
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 14529–14543
December 6-10, 2023 ©2023 Association for Computational Linguistics

1-PAGER: One Pass Answer Generation and Evidence Retrieval

Palak Jain1 Livio Baldini Soares 2 Tom Kwiatkowski2
1 Google Research 2 Google Deepmind
{palakj,liviobs,tomkwiat}@google.com

Abstract

We present 1-PAGER the first system that an-
swers a question and retrieves evidence using
a single Transformer-based model and decod-
ing process. 1-PAGER incrementally partitions
the retrieval corpus using constrained decod-
ing to select a document and answer string,
and we show that this is competitive with com-
parable retrieve-and-read alternatives accord-
ing to both retrieval and answer accuracy met-
rics. 1-PAGER also outperforms the equiva-
lent ‘closed-book’ question answering model,
by grounding predictions in an evidence cor-
pus. While 1-PAGER is not yet on-par with
more expensive systems that read many more
documents before generating an answer, we ar-
gue that it provides an important step toward
attributed generation by folding retrieval into
the sequence-to-sequence paradigm that is cur-
rently dominant in NLP. We also show that the
search paths used to partition the corpus are
easy to read and understand, paving a way for-
ward for interpretable neural retrieval.

1 Introduction

In recent times, there has been a push to re-
formulate a wide variety of tasks from NLP
and other domains into the sequence-to-sequence
paradigm, to make use of large pre-trained Trans-
former networks (Vaswani et al., 2017). However,
despite evidence that large language models can of-
ten answer questions (Roberts et al., 2020), predict
identifiers of documents that support those answers
(Tay et al., 2022), or generate text that contains and
explains an answer (Yu et al., 2022) the dominant
paradigm in question answering is still the retrieve-
and-read approach that pipelines separate retrieval
and answer generation modules. This approach has
the benefit that it can provide direct and targeted
paragraph-level attribution for the generated an-
swers (Bohnet et al., 2022). However, it also relies
on a heterogenous mix of models that are hard to
train in concert (Metzler et al., 2021).

Figure 1: Example 1P output that iteratively partitions
the corpus into sub-sets containing the generated n-
grams. The last n-gram is taken as the answer.

Motivated by the observation that language
model decoders already perform search over pos-
sible sequences (Graves, 2012), and that evidence
documents themselves are simply sequences of
tokens, we present an alternative approach that
relies on a single Transformer model. In this
approach, which we name 1-PAGER (One Pass
Answer Generation and Evidence Retrieval) or sim-
ply 1P, the decoder iteratively partitions a corpus
of evidence documents by generating a search path
consisting of a set of keywords that identify rele-
vant documents and an answer string that is con-
tained in at least one of these documents. With 1P,
we aim to explore the spectrum between CBQA,
where the answer is generated without reference to
an evidence corpus, and pipelined approaches that
feed retrieved documents into the transformer.

Figure 1 illustrates an example in which the cor-
pus is iteratively partitioned into documents that
contain the string ‘Economy of India’, then those
that also contain the string ‘Agriculture’, and finally
those that also contain the answer string ‘23%’.

1P output sequences are guaranteed to match at
least one document in the evidence corpus. This
is enforced via a constrained decoder that has ac-

14529

cess to an FM-index representation of the evidence
corpus contents (Ferragina and Manzini, 2000) and
we evaluate 1P’s ability to correctly answer open-
domain questions while also retrieving passages
that provide support for those answers (Bohnet
et al., 2022). Since 1P is the first model that can
do both of these tasks, we compare to pipelined
systems that first retrieve a single passage and then
generate an answer based on this evidence pas-
sage. 1P is competitive as a passage retriever, per-
forming similarly to a widely used dense retriever
(Karpukhin et al., 2020) and outperforming the
SEAL system which independently generates key-
words rather than a search path (Bevilacqua et al.,
2022). 1P also outperforms an equivalent closed-
book question answering (CBQA) model (Roberts
et al., 2020) according to answer accuracy. Part
of this improvement comes from the prediction of
search paths themselves, reminiscent of chain-of-
thought reasoning (Wei et al., 2022), and part is
from 1P’s constrained decoder, which forces the
model to generate answers from passages that con-
tain the keywords.

While 1P does not yet perform as well as the
very best retrieval or open-domain question an-
swering systems in terms of accuracy, the fact that
it is competitive with pipelined systems that are
trained with the same data and which use simi-
lar amounts of inference-time compute suggests a
promising path ahead. Unlike those systems, 1P
can be trained end-to-end along with any other task
that fits into the sequence-to-sequence paradigm.
Additionally, 1P search paths are inherently inter-
pretable, unlike embeddings used in dense retrieval.

2 Related Work

"Retrieve-and-read" Question Answering
Question answering approaches in NLP are
dominated by the "retrieve-and-read" paradigm
where a retriever first fetches hundreds of rele-
vant documents from a corpus, followed by a
language model that reranks and extracts the
answer (Harabagiu et al., 2003; Chen et al.,
2017; Zhu et al., 2021). Sparse retrievers such
as BM25 (Robertson et al., 2009) build a high-
dimensional lexical index over text corpus. Dense
retrievers (Karpukhin et al., 2020) use a dual
encoder architecture to embed the query and
document and perform an approximate nearest
neighbor search. Various modifications to dense
retrieval have been proposed over the years includ-

ing hard negative training (Xiong et al., 2020), late
interaction (Khattab and Zaharia, 2020; Santhanam
et al., 2022), few-shot learning (Izacard et al.,
2022), joint retriever and reader training (Jiang
et al., 2022).

A particular variant of interest is the Iterative
Retrieval process where the query is reformulated
incrementally (Das et al., 2019; Lee et al., 2022)
leading to an interactive search process (Jiang et al.,
2023; Adolphs et al., 2021). This query augmenta-
tion scheme has similarities with our use of search
paths. However, we use the paths to iteratively par-
tition the corpus while prior works have used it for
refining the query.

To perform well, retrieve-and-read systems will
typically retrieve 10s to 100s of passages that must
be processed by a language model. In constrast, 1P
retrieves and extracts an answer in a single pass of
language model generation.

