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Abstract

Continual learning (CL) aims to constantly
learn new knowledge over time while avoid-
ing catastrophic forgetting on old tasks. We
focus on continual text classification under the
class-incremental setting. Recent CL studies
have identified the severe performance decrease
on analogous classes as a key factor for catas-
trophic forgetting. In this paper, through an
in-depth exploration of the representation learn-
ing process in CL, we discover that the com-
pression effect of the information bottleneck
leads to confusion on analogous classes. To
enable the model learn more sufficient repre-
sentations, we propose a novel replay-based
continual text classification method, InfoCL.
Our approach utilizes fast-slow and current-
past contrastive learning to perform mutual in-
formation maximization and better recover the
previously learned representations. In addition,
InfoCL incorporates an adversarial memory
augmentation strategy to alleviate the overfit-
ting problem of replay. Experimental results
demonstrate that InfoCL effectively mitigates
forgetting and achieves state-of-the-art perfor-
mance on three text classification tasks. The
code is publicly available at https://github.
com/Yifan-Song793/InfoCL.

1 Introduction

Continual learning (CL) enables conventional static
natural language processing models to constantly
gain new knowledge from a stream of incoming
data (Sun et al., 2020; Biesialska et al., 2020). In
this paper, we focus on continual text classifica-
tion, which is formulated as a class-incremental
problem, requiring the model to learn from a se-
quence of class-incremental tasks (Huang et al.,
2021). Figure 1 gives an illustrative example of
continual text classification. The model needs to
learn to distinguish some new classes in each task
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Figure 1: Illustration for continual text classification
with three tasks where each task involves two new
classes. Xi, Yi, and Zi denote input sentences, new
classes and learned representations for i-th task Ti re-
spectively. Although the representations Zi learned in
Ti are sufficient for classifying Yi, they are insufficient
to distinguish all seen classes Y in the final test.

and is eventually evaluated on all seen classes. Like
other CL systems, the major challenge of continual
text classification is catastrophic forgetting: after
new tasks are learned, performance on old tasks
may degrade dramatically (Lange et al., 2022).

The earlier work in the CL community mainly at-
tributes catastrophic forgetting to the corruption of
the learned representations as new tasks arrive and
various methods have been introduced to retain or
recover previously learned representations (Kirk-
patrick et al., 2017; Rebuffi et al., 2017; Mallya
and Lazebnik, 2018; Lange et al., 2022). Recently,
some studies (Wang et al., 2022; Zhao et al., 2023)
find that, under the class-incremental setting, the se-
vere performance decay among analogous classes
is the key factor of catastrophic forgetting. To im-
prove the performance of distinguishing analogous
classes, Wang et al. (2022) exploit a heuristic ad-
versarial class augmentation and Zhao et al. (2023)
propose a sophisticated memory-insensitive proto-
type mechanism. However, due to a lack of thor-
ough investigation into the underlying cause of
confusion in similar classes, previous empirical
methods may not be universally effective and are
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unable to offer guidance for further improvements.

In this paper, for the first time we present an
in-depth analysis of the analogous class confusion
problem from an information theoretic perspective.
We investigate the impact of the information bot-
tleneck (IB) on the representation learning process
of CL, specifically how it compresses the mutual
information between the representation and the in-
put. Through formal analysis and empirical study,
we find that within each task, current CL models
tend to discard features irrelevant to current task
due to the compression effect of IB. While the
acquired representations are locally sufficient for
current task, they may be globally insufficient for
classifying analogous classes in the final test. We
refer to this phenomenon as representation bias
and aim to enhance the CL model’s ability to learn
more comprehensive representations.

Based on our analysis, we propose a replay-
based continual text classification method InfoCL.
Using contrastive learning as the core mechanism,
we enable the model to learn more comprehensive
representations by maximizing the mutual informa-
tion between representation and the original input
via InfoNCE. Specifically, we design fast-slow and
current-past contrast strategies. First, from the IB
theory, the representations in the early stage of
optimization preserves more information. Hence,
when learning for new classes in current task, we
leverage MoCo framework (He et al., 2020) and
conduct fast-slow contrastive learning to facilitate
the learned representations to retain more informa-
tion about the input. On the other hand, to further
alleviate representation corruption, when conduct-
ing memory replay, we leverage current-past con-
trastive learning to ensure the learned representa-
tions do not undergo significant changes. Due to
the limited budget of memory, the performance of
current-past contrastive learning is hindered by the
over-fitting problem. To this end, InfoCL incor-
porates adversarial data augmentation to generate
more training instances for replay.

