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Abstract

Recent advances in interpretability suggest
we can project weights and hidden states of
transformer-based language models (LMs) to
their vocabulary, a transformation that makes
them more human interpretable. In this paper,
we investigate LM attention heads and mem-
ory values, the vectors the models dynamically
create and recall while processing a given in-
put. By analyzing the tokens they represent
through this projection, we identify patterns in
the information flow inside the attention mech-
anism. Based on our discoveries, we create a
tool to visualize a forward pass of Generative
Pre-trained Transformers (GPTs) as an interac-
tive flow graph, with nodes representing neu-
rons or hidden states and edges representing the
interactions between them. Our visualization
simplifies huge amounts of data into easy-to-
read plots that can reflect the models’ internal
processing, uncovering the contribution of each
component to the models’ final prediction. Our
visualization also unveils new insights about
the role of layer norms as semantic filters that
influence the models’ output, and about neu-
rons that are always activated during forward
passes and act as regularization vectors. 1

1 Introduction

Wouldn’t it be useful to have something similar to
an X-ray for transformers language models?

Recent work in interpretability found that
hidden-states (HSs), intermediate activations in a
neural network, can reflect the “thought” process
of transformer language models by projecting them
to the vocabulary space using the same transfor-
mation that is applied to the model’s final HS, a
method known as the “logit lens” (nostalgebraist,
2020). For instance, the work of Geva et al. (2021,
2022b) shows how the fully-connected blocks of

1Code and tool are available at https://github.com/
shacharKZ/VISIT-Visualizing-Transformers.

transformer LMs add information to the model’s
residual stream, the backbone route of information,
promoting tokens that eventually make it to the
final predictions. Subsequent work by Dar et al.
(2022) shows that projections of activated neurons,
the static weights of the models’ matrices, are cor-
related in their meaning to the projections of their
block’s outputs. This line of work suggests we can
stop reading vectors (HSs or neurons) as just num-
bers; rather, we can read them as words, to better
understand what models “think” before making a
prediction. These studies mostly interpret static
components of the models or are limited to specific
case studies that require resources or expertise.

To address the gap in accessibility of the mech-
anisms behind transformers, some studies create
tools to examine how LMs operate, mostly by plot-
ting tables of data on the most activated weights
across generations or via plots that show the effect
of the input or specific weights on a generation
(Geva et al., 2022a; Hoover et al., 2020). Yet, such
tools do not present the role of each of the LM’s
components to get the full picture of the process.

In this paper, we analyze another type of LMs’
components via the logit lens: the attention mod-
ule’s dynamic memory (Vaswani et al., 2017), the
values (HS) the module recalls from previous in-
puts. We describe the semantic information flow
inside the attention module, from input through
keys and values to attention output, discovering
patterns by which notions are passed between the
LM’s components into its final prediction.

Based on our discoveries, we model GPTs as
flow-graphs and create a dynamic tool showing the
information flow in these models (for example, Fig-
ure 1). The graphs simplify detection of the effect
that single to small sets of neurons have on the pre-
diction during forward passes. We use this tool to
analyze GPT-2 (Radford et al., 2019) in three case
studies: (1) we reflect the mechanistic analysis of
Wang et al. (2022) on indirect object identification
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Figure 1: Modeling a single layer (number 14) of GPT-2 for the prompt: “The capital of Japan is the city of”.
Each node represents a small group of neurons or HS, which are labeled by the top token of their projection to
the vocabulary space. The plot should be read from left to right and includes the attention block: LN (the node at
the end of the first purple edge), query, memory keys and values (with greenish edges) and the topmost activated
attention output neurons (in blue and red), followed by the MLP: LN (in purple), first and second matrices’ most
activated neurons (in blue and red). The dark edges in the upper parts of the plot are the residuals of each sub-block.

in a simple way; (2) we analyze the role of layer
norm layers, finding they act as semantic filters;
and (3) we discover neurons that are always acti-
vated, related to but distinct from rogue dimensions
(Timkey and van Schijndel, 2021), which we term
regularization neurons.

2 Background

2.1 The Transformer Architecture

We briefly describe the computation in an auto-
regressive transformer LM with multi-head atten-
tion, such as GPT-2, and refer to Elhage et al.
(2021) for more information.23

The model consists of a chain of blocks (lay-
ers), that read from and write to the same residual
stream. The input to the model is a sequence of
word embeddings, x1, . . . , xt (the length of the in-
put is t tokens), and the residual stream propagates
those embeddings into deeper layers, referring to
the intermediate value it holds at layer l while pro-
cessing the i-th token as hsli (hsi in short). The
HS at the final token and top layer, hsLt , is passed
through a layer norm, lnf , followed by a decoding
matrix D that projects it to a vector the size of the
vocabulary. The next token probability distribution
is obtained by applying a softmax to this vector.

Each block is made of an attention sub-block
(module) followed by a multi-layer perceptron
(MLP), which we describe next.

2Appendix A details these models in the context of our
graph modeling.

3For simplicity we do not mention dropout layers and
position embeddings here.

2.2 GPTs Sub-Blocks

Attention: The attention module consists of four
matrices, WQ,WK ,WV ,WO ∈ Rd×d. Given a se-
quence of HS inputs, hs1, . . . , hst, it first creates
three HS for each hsi: qi = hsiWQ, ki = hsiWk,
vi = hsiWv, referred to as the current queries,
keys, and values respectively. When processing
the t-th input, this module stacks the previous ki’s
and vi’s into matrices K,V ∈ Rd×t, and calculates
the attention score using its current query q = qt:
A = Attention(q,K, V ) = softmax( qK

⊤
√
d
)V .

In practice, this process is done after each of
qi, ki, vi is split into h equal vectors to run this
process in parallel h times (changing the dimen-
sion from d to d/h) and to produce Aj ∈ R

d
h (0 ≤

j < h), called heads. To reconstruct an output in
the size of the embedding space, d, these vectors
are concatenated together and projected by the out-
put matrix: Concat(A0, ..., Ah−1)WO. We refer
to the process of this sub-block as Attn(hs) .

We emphasize that this module represents dy-
namic memory: it recalls the previous values vi
(which are temporary representations for previous
inputs it saw) and adds a weighted sum of them
according to scores it calculates from the multi-
plication of the current query qt with each of the
previous keys ki (the previous keys and values are
also referred to as the “attention k-v cache”).