Closed Book Question Answering With data
and parameter scale, LLMs in a closed-book
setting (CBQA) have shown competitive perfor-
mance (OpenAI, 2023; Anil et al., 2023; Yu et al.,
2023) to retrieval pipelines (ODQA), however with-
out producing any attributed passages (Rashkin
et al., 2021; Bohnet et al., 2022). An extension of
CBQA is post-hoc retrieval where a large language
model LLM) is first used to generate an answer
and then evidence for the question-answer pair is
fetched by a retriever (Gao et al., 2023a; Bohnet
et al., 2022). While post-hoc retrieval serves the
same goal as 1P, it still uses a pipeline of LLM and
retriever to do so.

Generative Retrieval Recently, generative re-
trieval has emerged as an alternative to the conven-
tional "retrieve-and-read" pipeline (Metzler et al.,
2021). Genre (De Cao et al., 2021) performed
generative entity linking by constraining model’s
decoding to a set of entities. DSI (Tay et al., 2022)
showed one of the first proof of LLM’s ability to
memorize docids in the corpus. However, atomic
ids or hierarchical clusters, as used in DSI, are
opaque identifiers and capture limited information.
Works such as SEAL (Bevilacqua et al., 2022) and
Ultron (Zhou et al., 2022) use a semantically richer
representation: keywords in the document. In par-
ticular, SEAL constrains the generation to only
keywords in the corpus using the FM-index (Fer-
ragina and Manzini, 2000), a key data structure we
borrow in this work.

14530

Figure 2: System illustration of different QA systems. From left to right: CBQA, 1-PAGER, SEAL, Retrieve-
and-Read system. C denotes the retrieval corpus, P a retrieved passage, Q the input question and A, the generated
answer. 1P is closest to CBQA (only single model used) but it also outputs a passage retrieved from C.

1P represents docids as keyword paths, which
are arguably more interpretable, and learns a soft
partition over the corpus instead of the hard parti-
tion imposed by DSI’s clustering.

Another crucial distinction is 1P’s ability to both
retrieve and generate an answer while prior works
rely on a external re-ranker/reader for the same.
A high-level view of various question-answering
systems is presented in Figure 2.

Attributed Question Answering Standard met-
rics for open-domain question answering, such
as exact match or token-based F1, have received
criticism for being imprecise and/or insufficient.
Several efforts have proposed augmenting an-
swers with textual evidence, via retrieval or cita-
tions (Bohnet et al., 2022; Menick et al., 2022; Gao
et al., 2023b). While this work does not directly
evaluate the quality of retrieved answer evidence,
our proposed model inherently produces a passage
to support the final answer, along with a search
path of keywords, which could be used to provide
users with answer evidence.

3 Iterative Corpus Partitioning and
Answer Prediction

We focus on the problem of learning a mapping
f(q,D) → (a, da) from a question q and corpus
of documents D to an answer and supporting doc-
ument (a, da). The predicted document da is re-
trieved from D and the answer a is a sub-string
of da. The document da should be relevant to the
question and provide evidence for answer.

The goal of this paper is to model the function f
using a single sequence-to-sequence model, rather
than a pipeline which first retrieves da and then
feeds it into an answer generation module. To
achieve our goal, we recast retrieval as an iterative
corpus partitioning process illustrated in Figure 3.

Iterative corpus partitioning adopts the LM de-
coder’s autoregressive search process to partition

D by predicting n-gram keywords.
An n-gram of tokens k is said to be contained

in a document d, denoted by k ≺ d, when k is a
sub-sequence of d. We define a keyword corpus
partitioning function

F(D, k) = {d|k ≺ d; d ∈ D}

that selects only those documents that contain k.
1-PAGER iteratively partitions the corpusD by gen-
erating a sequence of n-grams that we refer to as
a Search Path pt = [k1, k2, . . . , kt]. Each prefix
of this search path defines a subset of D via the
search path corpus partitioning function

P(D, pt) = Dpt = {∩i∈[1,t]F(D, ki)}

and each subsequent keyword kt+1 narrows down
Dpt into further sub-spaces such thatDpt+1 ⊆ Dpt .

Answer prediction is treated in exactly the same
way as keyword selection and in 1P the last key-
word from p is taken as the answer.

4 Constrained Decoding and FM-Index

To avoid generating empty partitions, we constrain
1-PAGER to only decode search paths that match
at least one document. We modify the decoder’s
beam-search strategy to only allow keyword contin-
uations that are contained in the current partition.

Given a document subset Dpi , which could be
the full corpus D at the start of decoding (i = 0),
and a keyword prefix k, which could be empty, the
set of all valid continuation tokens is defined as,

C(k,Dpi) = {x| k‖x ≺ d, d ∈ Dpi}

where x is any vocabulary token and ‖ indicates
concatenation of two token sequences. As a special
case, when k = φ and i = 0, all tokens in D are
valid continuations. 1P separates keywords in pT
with a special separator token → and marks the
end of the sequence with an EOS token. These two
tokens are always valid continuations.

14531

Figure 3: Illustration of the 1P decoding process. A keyword can only be generated from the documents matching
previously generated keywords. Right panel shows a magnified view of applying constraints to a decoding step.
Any keyword not present in the documents is masked out.

Consider Figure 3. The three keywords corre-
spond to the decoded token sequence [Ten, Com-
mandments,→, twice, in, the, Hebrew, Bible,→,
books, of, Exodus, EOS]. At the start of decoding,
any token in D is allowed. After decoding Ten,
only those tokens that follow Ten as an n-gram
in D are allowed, along with the default separa-
tors. After decoding [Ten, Commandments, →]
we are ready to start a new keyword, but only to-
kens from documents that contain the keyword Ten
Commandments are allowed. Decoding continues
in this manner until EOS is generated.

To efficiently implement these constraints, we
need a data-structure that can quickly determine
both C(k,Dp), the continuation tokens given a doc-
ument set and P(Dp, k), the subset of documents
that contain a given path.

