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Abstract

This paper aims to investigate the effectiveness
of several machine translation (MT) models
and aggregation methods in a multi-domain set-
ting under fair conditions and explore a direc-
tion for tackling multi-domain MT. We mainly
compare the performance of the single model
approach by jointly training all domains and the
multi-expert models approach with a particular
aggregation strategy. We conduct experiments
on multiple domain datasets and demonstrate
that a combination of smaller domain expert
models can outperform a larger model trained
for all domain data.

1 Introduction

The machine translation (MT) research community
has been paying much attention to multi-domain
evaluation (Saunders, 2022; Pham et al., 2021) as
well as document-level evaluation these days. This
trend is supported by the fact that the main trans-
lation task in the WMT competition1 shifted to
a multi-domain setting after 2022. We explore a
more effective and efficient approach since this is
a more realistic and desirable setting in actual MT
systems.

There are two major approaches for tackling
multi-domain adaptation: a Multi-Domain Model
(MDM), and Domain Expert Models (DEMs). In
MDM, the model is trained on all domain data; in
DEMs, expert models are trained for each domain
(Figure 1). Most previous studies have focused on
MDM (Kobus et al., 2017; Britz et al., 2017) since
MDM is the identical approach when we do not
consider domains. In contrast, DEMs have yet to be
investigated in-depth due to not much attention in
the community until recent years. We hypothesize
that DEMs have the potential to achieve superior
performance if each expert model is well-trained in
the corresponding domain and better combined.

1http://www2.statmt.org
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Figure 1: Comparative overview of MDM (top) and
DEMs (bottom) settings.

Moreover, DEMs may have several advantages
over MDMs. Thus, verifying DEMs’ potential ad-
vantages would be worthwhile.

In this study, we aim to compare MDM and
DEMs with various configurations in a fair condi-
tion and to reveal the effectiveness of DEMs in the
current MT technologies. We conduct experiments
on multiple domain datasets and demonstrate that
a combination of smaller DEMs can outperform a
single larger MDM.

2 Related Work

Multi-domain. The straightforward approach to
addressing multiple domains is training on data en-
compassing various domains. Much research is un-
derway to develop a multi-domain model, such as
adding domain-specific tags to inputs (Kobus et al.,
2017; Tars and Fishel, 2018), sampling of training
data (Pham et al., 2022), and developing multi-head
attention networks for each domain (Jiang et al.,
2020). These approaches aim to enable a single
model to handle various domains.

Instead of a multi-domain model, an expert
model for specific domains has also been ex-
plored (Neves et al., 2022) to enhance in-domain
performance. To address multiple domains, collab-
orating multiple expert models is a feasible strategy.
However, previous studies have yet to examine the
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effectiveness of this strategy due to the cost of run-
ning multiple models. In light of the growing trend
toward larger models, it is valuable to explore the
performance potential of collaborative (smaller)
models.

Collaboration of multiple models. Collabora-
tion methods for multiple models (ensemble) have
been explored. The typical method entails averag-
ing the probabilities of each output token across
multiple models. Kobayashi (2018) proposed the
post-ensemble, which compares the outputs from
multiple models and selects the one closest to the
majority among the outputs. Ensemble methods
are often applied to multiple models trained on the
same data but with different random seeds, whereas
we perform ensembles on models trained on dif-
ferent domains. Furthermore, output selection (or
re-ranking), which selects the best one from out-
puts, can benefit DEMs. Fernandes et al. (2022)
investigated the effects of output selection using
minimum bayes risk decoding (Kumar and Byrne,
2004) and quality estimation methods (Kepler et al.,
2019; Ranasinghe et al., 2020) in MT task. How-
ever, their experiment only examines the effect of
output selection when a single model has multiple
outputs. We investigate the gain when these en-
semble and output selection methods are applied to
multiple expert models.