MLP: This module consists of an activation
function f and two fully connected matrices,
FF1, FF⊤

2 ∈ Rd×N (N is a hidden dimension,
usually several times greater than d). Its output is
MLP (x) = f(xFF1)FF2.
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Entire block: GPT-2 applies layer norm (LN),
before each sub-block: ln1 for the attention and
ln2 for the MLP. While LN is thought to improve
numeric stability (Ba et al., 2016), one of our dis-
coveries is the semantic role it plays in the model
(subsection 5.2). The output of the transformer
block at layer l, given the input hsli, is

hsl+1
i = hsli +Attn(ln1(hs

l
i))+

MLP (ln2(Attn(ln1(hs
l
i)) + (hsli))) (1)

2.3 Projecting Hidden States and Neurons
The Logit Lens (LL): nostalgebraist (2020) ob-
served that, since the decoding matrix in GPTs is
tied to the embedding matrix, D = E⊤, we can
examine HS from the model throughout its com-
putation. Explicitly, any vector x ∈ Rd can be
interpreted as a probability on the model’s vocabu-
lary by projecting it using the decoding matrix with
its attached LN:

LL(x) = softmax(lnf (x)D) = s ∈ R|vocabulary|

(2)
By applying the logit lens to HS between blocks,
we can analyze the immediate predictions held by
the model at each layer. This allows us to observe
the incremental construction of the model’s final
prediction, which Geva et al. (2022b) explored for
the MLP layers.

Very recent studies try to improve the logit lens
method with additional learned transformations
(Belrose et al., 2023; Din et al., 2023). We stick
with the basic approach of logit lens since we wish
to explore the interim hypotheses formed by the
model, rather than better match the final layer’s
output or shortcut the model’s computation, and
also, since those new methods can only be applied
to the HS between layers and not to lower levels of
components like we explain in the next section.

Interpreting Static Neurons: Each of the men-
tioned matrices in the transformer model shares
one dimension (at least) with the size of the embed-
ding space d, meaning we can disassemble them
into neurons, vectors that correspond to the “rows”
or “columns” of weights that are multiplied with
the input vector, and interpret them as we do to HS.
Geva et al. (2021) did this with single neurons in
the MLP matrices and Dar et al. (2022) did this
with the interaction of two matrices in the attention
block, WQ with WK and WV with WO, known
as the transformer circuits QK and OV (Elhage

et al., 2021). 4 These studies claim that activat-
ing a neuron whose projection to the vocabulary
has a specific meaning (the common notion of its
most probable tokens) is associated with adding its
meaning to the model’s intermediate processing.

In our work we interpret single and small groups
of HS using the logit lens, specifying when we are
using an interaction circuit to do so. In addition,
while previous studies interpret static weights or
solely the attention output, we focus on the HS that
the attention memory recalls dynamically.

3 Tracing the Semantics Behind the
Attention’s Output

In this section, we trace the components which cre-
ate the semantics of the attention block’s output,
by comparing vectors at different places along the
computation graph. In all the following experi-
ments, we project HS into the vocabulary using the
logit lens to get a ranking of all the tokens, then
pick the top-k tokens according to their ranking.
We measure the common top tokens of two vec-
tors (x1 and x2) via their intersection score Ik (Dar
et al., 2022):

Ik(x1, x2) =
LL(x1)[top-k] ∩ LL(x2)[top-k]

k
(3)

We say that two vectors are semantically aligned if
their Ik is relatively high (close to 1) since it means
that a large portion of their most probable projected
tokens is the same.

Throughout this section, we used CounterFact
(Meng et al., 2022), a dataset that contains factual
statements, such as the prompt “The capital of Nor-
way is” and the correct answer “Oslo”. We gen-
erate 100 prompts randomly selected from Coun-
terFact using GPT-2-medium, which we verify the
model answers correctly. We collect the HSs from
the model’s last forward-passes (the passes that
plot the answers) and calculate Ik=50. 5

3.1 Projecting the Attention Memory
For our analysis we interpret WV products, the
attention’s heads Aj and its memory values, vji (j
for head index and i for token index). For each
component we calculate its mean Ik=50 with its
attention block output (Attn(hsli), “Ik attn”), its

4To achieve two matrix circuit we multiply one matrix with
the output of the second, for example, the OV circuit outputs
are the multiplication of WO matrix with the outputs of WV .

5Refer to Appendix C, D.1 for more information about our
model selection and setup.
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(a) Without WO projection (b) With WO projection

Figure 2: Comparing Ik=50 token projection alignment between the mean of all heads Aj with different parts of the
model’s, with and without using the attention block’s WO matrix for projection, suggesting that the output of the
attention block’s WV operates in a different space and that WO’s role is to adjust it to the common embedded space.

transformer block output (hsl+1
i , “Ik block”), and

the model’s final output (hsLi , “Ik final”).
Dar et al. (2022) suggest using the OV circuit,

in accordance to Elhage et al. (2021), to project the
neurons of WV by multiplying them with WO. Sim-
ilarly, we apply logit lens to Aj once directly and
once with the OV circuit, by first multiplying each
Aj with the corresponding parts of WO to the j-th
head (j : j + d

h ). 6 While the first approach shows
no correlation with any of the Ik we calculate (Fig-
ure 2a), the projection with OV shows semantic
alignment that increase with deeper layers, having
some drop at the final ones (Figure 2b). The pattern
of the latter is aligned with previous studies that
examine similar scores with the MLP and the entire
transformer block (Haviv et al., 2023; Lamparth
and Reuel, 2023; Geva et al., 2022b), showing that
through the OV circuit there is indeed a seman-
tic alignment between the attention heads and the
model’s outputs and immediate predictions.

This finding suggests that the HS between WV

and WO do not operate in the same embedded
space, but are rather used as coefficients of the
neurons of WO. Therefore, outputs of WV should
be projected with logit lens only after they are mul-
tiplied by WO.

3.2 Projecting Only the Top Attention Heads
We observe that at each attention block the norms
of the different heads vary across generations, mak-
ing the top tokens of the heads with the largest
norms more dominant when they are concatenated
together into one vector. Therefore, we separately
ranked each attention block’s heads with the OV
circuit (AjWO) according to their norms and re-
peated the comparison. We found that only the

6In practice, the implementation of projecting a vector in
the size of d

h
like Aj is done by placing it in a d-size zeroed

vector (starting at the j · d
h

index). Now we can project it using
logit lens (with or without multiplying it with the entire WO

matrix for the OV circuit).

(a) Mean Ik=50 for only the top 3 heads with the largest norm,
comparing to attention block output.

(b) Mean Ik=50 for only the head with the largest norm, com-
paring to attention block output, layer output and the model’s
final output.

Figure 3: Projecting attention heads

few heads with the largest norm have a common
vocabulary with their attention block output (Fig-
ure 3a), which gradually increases the effect on the
blocks’ outputs and the final prediction (Figure 3b).
This suggests that the attention block operates as a
selective association gate: by making some of the
heads much more dominant than others, this gate
chooses which heads’ semantics to promote into
the residual (and which to suppress).