For this, we extend the usage of an FM-
index (Ferragina and Manzini, 2000) as described
in (Bevilacqua et al., 2022). The FM-index is a
compressed token-based index over a corpus D0

with a few important properties for our usage: (1) it
can efficiently list possible token continuations for
a sequence prefix that occur in D0 i.e., C(k,D0),
(2) it can list the set of documents in the corpus that
match an n-gram i.e., F(D0, k), and (3) it supports
search over arbitrary n-grams that occur within doc-
uments. Note that the FM-index operations are
optimized for D0, the original corpus it is built
over. We extend these to an arbitrary Dp ⊂ D0 at
additional cost described in Appendix A.1.

5 Training data generation

For training 1P, we produce a dataset with exam-
ples of queries and search paths as described above.
At a high-level, we generate search paths by itera-
tively selecting n-grams from an answer passage,
and simulating, using the FM-Index of the retrieval
corpus, the partitioning of the corpus after selecting
each keyword, until only a few documents remain.
Finally, the answer span a is appended to the search
path. Each example produced can be serialized as
sequence-to-sequence pair of inputs and targets as:

inputs: Generate keywords for: <q>?
targets: K_SEP k0 K_SEP k1 ... K_SEP A_SEP a EOS

5.1 Keyword Selection

A good keyword should have a) high relevance to
the query and b) effectively narrow down the search
space. To identify relevant keywords, we restrict
to only the gold document g. All ngrams in g of
length up to five are extracted. Irrelevant keywords
are filtered out such as those starting or ending
with stop words. Similarly, keywords that are too
rare in the corpus, e.g., "Philippines at Luzon" or
too frequent, e.g., "part" are excluded based on a
threshold on their count in corpus. The remaining
keywords are scored with a combinations of heuris-
tics, mainly Rouge-1 similarity with the query (Lin,
2004) along with minor award for keywords con-
taining entities and penalty for keywords highly
frequent in the corpus.

14532

This scoring mechanism often misses out on key-
words that are semantically relevant, but do not
lexically overlap with the query. To boost the rele-
vance of our keyword set, we re-score the top hun-
dred keywords using a language model. A T5-XXL
model is finetuned with the input as the query q and
target as either the title or a heuristically sampled
keyword in a similar fashion to Bevilacqua et al.
(2022). The heuristically sampled keywords are
re-scored using this model to obtain a refined LM-
scored set. Two other special types of keywords
are awarded high scores: Title of the gold passage
and the keyword containing the answer string a.

5.2 Search Paths

The first keyword in a search path needs to effec-
tively partition the corpus. We experiment with ei-
ther the title or the highest scored keyword from the
gold passage as the first keyword in the path. The
next keywords are sampled based on their score,
given they do not overlap with any of the existing
keywords in the path. We continue augmenting a
path p with keywords until at most ten passages
in the corpus match i.e., |Dp| < 10. The answer
keyword is then appended to the path. Our train
paths (including the answer) contain a median of
three keywords and one matching document.

6 Experimental Setup

6.1 Datasets

We use Open-NQ (Kwiatkowski et al., 2019; Lee
et al., 2019) as the question-answering dataset for
training. For evaluation, besides Open-NQ, We-
bQuestions (Berant et al., 2013) and CuratedTREC
(Baudiš and Šedivỳ, 2015) are used to measure
out-of-domain performance. The FM-Index cor-
pus for constrained decoding is built over DPR
Wikipedia corpus with 100-word splits (Karpukhin
et al., 2020). The positive gold passages from DPR
are used for sampling training paths. This setup
is chosen to mirror SEAL and also permits fair
comparison against DPR.

6.2 Training

1P’s training dataset contains 310k paths corre-
sponding to 55k queries from Open-NQ. Majority
of the training paths begin with the title, with a
small fraction starting with other keywords (12%).
All keywords, except the title, are scored using the
LM-scoring technique described above.

For our experiments, we use the T5X (Roberts
et al., 2022) framework. A T5-XXL 1.11 (Raffel
et al., 2020) model is finetuned with a batch size of
256 and dropout of 0.1. No additional hyperparam-
eter tuning is performed. We format search paths
using the reserved tokens K_SEP = "<extra_id_0>"
and A_SEP = "<extra_id_1>".

6.3 Inference

Our best model employs beam decoding with a
beam of 5. Even when the beam is greater than one,
only the top-beam result is used for retrieval. We
discuss the effect of beam size in depth in Section 7.
Given the top generated path p, Dp corresponds
to the retrieved documents. In case |Dp| > 1, a
document is sampled arbitrarily for evaluation.

6.4 Baselines

We compare to a closed-book question answering
(CBQA) system that generates answers, but does
not ground these in an evidence corpus, as well as
retrieve-and-read systems that combine a variety
of retrievers with a Transformer-based answerer
module. Both the CBQA baseline and the answerer
module are derived from the same T5-XXL 1.1
pretrained model as 1P.

6.4.1 T5-CBQA
A T5-XXL 1.1 model is fine-tuned to predict an-
swers from the DPR training set for 10,000 steps
with a batch size of 128. Note that it is possible to
achieve a higher closed-book performance on NQ
using the full Open-NQ training split instead of the
subset included in the DPR training set (Roberts
et al., 2020). However, to enable meaningful com-
parison we restrict the CBQA baseline to the same
training examples used to train 1P.

6.4.2 Retrieve-and-Read
The retrieve-and-read baselines first retrieve a sin-
gle passage from the evidence corpus, and then
feed this passage and the question into the answer
generation module2. We report retrieval accuracy
for the retrieved passage and answer accuracy for
the generated answer.

T5-Reader We tune a T5-XXL 1.1 model to gen-
erate answers from (question, evidence passage)

1https://goo.gle/t5-checkpoints
2This differs from ODQA evaluations that do not include

evidence retrieval as a first-class task, where many retrieved
passages are fed into a reader that generates an answer without
attribution to any single piece of text.

14533

https://goo.gle/t5-checkpoints

pairs. This is the same base model used by 1P and
we train on the (question, passage, answer) triples
in the DPR training split to ensure fair comparison.

