formatted like:

Thoughts: <thoughts>
Description: <updated_class_description_for_class>
Reason: <reason_why_you_updated_the_class_description>

User Instructions:

For this classification task, the classes that the user chose were: <class_1>, <class_2>,
<class_n> name. Here is a description of the task at hand (why the user wants to build this
classification task): <classification_task_description>

Each class also has a corresponding class description, which describes the criteria the text must
follow to belong to a given class. Here are the class descriptions of each class.

<class_1_name>: <class_1_description>
<class_2_name>: <class_2_description>
..
<class_n_name>: <class_n_description>

Here is the current text that we are annotating:
--- Start of text ---
${text}
--- End of text ---

Based on this text and the classes we are trying to classify the text under, we generated the
following questions and answers about the text to help us classify it. There might be no questions
generated yet.

<question_1>
<answer_1>

<question_2>
<answer_2>

<question_m>
<answer_m>

Using these questions and answers, we classified the text. Our initial classification was
<model_prediction>. The actual class of the text is <correct_class> The user explained the reason
that this was the correct class was this explanation: <user_explanation>

14014

We want to update the description of the class <class_to_be_updated> to be more accurate based on
this new information. Without changing or altering the meaning in the current description, what is a
better class description for the class: <class_to_be_updated>

If there is nothing to add to the current class description from this example, then just copy the
current class description word for word.

B.4 Summarization
System Instructions:

I had a long thread of text and I wanted to take the summary, so I split it into smaller parts. We
will provide the summary of the first <i-1> parts of the essay and the summary of the <i> part.

Use these summaries as context to provide a summary of the entire essay, Don’t make the length of
the summary of this one part of the text equal to length of the the summary of multiple parts of
text.

Make the summary of the new thread proportional to how many parts of the text have been summarized
so far.

For example, if the summary of about 5 parts of the text are 400 words, the length of the summary of
the sixth part should be around 80 words.

Remember, the focus of the summary should also be on: <classification_task_description>;

User Instructions:

Summarize the following text with a focus on preserving context. Format the reponse with style:
free-text. Summarize with the context: <classification_task_description> and with a focus: we want
to eventually perform classification on this text.

Summary of First <i-1> parts: <summary_of_previous_sections>
Part <i>: <current part>

14015