3.3 Projecting Memory Values

We ran the same experiment comparing the mem-
ory values vji, the values that the attention mech-
anism recalls from the previous tokens. For each
head Aj , we rank its memory values based on their
attention scores and observe that memory values as-
signed higher attention scores also exhibit a greater
degree of semantic similarity with their correspond-
ing head. The results for the top three memory
values are illustrated in Figure 5.
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Figure 4: Modeling a single attention block of GPT-2 for the prompt: “The capital of Japan is the city of”. The
pop-up text windows are (from top to bottom): One of the memory values, whose source is the input token “Japan”
and whose projection is highly correlated with the output of the model, “Tokyo” (1). The residual stream and the
labels of its connected nodes (2). The input to the attention block after normalization, which its most probable token
is “London” (3). One of the most activated neurons of WO that has a negative coefficient. Its projection is highly
unaligned with the model’s output, which the negative coefficient suppresses (4). At the block’s input, the chance
for “Tokyo” is < 1%, but at its output it is 25% (purple pop-up window (2)), i.e., this attention block prompts the
meaning of “Tokyo”. The two biggest heads are “Yamato” (with Japanese concepts) and “cities”, which together
create the output “Tokyo”.

Figure 5: Mean Ik=50 for the 3 top biggest by attention
score memory values, comparing to their head output.

3.4 Interim Summary

The analysis pictures a clear information flow, from
a semantic perspective, in the attention block: [1]
the block’s input creates a distribution on the pre-
vious keys resulting in a set of attention scores for
each head (subsection 2.2), [2] which trigger the
memory values created by previous tokens, where
only the ones with the highest attention scores cap-
ture the head semantics (subsection 3.3). [3] The
heads are concatenated into one vector, promoting
the semantics of only a few heads (subsection 3.2)
after they are projected to the vocabulary through
WO (subsection 3.1). An example of this procedure
is shown for the prompt “The capital of Japan is
the city of”, with the expected completion “Tokyo”,
in Figure 1 for the flow in a full block and in Fig-
ure 4 for the flow in the attention sub-block. An
input token like “Japan” might create a memory
value with the meaning of Japanese concepts, like
“Yamato” and “Samurai”. This memory value can

capture its head meaning. Another head might have
the meaning of the token “cities”, and together the
output of the attention could be “Tokyo” .

4 Modeling the Information Flow as a
Flow-Graph

As in most neural networks, information processing
in an autoregressive LM can be viewed as a flow
graph. The input is a single sentence (a sequence
of tokens), the final output is the probability of
the next word, with intermediate nodes and edges.
Geva et al. (2022b, 2021) focused on information
flow in and across the MLP blocks, while our anal-
ysis in section 3 focused on the information flow
in the attention block. In this section, we describe
how to construct a readable and succinct graph for
the full network, down to the level of individual
neurons. Our graph is built on collected HS from
a single forward pass: it uses single and small sets
of HSs as nodes, while edges are the interactions
between nodes during the forward pass.

One option for constructing a flow graph is to
follow the network’s full computation graph. Com-
mon tools do this at the scale of matrices (Roeder,
2017), coarser than the neuronal scale we seek.
They usually produce huge, almost unreadable,
graphs that lack information on which values are
passed between matrices and their effect. Sim-
ilarly, if we were to connect all possible nodes
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(a) Tabular information from
Wang et al. (2022) for GPT-
2 small, identifying the Name
Mover and Negative Name
Mover Heads, measured by
strongest direct effect on the
final logits. (b) The corresponding flow-graph for layer 10 attention from GPT-2 small.

Figure 6: While 6a shows quantitative results, the graph model in Figure 6b shows qualitative information that is
otherwise difficult to notice: The attention’s LN is the first place in the model where the attention input’s most
probable token is “ Mary” (1). The Negative Name Mover Head from layer 10, represented by the blue cell in
the table’s 10-th row, is visualized in the graph with a red pop-up showing it assigns the token “ Mary” its lowest
possible ranking, meaning its role is to reduce the probability of this token (2). The output of the attention block is
the token “ John” but its second most probable output is “ Mary” with around 2% chance (3). However, when added
to the residual, together they predict almost 93% chance for “ Mary” (4).

(neurons and HSs) and edges (vector multiplica-
tions and summation), the graph would be unread-
able, as there are thousands of neurons in each
layer. Moreover, our analysis in section 3 shows
that many components are redundant and do not
affect the model’s intermediate processing. There-
fore, based on the hypothesis that the neurons with
the strongest activations exert more significant in-
fluences on the output, we prune the graph to retain
only the most relevant components: by assigning
scores to the edges at each computation step, like
ranking the attention scores for the edges connected
to each memory value, or the activation score for
neurons in MLPs, we present only the edges with
the highest scores at each level. Nodes without
any remaining edge are removed. The goal is to
present only the main components that operate at
each block. See subsection A.4 for details.

To present the semantic information flow, we
assign each node with its most probable projected
token and the ranking it gives to the model’s final
prediction, according to the logit lens. Each node is
colored based on its ranking, thereby emphasizing
the correlation between the node’s meaning and the
final prediction. Additionally, we utilize the width
of the edges to reflect the scores used for pruning.

Figures 1 and 4 show static examples on one
sentence, the first for a single transformer block’s
graph and the second with an annotated explanation
on the attention sub-blocks’s sub-graph.

5 Example of Use and Immediate
Discoveries

The flow-graph model is especially beneficial for
qualitative examinations of LMs to enhance re-
search and make new discoveries. In this section,
we demonstrate this with several case studies.

5.1 Indirect Object Identification

Recently, Wang et al. (2022) tried to reverse-
engineer GPT-2 small’s computation in indirect
object identification (IOI). By processing prompts
like “When Mary and John went to the store, John
gave a drink to”, which GPT-2 small completes
with “Mary”, they identified the roles of each atten-
tion head in the process using methods like chang-
ing the weights of the model to see how they affect
its output. One of their main discoveries was at-
tention heads they called Name Mover Heads and
Negative Name Mover Heads, due to their part
in copying the names of the indirect object (IO,
“Mary”) or reducing its final score.

We ran the same prompt with the same LM and
examined the flow-graph it produced. The flow
graph (Figure 6b) is highly correlated to Wang
et al.’s results (Figure 6a). While they provide a
table detailing the impact of each attention head on
the final prediction, our graph shows this by indicat-
ing which token each head promotes. For instance,
heads that project the token “Mary” among their
most probable tokens are the Name Mover Heads,
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while Negative Name Mover heads introduce the
negative meaning of “Mary” (evident by the low
probability of “Mary” in their projection, high-
lighted in red). Not only does our model present
the same information as the paper’s table, which
was produced using more complex techniques, but
our modeling also allows us to observe how the
attention mechanism scores each previous token
and recalls their memory values. For example, we
observe that the Negative Name Mover in layer
10 obtains its semantics from the memory value
produced by the input token “Mary”.

