TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks

Shubhra Kanti Karmaker Santu, Dongji Feng


Abstract
While LLMs have shown great success in understanding and generating text in traditional conversational settings, their potential for performing ill-defined complex tasks is largely under-studied and yet to be benchmarked. However, conducting such benchmarking studies is challenging because of the large variations in LLMs’ performance when different prompt types/styles are used and different degrees of detail are provided in the prompts. To address this issue, this paper proposes a general taxonomy that can be used to design prompts with specific properties in order to perform a wide range of complex tasks. This taxonomy will allow future benchmarking studies to report the specific categories of prompts used as part of the study, enabling meaningful comparisons across different studies. Also, by establishing a common standard through this taxonomy, researchers will be able to draw more accurate conclusions about LLMs’ performance on a specific complex task.
Anthology ID:
2023.findings-emnlp.946
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2023
Month:
December
Year:
2023
Address:
Singapore
Editors:
Houda Bouamor, Juan Pino, Kalika Bali
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
14197–14203
Language:
URL:
https://aclanthology.org/2023.findings-emnlp.946
DOI:
10.18653/v1/2023.findings-emnlp.946
Bibkey:
Cite (ACL):
Shubhra Kanti Karmaker Santu and Dongji Feng. 2023. TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks. In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 14197–14203, Singapore. Association for Computational Linguistics.
Cite (Informal):
TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks (Karmaker Santu & Feng, Findings 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.findings-emnlp.946.pdf