3 Investigation Focus

The multi-domain translation task assumes n do-
mains, with data Di(i ∈ {1, 2, ..., n}) correspond-
ing to each domain. Besides the domain data, gen-
eral domain data Dgeneral is assumed to be avail-
able. Based on the existing domain adaptation ap-
proach (Luong and Manning, 2015; Sennrich et al.,
2016), the model is pre-trained in Dgeneral, then
fine-tuned in the domain data. At test time, no
domain information is provided with the source,
although it is an instance of one of the n-domains.
Following is a description of MDMs and DEMs.

Multi-Domain Model (MDM). In MDM, a sin-
gle translation model is pre-trained on Dgeneral,
followed by fine-tuning with domain-mixed data
Dall = D1 + ...+Dn.

Domain Expert Models (DEMs). In DEMs, a
single model is pre-trained on Dgeneral, as in
MDM setting. Then, the pre-trained model is fine-
tuned as an expert model on each domain data Di.

Dataset #Sent Pairs

JParaCrawl v3.0 25.7M

The Kyoto Free Translation Task (KFTT) 440k
Japanese-English Legal Parallel Corpus (LAW) 260k
TED talks (TED) 225k
Asian Scientific Paper Excerpt Corpus (ASPEC) 200k
The Business Scene Dialogue corpus (BSD) 20k

Table 1: Number of parallel sentences in training data.

Thus, n expert models are developed. At infer-
ence time, either an ensemble is applied, or all
expert models generate each output, and then the
output selection algorithm determines the final out-
put. Section 4.2 describes the output selection and
ensemble methods used in our experiments.

4 Experiments

We performed experiments on English-to-Japanese
(En-Ja) and Japanese-to-English (Ja-En) transla-
tions with five domains.

4.1 Datasets, models, and evaluation

As shown in Table 1, we used JParaCrawl
v3.0 (Morishita et al., 2022) for pre-training and
the following five datasets for fine-tuning: The Ky-
oto Free Translation Task (KFTT) (Neubig, 2011),
Japanese-English Legal Parallel Corpus (LAW)2,
TED talks (TED) (Cettolo et al., 2012), Asian Sci-
entific Paper Excerpt Corpus (ASPEC) (Nakazawa
et al., 2016), and The Business Scene Dialogue
corpus (BSD) (Rikters et al., 2019)3. The concept
of ‘domain’ can be defined from several perspec-
tives (Saunders, 2022). In this study, we equated
differences in datasets with variations in domains.
Thus, in the DEMs setting, we fine-tuned five mod-
els as the domain experts from the identical pre-
trained model.

We built transformer-based MT mod-
els (Vaswani et al., 2017) of three different
sizes: SMALL (90M), BASE (290M), and LARGE

(1B). The differences in model configurations for
each size are shown in Table 2. To make a fair
comparison in both MDM and DEMs settings, (i)
for pre-training, the same number of epochs and
batch sizes were used for both settings, and (ii) for
fine-tuning, MDM was updated 10k times, and
each expert model in DEMs was updated 2k times,
with the same batch size.4

2http://www.phontron.com/jaen-law/
3Appendix A shows the details of the datasets.
4Appendix B shows the details of the models.
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Name Params
Encoder & Decoder

layers dmodel dffn heads

SMALL 90M 6 512 2048 8
BASE 290M 6 1024 4096 16

LARGE 1B 6 2048 8192 32

Table 2: Model Configurations.

We chose MS-COMET-22 (Kocmi et al., 2022)
as our primary evaluation metric. Since MS-
COMET-22 is an evaluation model developed by
additionally training COMET (Rei et al., 2020)
with a variety of domain data, it is considered suit-
able for a multi-domain setting.