We do not claim that our model can replace the
empirical results of Wang et al. (2022), but it could
help speed up similar research processes due to the
ability to spot qualitative information in an intuitive
way. Also, the alignment between the two studies
affirms the validity of our approach for a semantic
analysis of information flow of GPTs.

5.2 Layer Norm as Sub-Block Filter
Layer norm (LN) is commonly applied to sub-
blocks for numerical stability (Ba et al., 2016) and
is not associated with the generation components,
despite having learnable weights. We investigate
the role of LN, focusing on the first LN inside a
GPT-2 transformer block, ln1, and apply the logit
lens before and after it. We use the data from sec-
tion 3 and, as a control group, random vectors. Fig-
ure 7 shows change in logit lens probability of all
tokens after applying LN. The tokens whose prob-
ability decreases the most are function words like
“the”, “a” or “not”, which are also tokens with high
mean probability across our generations (although
they are not the final prediction in the sampled
generations). Conversely, tokens that gain most
probability from LN are content words like “Mi-
crosoft” or “subsidiaries”. See more examples and
analyses of the pre-MLP LN, ln2, in Appendix E.
These results suggest that the model uses LN to
introduce new tokens into the top tokens that it
compares at each block.

5.3 Regularization Neurons
While browsing through many examples with our
flow graph model, we observed some neurons that
are always activated in the MLP second matrix,
FF2. We quantitatively verified this using data
from section 3 and found that each of the last lay-
ers (18—23) has at least one neuron that is among
the 100 most activated neurons more than 85% of
the time (that is, at the top 98% most activated

Figure 7: Differences in token probabilities before and
after LN ln1 from layer 15 of GPT-2 medium, according
to the generations from section 3. The horizontal axis
is the index of all the tokens in GPT-2 and the vertical
shows if the token lost or gained probability from the
process (negative or positive value). We annotate the
tokens that are most affected.

neurons out of 4096 neurons in a given layer). At
least one of these neurons in each layer results in
function words when projected with the logit lens,
which are invalid generations in our setup. We fur-
ther observe that these neurons have exceptionally
high norms, but higher-entropy token distributions
(closer to uniform), when projected via the logit
lens (Figure 8). This suggests that these neurons
do not dramatically change the probabilities of the
final predictions.

Figure 8: Entropy and norm of “regularization neurons”
from the second MLP matrix of layer 19 compared to
the matrix average and the 100 most activated neurons
across 100 prompts from CounterFact.

By plotting these neurons’ weights, we find a
few outlier weights with exceptionally large values
(Figure 9). Since these neurons are highly activated,
the outlier weights contribute to the phenomenon
of outlier or rogue dimensions in the following HS,
described in previous work (Puccetti et al., 2022;
Timkey and van Schijndel, 2021; Kovaleva et al.,
2021). This line of work also shows that ignoring
those dimensions can improve similarity measures
between embedded representations, while ignoring
them during the computation of the model causes a
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significant drop in performance.
Our analysis adds a semantic perspective to the

discussion on rogue dimensions: since these neu-
rons’ projections represent “general” notions (not
about a specific topic, like capitals or sports) and
since they have high entropy, they might play a role
of regularization or a sort of bias that is added as a
constant to the residual stream. Finally, to reflect
such cases, we paint all the accumulation edges in
our flow-graph (where vectors are summed up) in
grey, with darker shades expressing lower entropy.

Figure 9: Plotting the value in each entry in the reg-
ularization neurons at layer 19, comparing the mean
neuron and presenting two randomly sampled neurons
that represent typical neurons. Those high magnitudes
of the 3 entries in the regularization neurons help in the
creation of the rogue dimensions phenomena.

6 Related Work

Derived from the original logit lens (nostalgebraist,
2020), several studies analyze the role of each com-
ponent in LMs using token projection (Geva et al.,
2022b; Dar et al., 2022). In the last few months,
new studies suggest trainable transformation for
projecting HS (Din et al., 2023; Belrose et al.,
2023), promising to better project HS in the earlier
layers of LMs (which currently seems to have less
alignment with the final output than later ones).

Other work took a more mechanistic approach
in identifying the role of different weights, mostly
by removing weights or changing either weights or
activations, and examining how the final prediction
of the altered model is affected (Wang et al., 2022;
Meng et al., 2022, 2023; Dai et al., 2022).

There has been much work analyzing the atten-
tion mechanism from various perspectives, like try-
ing to assign linguistic meaning to attention scores,
questioning their role as explanations or quantify
its flow (Abnar and Zuidema, 2020; Ethayarajh and

Jurafsky, 2021). See Rogers et al. (2020) for an
overview.

Our work is different from feature attribution
methods (Ribeiro et al., 2016; Lundberg and Lee,
2017), which focus on identifying the tokens in the
input that exert a greater influence on the model’s
prediction. Some studies visualise the inner compu-
tation in LMs. For example, the work of Geva et al.
(2022a) tries to look into the inner representation
of model by visualizing the logit lens projection of
the HSs between blocks and on the MLP weights.
Other tools that focused on the attention described
the connection between input tokens (Hoover et al.,
2020; Vig and Belinkov, 2019) but did not explore
the internals of the attention module. There are
general tools for visualizing deep learning mod-
els, like Roeder (2017), but they only describe the
flow of information between matrices, not between
neurons. Strobelt et al. (2018a,b) visualize hid-
den states and attention in recurrent neural network
models, allowing for interaction and counterfactual
exploration.

7 Conclusion

In this work, we used token projection methods
to trace the information flow in transformer-based
LMs. We have analyzed in detail the computation
in the attention module from the perspective of in-
termediate semantics the model processes, and as-
sessed the interactions between the attention mem-
ory values and attention output, and their effect on
the residual stream and final output.

Based on the insights resulting from our anal-
ysis, we created a new tool for visualizing this
information flow in LMs. We conducted several
case studies for the usability of our new tool, for
instance revealing new insights about the role of
the layer norm. We also confirmed the validity of
our approach and showed how it can easily support
other kinds of analyses.

Our tool and code will be made publicly avail-
able, in hope to support similar interpretations of
various auto-regressive transformer models.