DPR-Retriever We compare against vanilla
DPR finetuned on NQ without hard negatives
(Karpukhin et al., 2020) using the pre-computed
index available on DPR’s repository3. We note
that our ODQA setup differs from the one used
by Karpukhin et al. in that we choose the highest
scoring retrieval as evidence for answer generation,
instead of generating from the top-100 passages
without attribution.

BM25-Retriever We use Pyserini toolkit (Lin
et al., 2021) with default configurations, retrieving
the top-1 passage.

SEAL-Retriever SEAL (Bevilacqua et al.,
2022) is a generative retrieval system that gener-
ates a set of keywords constrained on the corpus.
In terms of technique, 1P borrows inspiration from
SEAL’s use of the FM-Index as well as keywords-
as-identifiers. However, the two setups have sub-
stantial differences that we highlight in Section 8.
We run SEAL with its default configuration and a
beam of 5 using the publicly released checkpoint
based on Bart-large (Lewis et al., 2020). All out-
puts from the beam are used for retrieval.

6.5 Evaluation

We evaluate in-domain performance on the Open-
NQ test split and out-of-domain performance on
WebQuestions (WQ) and CuratedTREC (TREC)
following the setup from Karpukhin et al. (2020).
Passage retrieval performance is measured with
Hits@1 using Pyserini evaluation scripts4.

6.6 1P configurations

We experiment with three configurations: a) 1P:
Our primary setup that uses both training and con-
strained decoding procedures described above, pro-
ducing a retrieved passage as well as an answer.
b) 1P-Unconstrained: Only the training technique
described in Section 5 is adopted, with standard
unconstrained decoding. Since generation is uncon-
strained, it is possible that no passage gets retrieved
for a given path. c) 1P + Reader: Here, we take the
top retrieved passage from 1P and input it to the
Reader model (Section 6.4) to extract the answer.

3https://github.com/facebookresearch/DPR
4https://github.com/castorini/pyserini

7 Results

Retriever Answerer
Retrieval Answer
Hits @1 EM F1

– T5 - CBQA – 26.8 34.0
BM25 T5 - Reader 23.6 17.9 24.0
SEAL T5 - Reader 37.9 29.4 35.8
DPR T5 - Reader 46.5 35.6 42.4
1P T5 - Reader 46.3 34.2 41.4

1P - Unconstrained 29.3 29.3 36.1
1P 46.3 31.7 38.0

Table 1: Comparison of different Retriever and An-
swerer combinations on the NQ-Open test set. In
retrieve-and-read setups, answers are generated from
the top-1 retrieved passage. 1P combines passage re-
trieval and answer generation in a single prediction.

System
WebQuestions TREC
Hits @1 EM Hits @1 EM

BM25 + Rdr 19.7 14.2 35.2 29.1
DPR + Rdr 32.0 17.3 51.6 35.0
1P + Rdr 38.0 20.4 63.8 38.5

1P 38.0 20.5 63.8 36.4

Table 2: Comparison of different Retriever and An-
swerer combinations on Out-of-domain datasets. Both
the Retriever and Answerer (Rdr) are trained on only
Open-NQ. In retrieve-and-read setups, answers are gen-
erated from the top-1 retrieved passage.

We compare to the baselines described in Sec-
tion 6.4 on Open-NQ using both retrieval and an-
swer accuracy metrics in Table 1. Answers are
generated based on the top retrieved document in
systems that separate retrieval from answer gener-
ation, to provide a clean comparison between sys-
tems that return (answer, evidence passage) pairs.
Table 2 reports the out-of-domain performance of
various systems on WQ and TREC.

1P outperforms CBQA in question answering
and beats the retrieve-and-read systems, BM25 and
SEAL. On the passage retrieval task, it signifi-
cantly improves over BM25 and SEAL. For in-
domain setting, 1P is competitive with DPR on
retrieval task, but lags behind the QA pipeline that
uses DPR. However, this appears to be more due
to the reader rather than the retriever as discussed
in Section 8. It is worth noting that 1P general-

14534

https://github.com/facebookresearch/DPR
https://github.com/castorini/pyserini

izes significantly better out-of-domain compared
to other systems.

Utility of Search Paths 1P-Unconstrained can
be viewed as an extended version of CBQA that
generates a search path before predicting the an-
swer. Thus, improvement of 1P-Unconstrained
over CBQA can be attributed to this path-
conditioned answer generation process, analogous
to chain-of-thought reasoning (Wei et al., 2022;
Lampinen et al., 2022).

System
Constrained Beam
Decoding 1 5

CBQA No 26.7 26.8
1P Unconst. No 29.0 29.3

SEAL + Reader Yes 28.5 29.4
1P Yes 28.7 31.7

Table 3: EM for various decoding setups with differ-
ent beam sizes on Open-NQ. Only top-beam result is
used for evaluation, except in SEAL which uses all
beam outputs. 1P constrained decoding benefits the
most from a large beam whereas Unconstrained setups
have only a slight effect.

Effect of Constrained Decoding The purpose
of constrained decoding is to ground the answer
in an evidence retrieved from the corpus. As ex-
pected, the constrained setup enables 1P to achieve
a higher Hits@1 than 1P-unconstrained. Surpris-
ingly, when decoding with a beam of one, we ob-
serve a small drop in answer accuracy for 1P com-
pared to 1P-Unconstrained (Table 3). Inspecting
the losses, two dominant reasons surface. Firstly,
As DPR passages are chunked into 100-words
(Karpukhin et al., 2020), some queries may be-
come unanswerable given a single passage due to
missing context. This is disadvantageous when the
model has memorized the answer but there is no
single passage to attribute it to.

Secondly, during constrained decoding, after
generating the initial keywords, the search space
may soon become sparse with no good candidates
to pick from. Could a larger room for planning its
actions help the model here? Indeed, increasing
the beam size to 5 improves performance by 3%
(Table 3), even when only the top-beam is used for
retrieval. We refer to this as Planning, since the
larger beam only enables the model to plan better
and the remaining beam outputs are otherwise dis-

carded. Note that unconstrained decoding does not
gain from planning. In the final setup in Table 1,
we use a beam of 5 for both 1P and SEAL. Un-
like 1P, SEAL uses all the outputs from the larger
beam for retrieval.