4.2 Output selection and Ensemble for DEMs

Let yi represent the output of the i-th expert model,
and let Y be the set of yi for all i. The following
explains the selection method for the final outputs
in the DEMs setting;
Quality Estimation (QE): Select one from Y with
the highest score of the quality estimation metric,
MS-COMET-QE-22 (Kocmi et al., 2022).
Minimum Bayes Risk (MBR): Select one as fol-
lows, yMBR = argmaxyi∈Y

1
|Y|

∑|Y|
j=1 u(x, y

j , yi),
where u is MS-COMET-22, a reference-based met-
ric measuring the similarity between a hypothesis
y ∈ Y and a pseudo reference y∗ ∈ Y, using also
information of source x.
Ensemble (ENS): The token probability is calcu-
lated as follows, p(y≤t|x) = 1

|Y|
∑|Y|

j=1 pj(y≤t|x),
where pj denotes the token probability of the expert
model, and x represents the input. Subsequently,
beam search is employed to generate the output.
Domain Match (DM): Manually select one accord-
ing to the domain of the input. This is a cheat
method because the domain information is gener-
ally unknown, as Section 3 described.
Oracle (Oracle): Select one with the highest score
according to the MS-COMET-22, taking the refer-
ence into account as well. This method yields an
upper bound in the DEMs setting.
QE, MBR, DM, and Oracle are the output selection

methods. Given that QE and MBR require only the
output of each model, and ENS can be performed if
the weights of each model are accessible, QE, MBR,
and ENS are practical settings for real-world appli-
cations. In contrast, DM needs to obtain domain
information for input data, and Oracle needs to ac-
cess references, so DM and Oracle are experimental
settings.
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Figure 2: Evaluation results for En-Ja test data.
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Figure 3: Evaluation results for Ja-En test data.

5 Results, Analyses and Discussions

Figures 2 and 3 show the results for the En-Ja
and Ja-En test data, respectively.5 Comparing
MDM and DEMs for the same model size, DEMs
scored higher for almost all methods. In addition,
DEMs-SMALL (90M × 5) achieved competitive
performance to MDM-LARGE (1B) by Oracle and
MBR. We assessed statistical significance through
the paired t-test and bootstrap resampling (Koehn,
2004). The results indicated that Oracle and MBR
outperformed compared to MDM settings. These
findings suggest that effective combinations of
small expert MT models can surpass the perfor-
mance of a larger MT model.

Comparison of output selection methods and
Ensemble for DEMs: Across all model sizes
and language directions, the five methods ranked
Oracle > MBR > QE > DM > ENS. The differ-
ence between QE and Oracle can be ascribed to the
performance gap between MS-COMET-QE-22 and
MS-COMET-22. It seems counter-intuitive that
MBR scored higher than QE. Considering the supe-
rior translation performance of the expert model in
the target domain, it is reasonable to expect that QE,

5Appendix C shows the results for metrics other than MS-
COMET-22. Appendix D shows the results across all model
and domain combinations. Appendix E shows results on devel-
opment data. Appendix F shows examples of DEMs output.
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Data\Model KFTT LAW TED ASPEC BSD

KFTT 155 92 102 118 128
LAW 97 260 97 106 101
TED 105 104 112 66 132
ASPEC 99 100 79 134 101
BSD 98 116 105 100 179

Table 3: Confusion matrix of domains selected by
DEMs (Oracle) in the En-Ja test data. Each number is
a count. If multiple models get the same best score, they
all get a count.

which selects a single high-quality output, would
surpass MBR, which chooses the sentence most se-
mantically similar to others in Y. Therefore, im-
proving QE methods is crucial for the success of
DEMs setting. Even the expert model that matches
the input domain can generate low-quality output.
In such cases, MBR and QE can select better output
from other models. This may account for the DM
results being lower than the MBR and QE.
ENS scored lower than QE and MBR. This result

suggests that in the DEMs setting, ENS is negatively
impacted by models with poor performance. Hence,
weighted ENS could improve the performance (Dur-
rani et al., 2016; Sajjad et al., 2017). However,
determining the appropriate weights typically ne-
cessitates training or tuning, and any alteration in
the number of domains requires a reconfiguration
of these weights. QE and MBR would be more flexi-
ble than the ENS in multi-domain MT tasks.