Limitations

Our work and tool are limited to English LMs,
in particular different types of GPT models with
multi-head attention, and the quantitative analyses
are done on a dataset of factual statements used in
recent work. While our methodology is not specific
to this setting, the insights might not generalize to
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other languages or datasets.
In this work we interpret HS and neurons using

projection methods which are still being examined,
as well the idea of semantic flow. The way we
measure impact and distance between HS using Ik
(the intersection between their top tokens) is not
ideal since it might not convey the semantic connec-
tion of two different tokens with the same meaning.
While it is possible to achieve more nuanced mea-
surements with additional human resources (users)
or semi-automatic techniques, there would be limi-
tations in mapping a vast number of neurons and
their interactions due to the enormous number of
possible combinations. Therefore, we deliberately
chose not to employ human annotators in our re-
search.

Our pruning approach is based on the assump-
tion that the most activate neurons are the ones that
determine the model’s final prediction. Although
this claim is supported by our qualitative analysis,
we cannot claim that the less activated neurons are
not relevant for building the prediction. Since our
flow-graph model does not show those less active
neurons, it might give misleading conclusions.

Finally, our methods do not employ causal tech-
niques, and future work may apply various inter-
ventions to verify our findings. Our tool tries to
reflect what GPT “thinks”, but further investigation
of its mechanism is needed before approaching a
full understanding of this “black box”.
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A Modeling GPTs as a Flow-Graph

This section presents a formal construction of GPTs
as flow-graphs for single forward passes, followed
by more implementation details. The information
here supplements the brief description given in sub-
section 2.2 and is brought here for completeness.

Like any graph, our graph is defined by a set
of nodes (vertices) and edges (links). In our case,
the graph follows a hierarchical structure, starting
with the breakdown of the entire model into layers,
followed by sub-blocks such as attention and MLP
blocks, and eventually individual or small sets of
neurons. A GPT model consisting of L transformer
blocks denoted as Bl (0 ≤ l < L), where WQ,
WK , WV , WO represent the matrices for the atten-
tion block, and FF1 = WFF1 and FF2 = WFF2

represent the matrices for the MLP. We now walk
through the forward computation in the model and
explain how we construct the flow graph. Figure 10
over-viewing the process.

A.1 The Attention Block as a Flow-Graph

1. The input to the l-th block for the t-th input,
hslt, passes through a LN, resulting in a nor-
malized version of it. We create a node for the
input vector and another node for the normal-
ized vector, connecting them with an edge.

2. The normalized input is multiplied by WQ,
WK , and WV , resulting in query, key, and
value representations (q, k, v). We create a
single node to represent these three representa-
tions, as they are intermediate representations
used by the model. We construct an edge be-
tween the normalized input and this node.

3. The last three representations (q, k, v) are
split into h heads (qjt, kjt, vjt for 0 ≤ j < h).
Each head’s query vector (qjt) is multiplied
by all the previous key vectors (kji for 1 ≤
i ≤ t), calculating the attention probability
for each of the previous token values. We cre-
ate a node for each head’s query vector and
connect it with an edge to the overall query
node created in the previous step. Addition-
ally, we create a node for each key vector and
connect it with an edge to its corresponding
head’s query vector.

4. Each memory value vector (vji, the memory
value of the j-th head and the i-th input token),
is summed up with a coefficient (the attention

score) into its corresponding head Aj . We cre-
ate a node for each value vector and connect
it with an edge to its corresponding key vec-
tor. Furthermore, we create a node for each
summed-up head Aj and connect it to all of
its memory value vectors. This establishes a
direct path between each head’s query qjt, its
keys kji, its values vji, and the head’s final
vector Aj . It is important to note that the cal-
culation of attention scores is non-linear and
preserves the relative ranking among memory
values.

5. The h heads Aj are concatenated, resulting
in a vector Aconcatenated with the same size
as the model’s hidden state (embedding size).
We create a node for Aconcatenated and con-
nect all the heads Aj to it.

6. Aconcatenated is multiplied by WO to produce
the attention output Attn(hslt). We create
a node for each entry in Aconcatenated and
each neuron in WO, connecting them through
edges representing the multiplication process.
Additionally, we create a node for the output
Attn(hslt) and connect each neuron to it.

7. The attention output is then added to the resid-
ual stream of the model. We create a node for
the sum of the attention block and the residual,
hsattn+residual, and connect it to Attn(hslt).

8. The attention block also contains a skip con-
nection, The residual, from the input hslt
straight to the output hsattn+residual, so we
connect an edge between them.

A.2 The Feed Forward Block as a
Flow-Graph

This structure is mainly based on the theory of
using two fully connected layers as keys and values,
as described by Geva et al. (2021)

1. Similar to the attention block, the input to
this block, denoted as ĥstl = hsattn+residual

(representing the intermediate value of the
residual after the attention sub-block), passes
through a layer norm, resulting in a normal-
ized version of it. We create a node for the
input vector and another node for the normal-
ized vector, connecting them with an edge.

2. The normalized input is multiplied by WFF1.
For each neuron in the matrix, we create a
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Figure 10: The overview pro-
cess of creating a flow-graph
modeling (the bottom graph)
from a single forward pass
(the upper draw). In this toy-
example we model a simplified
version of a MLP sub-block.
Each node in the graph is cor-
respond to a static weight or
HS in the upper diagram and
labeled by its logic lens projec-
tion, for example: the input has
the meaning of “London” and
the output has the meaning of
“Tokyo”.

node and connect an edge from the normalized
input to it (corresponding to the multiplication
of each neuron separately).

3. The result of the previous multiplication is a
vector of coefficients for the second MLP ma-
trix, WFF2. Consequently, we create a node
for each neuron in WFF2 and connect an edge
between each neuron and its corresponding
neuron from WFF1. It is important to note
that the actual process includes a non-linear
activation between the two matrices, which
affects the magnitude of each coefficient but
not its sign (positive or negative).

4. The neurons of WFF2 are multiplied by their
coefficients and summed up into a single vec-
tor, which serves as the output of the MLP
block, denoted as MLP (ĥstl). We create a
node for MLP (ĥstl) and connect all the neu-
rons from WFF2 to it.

5. The output of the block is then added to the
model’s residual stream. We create a node for
the sum of the MLP block and the residual,
denoted as hsMLP+residual, and connect it to
MLP (ĥstl).

6. Similarly to the attention block, the MLP
block also includes a skip connection, di-
rectly connecting the input ĥstl to the output
hsMLP+residual. Therefore, we connect an
edge between them.

A.3 Connecting The Graphs of Single Blocks
Into One

In GPT-2 each transformer block contains an atten-
tion block followed by a MLP block. We define a

graph for each transformer block by the concatena-
tion of its attention graph and MLP graph, where
the two graphs are connected by an edge between
the attention’s hsattn+residual and the MLP’s ĥstl .
The input to the new graph is the input of the origi-
nal attention sub-graph, and its output is the output
of the original MLP sub-graph.