8 Discussion and Ablations

Generating Answers While 1P is capable of
generating answers, Table 1 highlights that it falls
behind the 1P+Reader. The reason seems to be
clear: the Reader has visibility into the full passage
context while 1P is limited to the decoded search
path and the constrained index which only ensures
that generations are grounded in the corpus. Since
1P does retrieve passages, it would be possible to
pull in the corresponding text as input for answer
generation. We leave this as future work.

Comparison to SEAL While 1P takes inspira-
tion from SEAL, in practice, there are a few key
differences between the two systems aside from
1P’s answer generation.

SEAL generates a large set of keywords (Ta-
ble 4) using many separate decodes and heuristic
guidance (Appendix A.3). In contrast, 1P decodes
a single sequence of about three keywords.

SEAL 1P

Median keywords 32 3
Median docs retrieved 500 1

Generates answer × X

Table 4: Key differences between SEAL and 1P mea-
sured over Open-NQ test split with a beam of 1.

The SEAL keywords are a set, decoded inde-
pendently of each other and re-scored using so-
phisticated techniques to retrieve a large number
of documents. For instance, the default config-
uration in SEAL retrieves up to 500 documents.
This makes SEAL suitable to be employed in con-
junction with a re-ranker. In contrast, 1P search
path’s map directly to a single (or few) relevant
documents (Appendix A.6).

We acknowledge the model-size variation be-
tween SEAL and 1P in the reported experiments,
however we preferred using the publicly avail-
able SEAL checkpoint. Given the discrepancies
with larger beam-size, multiple decodes and use of
Reader model, it is difficult to have an apples to
apples comparison between the two systems.

14535

Path vs Keyword set We qualitatively observe
that keywords in a 1P path, owing to sequential
generation, are distinct and add new information
as compared to the SEAL output set where over-
lapping keywords are common (Appendix A.3).
Thus, paths are advantageous for precisely narrow-
ing down to a single relevant document while key-
word sets are effective for retrieving a large number
of documents that can later be reranked. This is
corroborated by the fact that 1P is better at Hits@1
while SEAL is better at Hits@5 (Appendix A.4).

Qualitative Analysis Table 5 illustrates patterns
of Search Paths generated by 1P. We note some of
the common path patterns here:

1) First keywords are entities in the query, fol-
lowed by query predicates that iteratively narrow
down towards an answer. This is the most common
type of path observed and can be attributed to the
dominant presence of title in the training data.

2) Rewrites of the original query or related pred-
icates such as "seasons consists of", "appeared
on ...". Such paths are more prevalent where there
is no canonical entity in the query or no entity can
be determined with high confidence.

3) Answer is directly generated followed by sup-
porting keywords that guide towards an attributed
passage. This happens in a small fraction of cases,
likely where the pretrained model has memorized
an answer with high confidence.

Overall, we find the generated search paths to be
fairly meaningful and interpretable.

Sampling Search Paths for Training Table 6
highlights that high quality keywords are crucial to
performance. The LM re-scored set of keywords
result in significant accuracy gain over heuristically
sampled keywords. Paths with first keyword as
Title boost performance further. Mixing in a small
fraction of paths starting with non-title keywords
encourages the model to generate predicates where
no entity can be determined, giving us the best
results.

Sensitivity to tokenization We find that con-
strained decoding is highly sensitive to rare tok-
enization or punctuation formatting in the corpus.
Consider the query "who sang i ran all the way
home" with the gold document title "Sorry (I Ran
All the Way Home)". In the unconstrained setup,
the model’s top prediction starts with "I Ran All
the Way Home". However, "(I" is tokenized dif-
ferently from "I" and searching over the FM-Index

returns no match. As a result, constrained decoding
drops the predicted keyword altogether, resorting
to lower ranked keywords in the beam. We par-
tially fix the issue by modifying the answer in a
fraction of the training data to include surrounding
punctuation tokens based on how they appear in
the FM-index. For instance, the keyword "I Ran ..."
would update to "(I Ran ...". This simple change
leads to a jump in answer accuracy from 26.4% to
28.7%. However, much more work is needed to
make 1P robust to variations in tokenization.

See Appendix A.2 for analysis of training data
size and Appendix A.5 for masking logits vs log-
probs.

Conclusion

We introduce 1-PAGER, the first system to perform
question answering and passage retrieval in one
pass with a single language model, using a con-
strained decoder to iteratively partition the retrieval
corpus and then generate an answer. We show com-
petitive or improved performance over a variety
of comparable baselines and carefully analyze the
results, ablating both training strategies and decod-
ing style. We also provide a qualitative analysis
of predictions to illustrate the system’s capabilities.
Challenges with constrained decoding are surfaced
including poor search spaces and sensitivity to tok-
enization and mitigation strategies are presented.

We hope that 1P adds value in demonstrating
how a single transformer model can be harnessed
to do both retrieval and answering and pave the
path for further progress in the generative retrieval
domain.

Limitations

1P is geared towards identifying a concise, small
set of documents and generating answer in a sin-
gle go. While this makes the architecture simpler,
it also adds certain weaknesses. 1P is not effec-
tive for retrieving a large number of documents
and falls behind pipelined systems that combine
retrieval with re-ranking. Even for a single passage,
it lags behind state-of-the-art dense-retrieval tech-
niques. 1P’s method of answer generation is also
not competitive with the use of a reader, due to lack
of passage context.

Our training strategy relies heavily on titles or
entities and it’s generalization on corpora without
rich structure or on queries without central entities,
remains to be studied.