Selected outputs in Oracle, QE, and MBR: Ta-
bles 3, 4, and 5 show which expert model’s outputs
were selected by Oracle, QE, and MBR for each do-
main of input in En-Ja, respectively. For Oracle,
the corresponding expert model’s output for the
input domain was consistently the most selected,
but this was not the case for MBR and QE. Even in
Oracle, outputs from models other than the expert
one corresponding to the input were often selected.
This suggests that the DM did not lead to high perfor-
mance. We assume that this is an effect of including
instances whose domain is not far distant from the
different domain data. Since Oracle simply selects
good-quality sentences without being aware of the
domain, it can select the appropriate model’s out-
put flexibly. This appears to explain the significant
difference in scores between Oracle and DM.

Effects of multiple models and data separating:
As discussed in the previous paragraph, we can as-
sume that there are two contributing factors to the

Data\Model KFTT LAW TED ASPEC BSD

KFTT 127 120 117 105 123
LAW 119 211 133 96 117
TED 95 141 76 61 151
ASPEC 127 115 87 33 149
BSD 71 134 104 80 195

Table 4: Confusion matrix of domains selected by
DEMs (QE) in the En-Ja test data. Each number is a
count. If multiple models get the same best score, they
all get a count.

Data\Model KFTT LAW TED ASPEC BSD

KFTT 128 86 111 136 160
LAW 148 133 151 179 141
TED 152 130 70 84 105
ASPEC 135 112 77 73 127
BSD 153 155 95 158 99

Table 5: Confusion matrix of domains selected by
DEMs (MBR) in the En-Ja test data.Each number is a
count. If multiple models get the same best score, they
all get a count.

performance superiority of DEMs: 1) the use of
multiple models, and 2) domain-based data sep-
aration. To verify these two factors separately,
we prepared five MDMs trained with various ran-
dom seeds. We then evaluated the performance
of QE, MBR, ENS, and Oracle, which are the identi-
cal methods used for DEMs. Note that the initial
model for fine-tuning is identical across all models
in both DEMs and MDMs, with differences emerg-
ing solely in the fine-tuning data. Table 6 shows
the performance of DEMs and MDMs on En-Ja
test data.6

In MDMs, the average score (AVG) of the five
models was lower than all other methods (QE, MBR,
ENS, Oracle). This indicates that the use of multi-
ple models is effective. Also, the output selection
methods (QE and MBR) scores were higher than ENS.
This result suggests that the output selection ap-
proach is more effective than the typical ensemble
approach, even when each model is similar (since
the MDMs have the same training data and differ
only in seed).

Comparing DEMs and MDMs, it is intriguing to
note that DEMs outperformed MDMs in all meth-
ods except AVG, even though DEMs uses less data
for fine-tuning than MDMs. In addition, none

6Each model in MDMs was fine-tuned one epoch for each
model (about 1.5 times the number of updates for each model
in DEMs). Appendix G shows the results when training a
model in MDMs setting with different epochs.
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AVG QE MBR ENS Oracle

DEMs 77.20 79.87 80.97 78.17 81.78
MDMs 78.15 78.61 78.63 78.15 78.97
diff -0.95 +1.26 +2.34 +0.02 +2.81

Table 6: Performance comparison of DEMs and MDMs
with SMALL on En-Ja test data. The ‘diff’ row is the
DEMs score minus the MDMs score. The scores of
DEMs are the same as the DEMs-SMALL 90M x 5 in
Figure 2.

of the methods for MDMs exceeded the MDM-
LARGE score (79.78) in Figure 2. These results
suggest that domain-based data separation is effec-
tive. The difference between DEMs and MDMs
scores for the output selection methods (QE and
MBR) stems from a heightened probability of in-
cluding good outputs in the candidate set. This
is because DEMs can more dependably acquire
domain-specific knowledge through domain-based
data separation.