To define the graph of the entire model we con-
nect all its transformer blocks’ sub-graphs into one
graph by connecting an edge between each block’s
sub-graph output and the input of its following
block’s sub-graph. The input to the new graph is
the input of the first block and the output is the final
block output.

A.4 Scoring the Nodes and Edges
In order to emphasize some of the behaviors of the
models, we define scoring functions for its nodes
and edges.

Scoring nodes according to projected token
ranking and probability: as we described, each
node is created from a vector that we project to
the vocabulary space, resulting in a probability
score that defines the ranking of all the model’s
tokens. Given a specific token w and a single vec-
tor v we define its neuronal ranking and probability,
vrank(w) and vprob(w), as the index and probabil-
ity of token w in the projected vector of v.

Scoring edges according to activation value and
norm: There are two types of edges: edges that
represent the multiplication of neurons with coeffi-
cients (representing neuron activation) and edges
that represent summation (as part of matrix multi-
plication). Edges that represent multiplication with
coefficients are scored by the coefficient. We also
include in this case the attention scores, which are
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used as coefficients for the memory values. Edges
that represent summation are scored by the norm
of the vector which they represent. This scoring
aims to reflect the relative involvement of each of
the weights, since previous work found that neu-
rons with higher activation or norm have a stronger
impact on the model behavior (Geva et al., 2022b).

A.5 Modeling a Single GPT Inference as a
Flow-Graph

Given a prompt x1, . . . , xt we pass it through a
GPT model and collect every HS (input and output
of each matrix multiplication). Then we create the
flow-graph as described above, where the input and
HS are according to the last input token xt and the
attention memory (previous keys and values) corre-
spond to all the input tokens. This process results
in a huge graph with many thousands of nodes even
for small models like GPT-2 small (Radford et al.,
2019), which in this sense can only be examined
as tabular data, similar to previous work. Since our
goal is to emphasize the flow of data, we reduced
the number of nodes according to our discoveries
and the assumption that neurons in the MLP blocks
with relatively low activation have a small effect
on the model output (Geva et al., 2022b). We also
note that with a simple adjustment our model can
show any number of neurons or show only chosen
ones.

The reduced graph is defined as follows:

• In the attention sub-graph, we chose to present
all the nodes of the heads’ query and output,
qjt, Aj , but to present only the memory keys
and values, kji, vji, that received the highest
attention score, in light of the results from Sec-
tion 3.1. We also decided to present only the
top most activated neurons of WO, according
to the largest entries (by absolute value) from
its coefficients HS, Aconcated.

• In the MLP sub-graph we decided to show
only the nodes of the most activated neurons.
The activation is determined by the highest
absolute values in the HS between the two
matrices after the nonlinearity activation. That
is, we examine the input to the second MLP
matrix WFF2 and present only the nodes that
are connected to its highest and lowest entries.

• We make it possible to create a graph from
only part of consecutive transformer blocks,

allowing us to examine only a few blocks at a
time.

The above simplifications help construct a scal-
able graph that humans can easily examine.

A.6 Implementation Details and how to Read
the Graph

We use the Python package Plotly-Express (Inc.,
2015) to create a plot of the model. We will pro-
vide all the source code we created to model the
GPT-2 family models (small, medium, large and
XL) and GPT-J (Wang and Komatsuzaki, 2021),
which includes configuration files that allow ad-
justing the tool to other decoders with multi-head
attention. We are also providing the code to be used
as a guided example with instructions designed to
facilitate the adaptation of our flow-graph model to
other GPT models.

Using our tool is straightforward and only re-
quires running our code. The flow-graph plot can
be presented in your software environment or saved
as an HTML file to view via a browser. Personal
computers and environments like Google Colab are
sufficient for modeling LMs like GPT-2 medium,
even without GPU. Plotly-Express allows us to
inspect the created graphs interactively, like see-
ing additional information when hovering over the
nodes and edges, or to filter some of them by the
“Select” options on the top right of the generated
plots.

The basics on how to read and use the flow-graph
plots are:

• The flow is presented from left to right (ma-
trices that operate earlier during the forward
pass will be to the left of later ones). When
plotting a single block we can identify the at-
tention sub-block (the first from the left) and
the MLP sub-block as they are connected by
a wide node and by separate and parallel wide
edges representing the residual (each with a
slightly different color). When plotting more
than one block we can identify the different
blocks by the repetitive structure of each.

• Each node is labeled with its most probable
projected token. When hovering over a node,
we can see from which layer and from which
HS or matrix it was taken (the first number
and the follow-up text in the pop-up text win-
dow. For example: “10) attn-input” suggest
this node is the input of the attention sub-block
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Figure 11: Modeling block number 8 of GPT-2 small for the prompt: “Buenos Aires is the capital of”, which the
model answers correctly with “Argentina”. By using the option bar (top right) we hide the MLP’s nodes and focus on
the attention sub-block. When hovering over the attention input node (1) a pop-up text window shows information
about its corresponding HS, revealing its top projection tokens and how this HS ranks the token “Argentina” (giving
it less than a 1% chance). Comparing the input to the output HS of the block (2) we can understand this block
promotes the token “Argentina” (the output ranks it with around 63% chance). In order to identify how this block
creates its prediction we follow the flow of the model and notice attention head number 11 (3), the one with the
largest norm from all the heads (we can see this from the width of its connected edge which is proportional to its
norm). Its top projection token is “Argentina” and we want to understand how it was created. To do that, we go
along the flow to its memory values (heads are the sum of their memory values). We identify that the memory value
that had the largest attention score (4) was created from the input token “Aires” (as shown on the pop-up window).
This memory value’s 4 most probable projection tokens are “Aires”, “Argentine”, “Argent” and “Argentina”, having
high intersection with the most probable tokens of its head’s projection and the attention output’s projection.

in layer 10). The other information when hov-
ering over each node is its top most probable
tokens (a list of tokens) and “status”, suggest-
ing its relation with another token, “target”,
chosen by the user (if given); in particular, its
probability and ranking for that token.

• In the attention score calculation we can lo-
cate which previous key and value were cre-
ated by which of the input tokens, since they
have the same indexes in the attention mem-
ory implementation of GPT-2. We present this
information by hovering over the nodes in the
attention sub-graph.

• Hovering over an edge presents which nodes
it connects to along with information about
what it represents, for example: if it is an edge
between an attention query and key, it will
represent the attention score between them. If
the edge represents a summation of one HS
into another, the information on the edge will
be the norm of the summed HS.

• A user invoking the code can choose the
model, the prompt, which layers to present,
and a “target” token (recommend to be the ac-
tual output of the model for the given prompt).