14536

Query (Q) and Generated Search Path (SP) Comment

Correctly attributed passages and answers

Q: how many episodes of greys anatomy season 14 Query entity resolved first,
SP: Grey’s Anatomy (season 14) » season consists of 24 episodes » 24 followed by query predicates

Q: when did they start adding zinc to pennies Query entity resolved
SP: Penny (United States coin) » zinc » Lincoln cent » 1943 iteratively

Q: who was executed for being an american spy during the revolutionary war Answer generated firstSP: Nathan Hale » Army during the American Revolutionary » Nathan Hale

Q: who was the grandfather on the cosby show Query rewritesSP: appeared on "The Cosby » Earle Hyman

Incorrect Passage or Answer

Q: who decides the number of judges in the high court A: President of India Path correctly resolved,
SP: judge is appointed » High Court » Chief Justice of India Failed on answer

Q: when did the isle of wight become an island A: During the last Ice Age Query entity resolved,
Isle of Wight » 1890 » 1890 Failed on supporting keywords

Q: love yourself by justin bieber is about who A: Rihana Failed to resolve
SP: Love Yourself: Her » music video » Her query entity

Table 5: Example 1P Search Paths (SP) on Open-NQ test set. The last keyword in SP is the predicted answer. Gold
answers are indicated by A.

Search Path Hits@1 EM

Heuristic 34.5 22.6
LM-scored 40.0 27.2
Title » LM-scored 41.9 28.0
Title » LM-scored +

42.9 28.7
LM-scored (7+1)

Table 6: Comparison of Training Search Paths on Open-
NQ. Here LM-scored denotes re-scoring by LM on a
heuristic set. All results are with a beam of one. "»"
indicates keyword separator and "+" mixture of path
types in the give ratio.

Constrained decoding also comes with its own
challenges. Constrained beam outputs often lack
diversity, so that even with a larger beam one may
still end up in poor search spaces. Computing
document-level constraints across the corpus is ex-
pensive as it may require scanning a large num-
ber of rows in the index. Further, communication
between FM-Index and Transformer model slows
down inference.

Acknowledgement

We thank Don Metzler, Nicholas FitzGerald, Partha
Talukdar, Srini Narayanan, as well as our anony-
mous reviewers, for their thoughful comments and
valuable feedback

Ethical Considerations

While Large Language Models can solve a wide
range of tasks effectively, they also suffer from bi-
ases across axis such as gender, race, region (Chan,
2023). LLMs are also prone to generating toxic
content, especially when probed about it. Although,
our task grounds the model’s generations on a cor-
pus, some of the biases in pre-trained LLMs, may
seep in 1-PAGER.

Building the FM-index and constrained decod-
ing is a compute-intensive affair. We have exper-
imented over a single dataset, Natural Questions,
involving only knowledge-seeking queries, and sin-
gle model family, T5. It is possible that some of our
findings may not hold over other datasets or model
families. Finally, our experiments are limited to En-
glish corpus and queries. The proposed approaches
are resource-intensive and may not be accessible
or valid for several low-resourced languages.

References
Leonard Adolphs, Benjamin Boerschinger, Christian

Buck, Michelle Chen Huebscher, Massimiliano Cia-
ramita, Lasse Espeholt, Thomas Hofmann, Yannic
Kilcher, Sascha Rothe, Pier Giuseppe Sessa, et al.
2021. Boosting search engines with interactive
agents. arXiv preprint arXiv:2109.00527.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak

14537

Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Petr Baudiš and Jan Šedivỳ. 2015. Modeling of the
question answering task in the yodaqa system. In
Experimental IR Meets Multilinguality, Multimodal-
ity, and Interaction: 6th International Conference of
the CLEF Association, CLEF’15, Toulouse, France,
September 8-11, 2015, Proceedings 6, pages 222–
228. Springer.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural lan-
guage processing, pages 1533–1544.

Michele Bevilacqua, Giuseppe Ottaviano, Patrick
Lewis, Wen tau Yih, Sebastian Riedel, and Fabio
Petroni. 2022. Autoregressive search engines: Gen-
erating substrings as document identifiers. In arXiv
pre-print 2204.10628.

Bernd Bohnet, Vinh Q Tran, Pat Verga, Roee Aharoni,
Daniel Andor, Livio Baldini Soares, Jacob Eisen-
stein, Kuzman Ganchev, Jonathan Herzig, Kai Hui,
et al. 2022. Attributed question answering: Evalua-
tion and modeling for attributed large language mod-
els. arXiv preprint arXiv:2212.08037.

Anastasia Chan. 2023. Gpt-3 and instructgpt: techno-
logical dystopianism, utopianism, and “contextual”
perspectives in ai ethics and industry. AI and Ethics,
3(1):53–64.

Danqi Chen, Adam Fisch, Jason Weston, and An-
toine Bordes. 2017. Reading wikipedia to an-
swer open-domain questions. arXiv preprint
arXiv:1704.00051.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
and Andrew McCallum. 2019. Multi-step retriever-
reader interaction for scalable open-domain question
answering. In International Conference on Learn-
ing Representations.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net.

P. Ferragina and G. Manzini. 2000. Opportunistic data
structures with applications. In Proceedings 41st An-
nual Symposium on Foundations of Computer Sci-
ence, pages 390–398.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony
Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vin-
cent Y. Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan,
and Kelvin Guu. 2023a. Rarr: Researching and re-
vising what language models say, using language
models.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen.
2023b. Enabling large language models to generate
text with citations.

Alex Graves. 2012. Sequence transduction with recur-
rent neural networks.

Sanda M Harabagiu, Steven J Maiorano, and Mar-
ius A Paşca. 2003. Open-domain textual question
answering techniques. Natural Language Engineer-
ing, 9(3):231–267.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2022. Few-shot Learning with Retrieval
Augmented Language Models.

Zhengbao Jiang, Luyu Gao, Jun Araki, Haibo Ding,
Zhiruo Wang, Jamie Callan, and Graham Neubig.
2022. Retrieval as attention: End-to-end learning
of retrieval and reading within a single transformer.
arXiv preprint arXiv:2212.02027.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing
Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. 2023. Ac-
tive retrieval augmented generation. arXiv preprint
arXiv:2305.06983.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6769–
6781, Online. Association for Computational Lin-
guistics.