Effects of selection model performance on
DEMs: We conducted experiments using wmt22-
cometkiwi-da (Rei et al., 2022b) and wmt22-comet-
da (Rei et al., 2022a) in place of MS-COMET-QE-
22 and MS-COMET-22, respectively. We also used
wmt22-comet-da as an evaluation metric. Figures 4
and 5 show the results for the En-Ja and Ja-En test
data, respectively.

Compared to the MS-COMET-QE-22 and MS-
COMET-22 experiments shown in Figures 2 and 3,
QE and MBR showed a smaller increase in scores.
This result can be attributed to the fact that MS-
COMET-QE-22 and MS-COMET-22 have been
trained on multi-domain data, as discussed in Sec-
tion 4.1, whereas wmt22-cometkiwi-da and wmt22-
comet-da are not. This indicates that the met-
rics used in a multi-domain setting must be multi-
domain capable.

Potential of DEMs in practice: We believe that
DEMs approach offers several advantages over
MDM, especially in practical scenarios. For ex-
ample, DEMs approach provides benefits for multi-
organizational collaboration in cases where privacy
issues preclude sharing training data. Since when
QE and MBR are applied in DEMs, it is enough to
share only the model outputs. Although not ex-
plored in our experiment, because DEMs would
work even with different model architectures, it
may facilitate collaboration among multiple orga-
nizations compared to Federated Learning (McMa-
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han et al., 2016; Passban et al., 2022), for example.
A more comprehensive study will be conducted in
the future.

6 Conclusion

We investigated the effectiveness of MT models in
a multi-domain setting in fair conditions and ex-
plored a direction for tackling multi-domain MT.
We mainly compared the performance of the two
main approaches, MDM and DEMs, on English
to/from Japanese tasks with five domains. Our
results revealed that the domain-based data separa-
tion strategy is effective in a multi-domain setting.
Additionally, we found that when we want to use
metrics for selection in a multi-domain setting, the
metrics must be multi-domain capable. Further-
more, combining five 90M DEMs based on an out-
put selection approach has the potential to perform
better than a single 1B MDM, which may suggest
a new direction for developing MT models in the
multi-domain setting.
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Limitations

Our experiments were conducted only on the En-
glish to/from Japanese translation task. Also, we
only experimented with five domains. The num-
ber of domains increases, as does the number of
expert models, and the running cost of the DEMs in-
creases as well. In addition, both MDM and DEMs
approaches can be applied to tasks other than trans-
lation. However, in our experiments, DEMs de-
pends on the performance of MS-COMET-22 and
MS-COMET-QE-22, and in tasks where such tools
are not available, our scenario used may not be
applicable. Furthermore, we did not include in our
comparisons any studies such as domain tagging,
training data sampling, or model architecture that
would improve the performance of MDM, as de-
scribed in Section 2. Experimentation in a more
comprehensive setting is future work.

We discussed the trade-off between the perfor-
mance and size of the models in MDM and DEMs.
Model compression methods such as quantization
and knowledge distillation could impact the trade-
off. However, such compression techniques are
outside our focus.

To achieve good results with DEMs settings,
there needs to be at least one high-quality candi-
date among the expert model’s outputs. If the
performance of expert models is inadequate, the
output selection methods discussed might not be as
effective.

In our experiments, models were evaluated us-
ing only automatic evaluation metrics. While we
recognize that human evaluation is necessary to
perform a precise evaluation in a translation task,
we only performed automatic evaluation due to the
large number of models to compare.

Ethics Statement

Our experiments were conducted only on the
datasets already published to the community and
well-studied in many previous studies. Moreover,
even though our target task is machine translation,
which involves text generation, we cannot believe
the methods presented here further amplify biases
for any other ethical concerns that implicitly exist
in the datasets and tasks. Therefore, we foresee no
ethical concerns in this work.
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A Details of dataset construction

For fine-tuning on KFTT, TED, and BSD, we used
the original training data. The original LAW con-
tains 262,449 instances without distinction between
train, development, and test, so we used all but the
first 2,000 instances for fine-tuning. The original
ASPEC contains 3,008,500 instances in the train-
ing set, but we used only the first 200,000 instances
for fine-tuning.