B Walkthrough the Graph Model

The flow-model is an interactive plot. At the top
right of the screen there is an option bar that enables
to focus on specific parts of the model, by hiding
chosen nodes. By examining different blocks and
focusing on chosen parts of the graph we gain in-
sights into the predictive mechanisms of the models
and how they create their predictions. In Figure 11
we explore how gpt-2 small recalls a factual in-
formation, tracing which input tokens created the
memory value vji whose head Aj is responsible
for the output of the block (showcasing the patterns
we identify in section 3). Similar to subsection 5.1
our findings do not assert that the identified com-
ponents exclusively control the model’s final pre-
diction. Rather, they are recognized as the primary
elements responsible for shaping the immediate
prediction.
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C Model Selection

As mentioned, we used GPT-2 medium (355M pa-
rameters) as our main case study due to its avail-
ability, wide use in previous research, the ability to
run it even with limited resources, and the core as-
sumption that characteristics we see with it are also
relevant to bigger models. To validate ourselves,
we also ran parts of our quantitative analysis with
GPT-2 XL (1.5B parameters) with the same setup
as we had with the medium model, and observed
the same behavior; for example, see Figure 12. For
these reasons we believe our analysis and modeling
are applicable to general GPT-based models and
not only to a specific model.

(a) Mean Ik=50 for only the 3 heads with the largest norm,
comparing to attention block output.

(b) Mean Ik=50 for only the top-norm head, comparing to
attention block output, layer output, and the model’s final
output.

Figure 12: Projecting attention heads of GPT-2 xl, with
the same setups as in Figure 3, shows that the patterns
we saw with GPT-2 medium are similar to the ones we
see with a bigger model.

D Additional Quantitative Analysis of
Information Flow Inside the Attention
Blocks

D.1 Additional Setup Information

We provide here additional information on our
setup and data selection. The choice of using Coun-
terFact is based on its previous usage in studies
on identifying where information is stored in mod-
els (Meng et al., 2022, 2023). However, it has the
issue that GPT-2 does not succeed in answering
most of its prompts correctly (only approximately
8% for GPT-2 medium and 14% for GPT-2 xl),
and in many cases, the model’s predictions consist
primarily of function words (like the token “the”).

(a) Mean Ik=50 for only the 3 heads with the largest norm,
comparing to attention block output.

(b) Mean Ik=50 for only the top-norm head.

Figure 13: Projecting attention heads for prompts from
CounterFact, without filtering prompts the model does
not answer correctly. These show almost the same re-
sults as with the main setup in Figure 3, suggesting the
mechanism behind the model’s attention works the same
for correctly recalling factual knowledge and when pre-
dicting tokens of function words.

To avoid editing prompts or analyzing uninterest-
ing cases, we decided to use only prompts that the
model answers correctly. A plausible question is
whether the model acts differently when it predicts
the right answer compared to the general case, with-
out filtering by answer correctness. To examine this
we ran our analysis twice, once with only prompts
the model knows to answer (like we explain in Sec-
tion 3) and another time with random prompts from
CounterFact. It turns out that the attention mecha-
nism works the same way in both setups, resulting
in almost the same graphs (Figure 13), which sug-
gests that the behavior we saw is not restricted to
recalling factual knowledge.

The only main difference we notice is the proba-
bility score the models give to their final prediction
along the forward pass: when the model correctly
predicts the CounterFact prompt (meaning it recalls
a subject) it starts to assign the prediction high prob-
abilities around its middle layers. However, when
the model predicts incorrectly (and mostly predicts
a function word), it assigns moderate probabilities
starting from the earlier layers (Figure 14). This
might suggest for later works to examine if factual
knowledge, which is less common than function
words in general text, is located in deeper layers as
opposed to non-subject tokens.
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Figure 14: The probability GPT-2 medium assigns to
its final predictions’ tokens for the projection of the HS
between blocks, colored by whether the model returns
the true answer or not.

D.2 Additional Results

We add more graphs to the analysis in Section 3
that help explain our claims in the conclusion of
that part. All results are taken from the same experi-
ment we used in that section. Notice that according
to the following analysis the model exhibits dis-
tinct behavior during its initial 4–6 layers (out of
24) compare to the subsequent layers, as indicated
by the low Ik scores for the first layers (Figures
15, 16), a behavior that was noted in previous work
(Geva et al., 2022b; Haviv et al., 2023; Dar et al.,
2022) and is yet to be fully understood.

Figure 15 illustrates the relationship between the
attention output and the residual. It showcases the
incremental changes that occur in the residual as
a result of the attention updates to it. Similar to
how the MLP promotes conceptual understanding
within the vocabulary (Geva et al., 2022b), the at-
tention layers accomplish a similar effect from the
perspective of the residual. The figure also reveals
the high semantic similarity between each attention
sub-block and its preceding attention sub-block.

Figure 15: Comparing Ik=50 of attention output with
its current and previous residual (just after it is updated
with the attention output) and the block output (note that
the input of the attention sub-block is its previous block
output). The intersection between the attention output
is considered high, which means that the attention sub-
blocks have overlapping semantics between different
layers.

Figure 17 demonstrates that the information flow
we saw from the memory values to the heads output
is a behavior that applies to all heads.

Figure 16: Comparing Ik=50 of memory values with the
output of their heads, according to the memory value
norm rank compared to other values in the same head
(the complete analysis behind Figure 5). This example
claims that the semantics of each head is determined by
its top memory value since only the top 1–3 memory
values have some semantic intersection with their heads
(starting from the 4-th layer) and the rest of the heads
have almost no intersection (the number 14 suggest that
the longest input we used for this experiment was 14
tokes).

Figure 17: Comparing Ik=50 of memory values with the
output of their heads, according to head indices. This
shows that there are no particular heads that are more
dominant than others (after the first few layers).

Figure 18 demonstrates the alignment in projec-
tion correlation between each input token and its
corresponding memory values. For every memory
value vji, we examine the probability of its input
token (the i-th input token) after applying a logit
lens to vji. Our underlying assumption is that if the
generated values share common semantics, then
the probability of the input token should be higher
than random (which is nearly 0). The results sub-
stantiate this assumption, revealing higher scores
in the subsequent layers.

Figure 18: The probability of input token in the vectors
of memory values they generated.
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(a) Naive projection without any circuit for ki. (b) With the QK circuit for ki

Figure 19: Comparing Ik=50 token projection alignment between the head outputs of WK and WV (ki and vi), with
and without the QK circuit for WK (vi is projected with WO and can be see as the output of the OV circuit).