Our contributions are summarized as follows:
(1) We formally analyze the analogous class confu-
sion problem in CL from an information theoretic
perspective and derive that the representation bias
led by the compression effect of IB is the under-
lying cause of forgetting. (2) We propose a novel
replay-based continual text classification method
InfoCL, which exploits fast-slow and current-past
constrastive learning to capture more comprehen-

sive representations. (3) Experimental results on
several text classification datasets show that InfoCL
learns more effective representations and outper-
forms state-of-the-art methods.

2 Related Work

Continual Learning Continual Learning (CL)
studies the problem of continually learning knowl-
edge from a sequence of tasks (Lange et al., 2022)
while avoiding catastrophic forgetting. Previous
CL work mainly attributes catastrophic forgetting
to the corruption of learned knowledge and can be
divided into three major families. Replay-based
methods (Rebuffi et al., 2017; Prabhu et al., 2020)
save a few previous task instances in a memory
module and retrain on them while training new
tasks. Regularization-based methods (Kirkpatrick
et al., 2017; Aljundi et al., 2018) introduce an extra
regularization loss to consolidate previous knowl-
edge. Parameter-isolation methods (Mallya and
Lazebnik, 2018) dynamically expand the network
and dedicate different model parameters to each
task. Recent studies have identified the confusion
among analogous classes as a key factor of catas-
trophic forgetting. In this paper, we discover the
representation bias is the underlying cause of such
confusion and design InfoCL to mitigate it.

Contrastive Learning Contrastive learning aims
to learn representations by contrasting positive
pairs against negative pairs (Chen et al., 2020). Re-
cently, contrastive learning has made great progress
in both unsupervised and supervised settings (Chen
et al., 2020; He et al., 2020; Khosla et al., 2020;
Barbano et al., 2022). The success of contrastive
learning can be partially attributed to that the com-
monly used objective, InfoNCE, maximizes the
mutual information between representations and
inputs (van den Oord et al., 2018). Previous con-
tinual learning work has already integrated con-
trastive learning to alleviate the catastrophic forget-
ting. Cha et al. (2021) and Zhao et al. (2022) use
supervised contrastive learning to learn more con-
sistent representations. Hu et al. (2022) design a
prototypical contrastive network to alleviate catas-
trophic forgetting. However, due to the lack of
in-depth analysis of the representations learned in
continual learning, these approaches fail to harness
the full potential of contrastive learning1. In this
paper, we investigate the representation learning

1See the Appendix A for detailed discussion of related
work.
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process in CL and propose fast-slow and current-
past contrastive learning to enable the model learn
more comprehensive representations and further
mitigate the representation corruption problem.

3 Task Formulation

In this work, we focus on continual learning for a
sequence of k class-incremental text classification
tasks (T1, T2, ..., Tk). Each task Ti has its dataset
Di = {(xn, yn)}Ni

n=1, where (xn, yn) is an instance
of current task and is sampled from an individually
i.i.d. distribution p(Xi, Yi). Different tasks Ti and
Tj have disjoint label sets Yi and Yj . The goal of
CL is to continually train the model on new tasks
to learn new classes while avoiding forgetting pre-
viously learned ones. From another perspective, if
we denote X = ∪iXi and Y = ∪iYi as the input
and output space of the entire CL process respec-
tively, continual learning aims to approximate a
holistic distribution p(Y |X) from a non-i.i.d data
stream.

The text classification model F is usually com-
posed of two modules: the encoder f and the clas-
sifier σ. For an input x, we get the corresponding
representation z = f(x), and use the logits σ (z)
to compute loss and predict the label.

4 Representation Bias in CL

Previous work (Wang et al., 2022; Zhao et al., 2023)
reveals that the severe performance degradation on
analogous classes is the key factor of catastrophic
forgetting. In this section, we investigate the rep-
resentation learning process of continual learning
from an information theoretic perspective and find
that the representation bias is the underlying cause
of confusion in analogous classes.

4.1 Information Bottleneck

We first briefly introduce the background of infor-
mation bottleneck in this section. Information bot-
tleneck formulates the goal of deep learning as an
information-theoretic trade-off between represen-
tation compression and preservation (Tishby and
Zaslavsky, 2015; Shwartz-Ziv and Tishby, 2017).
Given the input X and the label set Y , one model is
built to learn the representation Z = F(X ), where
F is the encoder. The learning procedure of the
model is to minimize the following Lagrangian:

I(X ;Z)− βI(Z;Y), (1)

where I(X ;Z) is the mutual information (MI) be-
tween X and Z , quantifying the information re-
tained in the representation Z . I(Z;Y) quantifies
the amount of information in Z that enables the
identification of the label Y . β is a trade-off hy-
perparameter. With information bottleneck, the
model will learn minimal sufficient representation
Z∗ (Achille and Soatto, 2018) of X corresponding
to Y:

Z∗ = argmin
Z

I(X ;Z) (2)

s.t. I(Z;Y) = I(X ;Y). (3)

Minimal sufficient representation is important for
supervised learning, because it retains as little
about input as possible to simplify the role of the
classifier and improve generalization, without los-
ing information about labels.