Omar Khattab and Matei Zaharia. 2020. Colbert: Ef-
ficient and effective passage search via contextual-
ized late interaction over bert. In Proceedings of
the 43rd International ACM SIGIR conference on
research and development in Information Retrieval,
pages 39–48.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Andrew K Lampinen, Ishita Dasgupta, Stephanie CY
Chan, Kory Matthewson, Michael Henry Tessler,
Antonia Creswell, James L McClelland, Jane X
Wang, and Felix Hill. 2022. Can language models
learn from explanations in context? arXiv preprint
arXiv:2204.02329.

14538

https://arxiv.org/abs/2204.10628
https://arxiv.org/abs/2204.10628
https://openreview.net/forum?id=HkfPSh05K7
https://openreview.net/forum?id=HkfPSh05K7
https://openreview.net/forum?id=HkfPSh05K7
https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
http://arxiv.org/abs/2210.08726
http://arxiv.org/abs/2210.08726
http://arxiv.org/abs/2210.08726
http://arxiv.org/abs/2305.14627
http://arxiv.org/abs/2305.14627
http://arxiv.org/abs/1211.3711
http://arxiv.org/abs/1211.3711
http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2208.03299
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550

Hyunji Lee, Sohee Yang, Hanseok Oh, and Minjoon
Seo. 2022. Generative multi-hop retrieval. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1417–
1436.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6086–6096, Florence,
Italy. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale
Minervini, Heinrich Küttler, Aleksandra Piktus, Pon-
tus Stenetorp, and Sebastian Riedel. 2021. Paq: 65
million probably-asked questions and what you can
do with them.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: An easy-to-use python toolkit to
support replicable ir research with sparse and dense
representations. arXiv preprint arXiv:2102.10073.

Jacob Menick, Maja Trebacz, Vladimir Mikulik,
John Aslanides, Francis Song, Martin Chadwick,
Mia Glaese, Susannah Young, Lucy Campbell-
Gillingham, Geoffrey Irving, and Nat McAleese.
2022. Teaching language models to support answers
with verified quotes.

Donald Metzler, Yi Tay, Dara Bahri, and Marc Najork.
2021. Rethinking search: making domain experts
out of dilettantes. ACM SIGIR Forum, 55(1):1–27.

OpenAI. 2023. Gpt-4 technical report.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm,
Lora Aroyo, Michael Collins, Dipanjan Das, Slav
Petrov, Gaurav Singh Tomar, Iulia Turc, and David
Reitter. 2021. Measuring attribution in natu-
ral language generation models. arXiv preprint
arXiv:2112.12870.

Adam Roberts, Hyung Won Chung, Anselm Levskaya,
Gaurav Mishra, James Bradbury, Daniel Andor, Sha-
ran Narang, Brian Lester, Colin Gaffney, Afroz
Mohiuddin, Curtis Hawthorne, Aitor Lewkowycz,
Alex Salcianu, Marc van Zee, Jacob Austin, Sebas-
tian Goodman, Livio Baldini Soares, Haitang Hu,
Sasha Tsvyashchenko, Aakanksha Chowdhery, Jas-
mijn Bastings, Jannis Bulian, Xavier Garcia, Jianmo
Ni, Andrew Chen, Kathleen Kenealy, Jonathan H.
Clark, Stephan Lee, Dan Garrette, James Lee-Thorp,
Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten
Bosma, Alexandre Passos, Jeremy Maitin-Shepard,
Noah Fiedel, Mark Omernick, Brennan Saeta, Ryan
Sepassi, Alexander Spiridonov, Joshua Newlan, and
Andrea Gesmundo. 2022. Scaling up models and
data with t5x and seqio.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the pa-
rameters of a language model? arXiv preprint
arXiv:2002.08910.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2022. Col-
bertv2: Effective and efficient retrieval via
lightweight late interaction.

Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara
Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao,
Jai Gupta, et al. 2022. Transformer memory as a
differentiable search index. Advances in Neural In-
formation Processing Systems, 35:21831–21843.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.
arXiv preprint arXiv:2007.00808.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu,
Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. 2022. Gen-
erate rather than retrieve: Large language mod-
els are strong context generators. arXiv preprint
arXiv:2209.10063.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu,
Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. 2023. Generate

14539

https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/2102.07033
http://arxiv.org/abs/2102.07033
http://arxiv.org/abs/2102.07033
http://arxiv.org/abs/2203.11147
http://arxiv.org/abs/2203.11147
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.17189
http://arxiv.org/abs/2203.17189
http://arxiv.org/abs/2112.01488
http://arxiv.org/abs/2112.01488
http://arxiv.org/abs/2112.01488
https://openreview.net/forum?id=fB0hRu9GZUS

rather than retrieve: Large language models are
strong context generators. In The Eleventh Interna-
tional Conference on Learning Representations.

Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu,
Peitian Zhang, and Ji-Rong Wen. 2022. Ultron: An
ultimate retriever on corpus with a model-based in-
dexer. arXiv preprint arXiv:2208.09257.

Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming
Zheng, Soujanya Poria, and Tat-Seng Chua. 2021.
Retrieving and reading: A comprehensive survey on
open-domain question answering.

14540

https://openreview.net/forum?id=fB0hRu9GZUS
https://openreview.net/forum?id=fB0hRu9GZUS
http://arxiv.org/abs/2101.00774
http://arxiv.org/abs/2101.00774

A Appendix

A.1 Constrain Computation
1P relies on two key operations for constrain com-
putation:

a) F(D, k) : Documents that contain keyword k

b) C(k,D) : Next tokens for keyword k in arbi-
trary document set D

F(D, k) is preprocessed and cached to allow for
quick computation. C(k,D) is trickier to compute.
When D represents the full corpus, FM-index can
fetch the next tokens in O(|V |log(|V |)), where V
is the token vocabulary and independent of |D|.
However, arbitrary D requires a traversal over all
documents and can be very expensive. In practise,
the LLM training guides it to generate effective
keywords such that |D| is small.

We also apply certain other optimizations to re-
duce the compute cost:

• Constrains are computed lazily over a decod-
ing pass.