We created the development and test data by
concatenating the five datasets used for fine-tuning:
KFTT, LAW, TED, ASPEC, and BSD. They were
each extracted from the top 500 instances after
duplicates were removed from each raw data. Con-
sequently, there were 2,500 unduplicated instances
each for development and test data. For the raw
data on KFTT, ASPEC, and BSD, we used the orig-
inal development and test data. In the case of the
raw data on TED, we used dev2010 for develop-
ment data and tst2015 for test data. For the raw
data on LAW, we used the first 1~1000 instances
of the original data for development data and the
next 1001~2000 instances for test data.

We tokenized all data into subwords as a pre-
processing step. We trained subword segmen-
tation models using byte pair encoding on the
JParaCrawl v3.0 as the training dataset for En-
glish and Japanese, respectively. In training, we
applied byte fallback, ensuring essentially the ab-
sence of unknown words in the language used for
any data, including fine-tuning data. We chose a
vocabulary size of 32k for each language. We used
Sentencepiece tool (Kudo and Richardson, 2018)
for these implementations.

B Details of model configurations

The basic model configuration was the transformer
defined in fairseq toolkit (Ott et al., 2019). From
the default settings, we moved the layer normaliza-
tion to the beginning of each transformer block,
made sharing the input and output embedding
of the decoder, and implemented the cross+self-
attention mechanism (Peitz et al., 2019).

We trained neural MT models with the fairseq
tool in version 0.12.2. In pre-training, we used the
same configuration for SMALL, BASE, and LARGE

except for the learning rate (See Table 7). In fine-
tuning, we used the same configuration for SMALL,
BASE, and LARGE (See Table 8).

We used the same generation configuration for
SMALL, BASE, and LARGE, with beam search de-

coding, a beam size of 5, and a maximum length of
200.

C Results of performance comparison by
multiple metrics

Tables 9 and 10 show the results with MS-
COMET-22, BLEU (Papineni et al., 2002),
chrF (Popović, 2015), and BLEURT (Sellam
et al., 2020) for the En-Ja and Ja-En test data. We
use sacreBLEU (Post, 2018) for the BLEU and
chrF calculations. The sacreBLEU signatures are
nrefs:1|case:mixed|eff:no|tok:13a|smooth
:exp|version:2.3.1 and
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|spa
ce:no|version:2.3.1 respectively. We used
BLEURT-20 for BLEURT.

D Results for all combinations of domains
and models

Tables 11, 12, 13 and 14 show the results with
MS-COMET-22 for all combinations of data and
models.

E Results of MS-COMET-22 for
development data

Figure 6 shows the evaluation results by MS-
COMET-22 for the En-Ja development data, and
Figure 7 shows the evaluation results by MS-
COMET-22 for the Ja-En development data. For
both En-Ja and Ja-En, the results for the develop-
ment data showed a similar trend to the results for
the test data.
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Figure 6: Evaluation results for En-Ja development data.

F Examples of outputs for each expert
model and output selection

Table 15 shows examples of each expert model’s
output and the result of output selections for the
TED test data in En-Ja.
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Configurations Selected Value
Optimizer Adam (β1 = 0.9, β2 = 0.98, ϵ = 1× 10−8)
Weight Decay 0
Criterion label smoothed cross entropy
Label Smoothing 0.1
Learning Rate SMALL: 0.001, BASE: 0.0005, LARGE: 0.00025
Learning Rate Schedule inverse square root
Warmup Steps 30000
Gradient Clipping 1.0
Dropout 0.1
Mini-batch Size 512k
Number of Epochs 50
Averaging Save checkpoint for every 5 epochs and take an average of last 5 checkpoints

Table 7: List of hyperparameters in pre-training.