4.2 Representation Learning Process of CL

Continual learning is formulated as a sequence of
individual tasks (T1, T2, ..., Tk). For i-th task Ti,
the model aims to approximate distribution of cur-
rent task p(Yi|Xi). According to IB, if the model
F = σ ◦ f converges, the learned hidden represen-
tation Zi = f(Xi) will be local minimal sufficient
for Ti:

Zi = argmin
Zi

I (Xi;Zi) (4)

s.t. I (Zi;Yi) = I(Xi;Yi), (5)

which ensures the performance and generalization
ability of the current task. Nevertheless, the local
minimization of the compression term I (Xi;Zi)
will bring potential risks: features that are useless
in the current task but crucial for other tasks will
be discarded.

The goal of CL is to classify all seen classes
Y = ∪iYi. For the entire continual learning
task with the holistic target distribution p(Y |X),
the necessary condition to perform well is that
the representation Z is globally sufficient for Y :
I(Z;Y ) = I(X;Y ). However, as some crucial
features are compressed, the combination of lo-
cal minimal sufficient representations for each task
Z = ∪iZi may be globally insufficient:

I (Z;Y ) < I(X;Y ). (6)

We name this phenomenon as representation bias:
due to the compression effect of IB, the learned
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Models FewRel MAVEN

I(X1;Z1) I(Z;Y ) I(X1;Z1) I(Z;Y )

Supervised 2.42 2.45 3.50 2.42

RP-CRE 2.08 2.21 3.15 2.31
CRL 2.12 2.18 3.12 2.30
CRECL 2.20 2.31 3.01 2.36

Table 1: Mutual information comparison between su-
pervised learning and strong CL baselines on FewRel
and MAVEN datasets. We use I(X;Z) to measure how
much features of input X representation Z preserves.
To exclude the impact of representation corruption, we
instead estimate I(X1;Z1) after CL models finish T1.
I(Z;Y ) measures whether the learned representation is
sufficient for the entire continual task.

representations in each individual task may be in-
sufficient for the entire continual task.

Then the underlying cause of the performance
decrease of analogous classes is obvious. Take two
cross-task analogous classes ya and yb as an ex-
ample. Under sequential task setting of CL, the
model is unable to co-training on instances from ya
and yb. It means that the representations of these
two classes can exclusively be learned within their
respective tasks. When learning ya, the local suffi-
cient representations to identify ya are insufficient
to differentiate with yb. Hence, the appearance of
yb will lead to a dramatically performance decrease
of ya, resulting in what is known as catastrophic
forgetting.

4.3 Empirical Results

To confirm our analysis, here we directly mea-
sure the mutual information among X , Y and
Z. Since the representations learned by super-
vised learning is always globally sufficient, i.e.,
I (Z;Y ) = I(X;Y ), we use supervised learning
on all data as the baseline, and compare it with
several strong CL methods. Concretely, we use
MINE (Belghazi et al., 2018) as the MI estimator
and conduct experiments on FewRel and MAVEN
datasets2.

First, we measure I(X;Z) to quantify the fea-
tures preserved in the representation Z. How-
ever, previously learned representations will be
corrupted once the model learns new tasks, lead-
ing to inaccurate estimation. To exclude the im-
pact of representation corruption, we instead esti-
mate I(X1;Z1) on T1’s test set. Second, to assess
whether learned representations are sufficient for

2See Section 6.1 for details of CL baselines and datasets.

the entire continual task, we compare I(Z;Y ) on
the final test set with all classes.

As shown in Table 1, both I(X1;Z1) and
I(Z;Y ) of three CL models are significantly lower
than supervised learning, indicating that the CL
model tends to compress more information due to
the individual task setting and the representations
learned in CL are insufficient for the entire contin-
ual task.

5 Methodology

From the formal analysis and empirical verification,
we establish that representation bias plays a cru-
cial role in the performance decline of analogous
classes. Consequently, in this section, we propose
a novel replay-based CL method, InfoCL, which
is able to maximize I(Xi;Zi) and help the model
learn more comprehensive representations.

5.1 Overall Framework

The objective of contrastive learning, specifically
InfoNCE, serves as a proxy to maximize the mutual
information I(Xi;Zi) (van den Oord et al., 2018).
Therefore, we utilize contrastive learning as the
core mechanism of InfoCL to acquire more com-
prehensive representations. Concretely, we design
fast-slow and current-past contrastive learning for
training new data and memory data.