• Several computations are cached, eg: keyword
to document id mapping

• To cap the cost of constraints at each decoding
step, we allow for unconstrained generation
in rare scenarios, when the estimated cost is
too high. If the generated path is absent in the
corpus (<1% examples), these can be filtered
out later.

Despite these optimizations, inference continues
to be expensive and we perhaps need a special data
structure for next token look-up.

A.2 Training data size

Dataset Queries Paths Hits@1 EM

Open-NQ 55k 55k 41.9 28.1
Open-NQ 55k 310k 42.9 28.7
Open-NQ 55k 310k

43.6 29.5
+ PAQ + 9M + 9M

Table 7: Comparison of different dataset sizes for
queries and paths

In Table 7, we observe the effect of dataset size
on performance. Increasing the numbers of paths
sampled per query improves performance, perhaps

due to higher diversity in training. However, this
method of dataset expansion is limited by the num-
ber of relevant paths we could extract for a query.

We also experiment with increasing the query
set manifold by mixing in unsupervised datasets. A
total of 9M QA pairs are sampled from PAQ (Lewis
et al., 2021), a synthetic QA dataset, and search
paths extracted with heuristic scoring described in
Section 5. The original 1P training dataset is mixed
in 1:1 ratio. This further boosts performance, but
not proportionally to the amount of data added,
indicating diminishing returns from silver datasets.

A.3 SEAL keywords
SEAL generates a set of document substrings con-
strained on the corpus, that are combined to form
document identifiers. Besides using a LM to gener-
ate keywords, SEAL utilizes several other mecha-
nisms for extracting keywords. This includes par-
tial beam sequences, heuristically adding query n-
grams, sampling the top-k tokens from the logprobs
of the first decoding step, force decoding title etc.
The keywords are re-scored using the LM as well as
FM-index count and all keyword combinations are
retrieved. Table 8 illustrates keywords generated
by both the systems. Note that SEAL keywords
can be repetitive and therefore require a large num-
ber of keywords to narrow down to meaningful
documents. This also makes SEAL suitable for re-
trieving a much larger set of documents that can be
re-ranked later. The maximum number of retrieved
documents for SEAL are capped by a hyperparam-
eter with default value of 500. In contrast, 1P is
geared towards retrieving only the top-document.

A.4 Hits@5
SEAL does significantly better than 1P for Hits@5
(Table 9). We attribute this to the large set of key-
words generated by SEAL as explained in the Ap-
pendix A.3.

A.5 Normalizing sequence likelihood over
constrained space

During constrained decoding a sequence X , we
need to choose the next token from C(X,D) and
not the entire vocabulary space V . Should the se-
quence likelihood be re-normalized over this con-
strained space? We find that re-normalizing the
probabilities results in inflated likelihoods, making
it hard for the model to back-track.

Consider the query, "where did the butchers in
the slaughterhouse cases live" to which our model

14541

System Question or Search Path Answer

who has the most catches in nfl history Jerry Rice
1P 2,000-yard club » Barry Sanders Barry Sanders
SEAL </s> Michael Irvin @@, yards per catch, caught his, touchdown, record T.J. Houshmandzadeh

when was harry potter and the philosophers stone published 1997
1P Harry Potter and the Philosopher’s Stone » first published in the United » 1997 1997
SEAL </s> Harry Potter and the Philosopher’s Stone @@, "Harry Potter, Potter and the

Philosopher’s Stone is, Potter and the Philosopher’s Stone Harry, novel
1999

what is the meaning of the harp in ireland the arms of Ireland
1P Harp » national symbol of Ireland » national symbol of Ireland national symbol of Ireland
SEAL </s> Harp @@, Irish harp„ harp is, harp was, harp aristocracy

who was the president of pakistan during 1971 war Yahya Khan
1P Indo-Pakistani War of 1971 » Prime Minister of Pakistan » Zulfikar Ali Bhutto Zulfikar Ali Bhutto
SEAL </s> Indo-Pakistani War of 1971 @@, East Pakistan, Pakistani, Pakistan Army,

Pakistan’s
Muhammad Yaqub Khan

when do you declare honors in contract bridge any time after the auction
1P Contract bridge » declaring » end of the hand end of the hand
SEAL </s> Contract bridge @@, declarer, bidding, honors, hands bidding

Table 8: Comparison of keywords generated by SEAL and 1P for randomly sampled exampled from Open-NQ
test set. For 1P, we show the full search path separated by "»" with the last keyword as the answer. For SEAL,
we illustrate the top-5 keywords along with the answer from Reader model. "</s>" and "@@" are special tokens
used by SEAL for identifying start of passage and title marker respectively. The Answer next to the question is
the gold answer while others are predictions from corresponding systems.

System Beam Hits@5

SEAL 1 59.7
SEAL 5 62.8
1P 1 46.5
1P 5 50.8

Table 9: Hits@5 on Open-NQ test. SEAL achieves a
much higher score than 1P owning to the larger number
of documents matched and re-scored. Note that only
top-beam result is used for 1P while SEAL uses all
beam outputs.

predicts an irrelevant search path [Slaughterhouse
Five, but, EOS]. What’s going on under the hood?
The first keyword is incorrect lending the model
into a poor search space. With the second key-
word, the model is possibly looking to generate
"butcher" but there’s no such keyword in the con-
strained set. Ideally, the model should backtrack
at this point to other candidates in the beam. How-
ever, since the set of continuations is small, re-
normalizing inflates the probablities of all tokens
in C including EoS, even though the true likelihood
of such a sequence is very low. Indeed, using the
language model’s scores directly without any re-

Figure 4: Number of matching documents in the corpus
for 1P generated path in the test set. About half the
examples match only a single path.

normalization cures this issue yielding [Slaughter-
house cases, Butcher, EOS]. and this is the strategy
we opt for in all our experiments.

A.6 Number of matching documents

1P generated paths effectively narrow down the
corpus, generally matching only a few documents
in the corpus as illustrated in Figure 4. Note that
a small fraction of paths match 0 documents due
to pruning optimizations applied during inference

14542

time detailed in Appendix A.1.

14543