Configurations Selected Value
Optimizer Adam (β1 = 0.9, β2 = 0.98, ϵ = 1× 10−8)
Weight Decay 0
Criterion label smoothed cross entropy
Label Smoothing 0.1
Learning Rate 0.00001
Learning Rate Schedule constant
Gradient Clipping 1.0
Dropout 0.2
Mini-batch Size 16k
Number of Updates MDM: 10000, DEMs: 2000
Averaging Save checkpoint for every 100 updates and take an average of last 5 checkpoints

Table 8: List of hyperparameters in fine-tuning.

COMET* BLEU chrF BLEURT

DEMs-
SMALL

QE 79.87 24.1 31.3 65.62
MBR 80.97 22.3 30.1 65.05
ENS 78.17 24.6 31.6 65.55
DM 78.39 30.6 36.3 67.39
Oracle 81.78 25.8 32.7 66.94

DEMs-
BASE

QE 80.57 25.7 32.9 66.98
MBR 81.73 24.4 32.0 66.42
ENS 79.13 26.9 33.8 67.24
DM 79.59 33.0 38.5 69.28
Oracle 82.61 28.2 35.0 68.94

MDM-SMALL 78.10 29.8 35.6 66.18
MDM-BASE 79.52 32.5 38.0 68.41
MDM-Large 79.78 34.1 39.4 69.30

Table 9: Performance comparison of all settings on En-
Ja test data using metrics COMET* (MS-COMET-22),
BLEU, chrF, and BLEURT.

G Whether the MDMs models are
sufficiently trained

We investigate the impact of the number of train-
ing epochs on the performance of the MDMs in
the section 5 experimental setting. Table 16 shows
the translation performance with one epoch, two
epoch, and three epoch fine-tuning for the concate-
nated data of KFTT, LAW, TED, ASPEC and BSD.
The epoch-1 demonstrated the highest performance,

COMET* BLEU chrF BLEURT

DEMs-
SMALL

QE 77.23 22.4 52.2 66.02
MBR 78.35 22.5 52.0 65.98
ENS 75.50 23.6 52.5 66.11
DM 76.27 28.1 55.8 67.76
Oracle 79.31 25.0 53.9 67.88

DEMs-
BASE

QE 78.12 23.5 53.6 67.25
MBR 79.31 24.0 53.6 67.57
ENS 76.75 25.3 54.2 67.57
DM 77.30 30.3 58.0 69.52
Oracle 80.34 27.0 55.8 69.82

MDM-SMALL 75.56 27.8 55.8 67.27
MDM-BASE 76.97 30.0 57.7 69.25
MDM-Large 77.72 30.6 58.5 69.92

Table 10: Performance comparison of all settings on Ja-
En test data using metrics COMET* (MS-COMET-22),
BLEU, chrF, and BLEURT.

and additional increments in the number of epochs
did not enhance the translation performance. There-
fore, the MDMs model did not appear to be under-
trained, and it is more likely that domain-based
separated data is more effective than multi-domain
data for training.
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Data\Model MDM KFTT LAW TED ASPEC BSD

MIX 78.10 -1.08 -0.70 -1.62 -1.11 -0.02
KFTT 77.06 -0.89 -2.37 -2.58 -1.37 -0.30
LAW 81.51 -2.54 +0.86 -4.51 -2.98 -1.95
TED 73.31 -0.80 -0.35 +0.13 -0.57 +0.86

ASPEC 80.17 -0.16 -1.01 -1.46 +0.27 +0.21
BSD 78.47 -1.01 -0.60 +0.34 -0.86 +1.08

Table 11: Results for all combinations of data and mod-
els with SMALL on En-Ja test data. In each row, the
score of each expert model is listed based on the MDM
score.