(a) Naive projection without any circuit. (b) With the QK circuit

Figure 20: Comparing Ik=50 token projection alignment between the head outputs of WQ and WK (qi and ki), with
and without the QK circuit. The mean intersection for two random sampling of 50 items (without duplication) from
a set the size of GPT-2 vocabulary (50257) is around 0.05 matches, which equals to Ik=50 of 0.001. However, when
we apply the logit lens to two random vectors, it is observed that due to certain biases in the decoding process, the
average Ik=50 value is 0.002 .

D.3 Are All HS Interpretable? Examining the
QK Circuit

Similar to our analysis of the attention matrices
WV ,WO (section 3), we try to find alignment be-
tween WQ,WK outputs and other HS of the model.
The work of Dar et al. (2022), who first projected
the matrices WQ,WK , emphasizes the importance
of projecting the interaction between the two using
the QK circuit, meaning by projecting the matrix
WQK = WQ ·WK . Using the data from section 3,
we collected dynamic HS that these matrices gen-
erate, qi and ki (attention queries and keys), to
examine their alignment between each other and be-
tween the memory value vi they promote (each ki
leads to a single vi, noting we already saw the latter
is aligned with the attention’s and model’s outputs
section 3). We project qi and ki using two methods:
once with the naive logit lens (LL) and once using
the QK circuit, by first multiplying qi with WK

(LL(qi ·Wk)) and ki with WQ (LL(WQ ·ki)). Our
hypothesis was that we will see some overlap be-
tween the top tokens of qi, ki and vi; however, the
results in Figures 19, 20 show almost no correla-
tions using both methods, in contrast to the results
we saw with WV and WO (subsection 3.1).

We believe there are two options for the low
scores we see. The first option is that WQ and
WK deliberately promote different tokens, with
no alignment between WQ,WK ,WV . The idea

behind that is to check the associations between
different ideas (for example, an unclear association
can be a head’s keys ki with meanings about sports
but with values vi about the weather). Another
option is that the output of WQ,WK operates in a
different embedding space, which is different than
the rest of the model, explaining why logit lens
would not work on it. A support for this idea can
be the fact that the output of these matrices is not
directly summed up with the residual, but is only
used for computing of the attention scores (that are
used as coefficients for vi, which are summed into
the residual).

In our flow graph model, the user can chose to
merge qi, ki nodes into one with vi, making them
less visible. However, we decided to display them
by default and to project them with the QK circuit,
since during our short qualitative examination we
noticed examples that suggest that the first option
we introduced might be true. In Figure 6b we can
see that the projection of the key with the highest
attention score behind the Negative Name Mover
Head holds the meaning of “Mary”. In this case,
we can imagine that the model implements a kind
of if statement, saying that if the input has really
strong semantics of “Mary”, we should reduce a
portion of it (maybe, to avoid high penalty when
calculating the loss during training).
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E Layer Norm Uses as Sub-Block Filters

We present additional results about the role of LN
in changing the probabilities of each sub-blocks’
input, including results for both LN layers in GPT-
2. Tables 1 and 2 show the top tokens before and
after ln1 for two different layers. Figure 21 gives
a broader look at the effect of ln1, detailing some
examples across layers in Table 3. We repeat these
analysis with ln2 in Figure 22 and Tables 4 and 5.

We include an example about the LN effect on
the HS if the projection was done without the
model’s final LN, lnf , which is attached to the
decoding matrix. Initially done to examine the
effect of ln1 and ln2 without lnf on projection,
the results in Figure 23 and Table 6 highlight the
importance of using lnf as part of the logit lens
projection, since the tokens we receive otherwise
look out of the context of the text and tokens our
model promotes in its generation.

before ln1 after ln1

English English
the Microsoft
Microsoft abroad
North subsidiaries
not North
abroad combining
a downtown
London Redmond
India origin
origin London

Table 1: The top tokens before and after ln1 at layer 15,
according to the mean HS collected in section 3. We
can see how the LN filters all the function words from
the 10 most probable tokens while introducing instead
new tokens like “Redmond” and “downtown”.

before ln1 after ln1

the abroad
not Microsoft
abroad subsidiaries
a combining
origin English
Microsoft origin
T not
Europe Europe
U photographer
C the

Table 2: The top tokens before and after ln1 at layer 13.

ln1 5 ln1 11 ln1 17 ln1 23
the the the the
using not North a
not a Google English
this T a India
within C South Russian
in U company German
, in now North
and , Germany South
: which not "
outside N still K

Table 3: Tokens that lose the most probability after ln1,
as collected from the experiment in section 3. Earlier
layers’ LNs demote more tokens representing preposi-
tions than later layers.

before ln2 after ln2

the English
not Microsoft
English not
abroad abroad
Microsoft subsidiaries
a origin
origin combining
T the
U photographer
photographer renowned

Table 4: The top tokens before and after ln2 at layer 13.

ln2 5 ln2 11 ln2 17 ln2 23
the the the the
in a Google a
a T French German
using U Boeing North

, in company South
and C a K

: , London "
now : not N
this and sports Kaw
at at hockey Boeing

Table 5: Tokens that lose the most probability after ln2,
similarly to Table 3.
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(a) Before. (b) After.

(c) Difference (after - before).

Figure 21: The probability of all the tokens in GPT-2 before and after the first LN, ln1, in layer 16, including
annotation for the largest-magnitude tokens. We see the difference in the distributions of tokens between randomly
generated vectors and the ones we sample from CounterFact, which we find reasonable when answering factual
questions. Especially if the questions are about a finite number of domains, the network promotes tokens not in a
uniform way (like the random vectors does). Although tokens like “Microsoft” and “The” have a high probability
before the LN, while the first gained more probability during the process the second actually loses, suggesting this
is not a naive reduction to the probable tokens at each HS.

(a) Before (b) After

(c) Difference (after - before)

Figure 22: The effect of ln2 at layer 16 on tokens’ probabilities. We can see similar highly probable tokens as in
Figure 21, since the only difference between the inputs of ln1 and ln2, which is the residual stream, is the attention
output of that layer (which is known to be gradually and does not steer the probability distribution dramatically
Figure 14, 15).
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ln1 5 ln1 11 ln1 17 ln1 23
Zen not the the
imperialist the English ,
Sponsor Europe a "
abroad C " -
mum abroad football ゼウス
utilizing T and externalToEVAOnly
UNCLASSIFIED pure Toronto sqor
conjunction English sports quickShipAvailable
tied ized first 龍契士
nineteen Washington - ÃÂÃÂÃÂÃÂ

Table 6: Top tokens that lost probability after applying ln1 when projection is done without lnf .

(a) Before (b) After

(c) Difference (after - before)

Figure 23: The affect of ln1 at layer 16 on tokens’ probabilities (similar to Figure 21), but when the projection is
done without lnf .
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