Data\Model MDM KFTT LAW TED ASPEC BSD

MIX 79.52 -1.39 -1.53 -1.86 -1.49 -0.77
KFTT 78.14 +0.09 -1.93 -1.92 -0.28 -1.16
LAW 83.01 -2.00 -0.35 -5.83 -2.66 -2.40
TED 75.70 -1.86 -2.04 +0.10 -1.75 -0.50

ASPEC 80.98 -0.91 -1.43 -1.54 +0.02 -0.30
BSD 79.76 -2.26 -1.89 -0.13 -2.77 +0.51

Table 12: Results for all combinations of data and mod-
els with BASE on En-Ja test data. In each row, the score
of each expert model is listed based on the MDM score.

Data\Model MDM KFTT LAW TED ASPEC BSD

MIX 75.56 -0.24 -0.18 -2.13 -1.65 -0.21
KFTT 71.03 -0.02 -2.04 -5.96 -2.45 -2.33
LAW 78.73 -1.41 +0.45 -2.39 -2.71 -1.33
TED 73.67 -0.39 -0.15 +0.22 -1.41 +0.07

ASPEC 79.05 -0.03 +0.07 -1.10 -0.09 -0.43
BSD 75.33 +0.66 +0.77 -1.44 -1.58 +2.96

Table 13: Results for all combinations of data and mod-
els with SMALL on Ja-En test data. In each row, the
score of each expert model is listed based on the MDM
score.

Data\Model MDM KFTT LAW TED ASPEC BSD

MIX 76.97 -0.46 -0.66 -2.56 -2.11 -0.30
KFTT 73.27 -0.35 -2.09 -6.06 -2.48 -2.38
LAW 79.57 -1.23 +0.29 -3.13 -3.06 -1.06
TED 75.03 -0.24 -0.80 +0.21 -1.98 +0.55

ASPEC 79.59 0.00 +0.10 -1.33 -0.26 -0.38
BSD 77.38 -0.46 -0.83 -2.49 -2.80 +1.78

Table 14: Results for all combinations of data and mod-
els with BASE on Ja-En test data. In each row, the score
of each expert model is listed based on the MDM score.
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Figure 7: Evaluation results for Ja-En development data.
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source

リビングストン公立図書館は私の故郷で2004年に完成しました
ドームをたずさえ丸い装飾と円柱に赤レンガときました
リビングストンがこの建物で何を伝えたいのか検討がつくでしょう
子供たち､資産価値､歴史です

reference

This is the Livingston Public Library that was completed in 2004 in my hometown,
and, you know, it’s got a dome and it’s got this round thing and columns, red brick,
and you can kind of guess what Livingston is trying to say with this building:
children, property values and history.

KFTT model’s output The Livingstone Public Library was completed in 2004 in my hometown.

LAW model’s output

The Livingstone Public Library was completed in 2004 in my hometown,
and the Livingstone Public Library was completed in 2004.
The Livingstone Public Library was completed in 2004.
The Livingstone Public Library was completed in 2004.

TED model’s output
(selected by MBR, DM, Oracle)

The Livingstone Public Library was completed in 2004 in my hometown,
with a dome, a round decoration, a column, red brick,
and you’re going to see what Livingstone wants to tell you about in this building:
children, asset value, history.

ASPEC model’s output Livingstone Public Library was completed in my hometown in 2004.

BSD model’s output
(selected by QE)

The Livingstone Public Library was completed in 2004 in my hometown,
and it’s a dome with round decorations and columns with red bricks
Livingstone will be able to consider what you want to tell this building
Children, asset value, history

Table 15: Examples of DEMs-SMALL’s output. The source and reference are sampled from the TED dataset. The
MBR, MD, and Oracle methods selected the expert model fine-tuned on TED. The QE method selected the output of
the expert model fine-tuned on BSD.

AVG QE MBR ENS Oracle

epoch-1 78.15 78.61 78.63 78.15 78.97
epoch-2 -0.23 -0.23 -0.14 -0.14 -0.13
epoch-3 -0.12 -0.08 -0.02 -0.09 +0.04

Table 16: Performance comparison of SMALL with vary-
ing training epochs in MDMs on En-Ja test data.
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