The overall framework of InfoCL is depicted in
Figure 2. For a new task Tk, we first train the model
on Dk to learn this task. We perform fast-slow con-
trastive learning to help the model capture more
sufficient representations and mitigate the represen-
tation bias. Then we store a few typical instances
for each class y ∈ Yk into the memoryM, which
contains instances of all seen classes. To allevi-
ate representation decay, we next conduct memory
replay with current-past contrastive learning. As
the performance of representation recovery is al-
ways hindered by the limited size of memory, we
incorporates adversarial augmentation to alleviate
overfitting.

5.2 Fast-Slow Contrastive Learning

In the representation learning process of a task Ti,
the compression effect of IB will minimize the
mutual information I(Xi;Zi), leading to globally
insufficient representations. Intuitively, in the early
phase of optimization, I(Xi;Zi) is larger and the
representations preserve more information about
the inputs. However, directly adopting an early

14560



New Task Data

Slow EncoderEncoder

LinearClassifier Slow Linear

Queue

Memory Data

Past Encoder

Past Linear

Past
Repr.

(b) Fast-Slow Contrastive (c) Current-Past Contrastive

SlowFast
New Task
Training

Memory
Replay

Slow
Model

Past
Model

(a) Training for

Encoder

LinearClassifier

Past

Current
Update

Adv. Aug.

Figure 2: (a) A demonstration for InfoCL. We design fast-slow and current-past contrastive learning for initial
training and memory replay, respectively. (b) Fast-slow contrastive learning. The slowly progressing model generates
representations preserving more information. (c) Current-past contrastive learning with adversarial augmentation.
Contrasting with old model from Tk−1 further alleviates representation corruption.

stop strategy is not feasible, as the representation
compression is essential for generalization. Instead,
we try to pull the learned representations and early
representations of the same class together, facili-
tating the preservation of more comprehensive in-
formation in the final representations. Inspired by
He et al. (2020), we employ a momentum contrast
which consists of a fast encoder and a momentum
updated slow encoder. The representations from
the slowly-updated branch will preserve more in-
formation about the input sentences. The fast-slow
contrast can “distill” these information from the
slow branch to fast branch to learn more compre-
hensive representations.

Figure 2 (b) depicts the architecture. The fast
model is updated by gradient descent, while the
slow model truncates the gradient and is updated
with the momentum mechanism during training.
Formally, denoting the parameters of the fast and
slow models as θ and θ′, θ′ is updated by:

θ′ ← ηθ′ + (1− η)θ, (7)

where η is the momentum coefficient which is
relatively large to ensure the slow update (e.g.,
η = 0.99). For the slow encoder, we also maintain
a representation queue Q to increase the number of
negative instances beyond the batch size, enabling
InfoNCE to more effectively maximize MI. The
queue is updated with the output of slow model by
first-in-first-out strategy.

We denote z for the representations from the fast
model and z̃ for the slow model. Then the slow

representations z̃ preserve more information than
z. We use InfoNCE to perform fast-slow contrast:

Lfs = −
1

|B|
∑

i∈I

∑

p∈P (i)

log
exp(zi · z̃p/τ1)∑
j∈J exp(zi · z̃j/τ1)

,

(8)
where I = {1, 2, ..., |B|} is the set of indices of
batch B. J = {1, 2, ..., |B ∪ Q|} denotes the in-
dices set of instances in the batch or the queue.
P (i) = {p ∈ J : yp = yi} is the indices of in-
stances which have the same label as zi from the
batch or the queue. τ1 is the temperature hyperpa-
rameter.

The final optimization objective in new task
training is the combination of cross entropy loss
Lce and the contrastive loss Lfs:

L1 = Lce + λ1Lfs, (9)

where λ1 is the factor to adjust the loss weight.

5.3 Memory Selection

After the initial training stage, we select and store
typical instances for each class for replay. Since
the primary focus of our paper is to address the
representation bias problem, we adopt the mem-
ory sampling strategy employed in prior work (Cui
et al., 2021; Zhao et al., 2022) to ensure a fair
comparison. Specifically, for each class, we use
K-means to cluster the corresponding representa-
tions, and the instances closest to the centroids are
stored in memoryM. Then we use the instances
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of all seen classes from memoryM to conduct the
memory replay stage.

5.4 Current-Past Contrastive Learning

When performing memory replay, we also employ
contrastive learning to enable the model to learn
more comprehensive representations for all previ-
ously seen classes. Additionally, to further enhance
representation recovery in memory replay stage,
we propose current-past contrastive learning which
explicitly aligns current representations to the pre-
vious ones.

As shown in Figure 2 (c), after the model fin-
ishs Tk−1, we store the representations z̄ of the
instances from memoryM. Then we use InfoNCE
loss to pull current representations z and past rep-
resentations z̄ of the same class together:

Lcp = − 1

|B|
∑

i∈I

∑

p∈P (i)

log
exp(zi · z̄p/τ2)∑

m∈M exp(zi · z̄m/τ2)
,

(10)
where I = {1, 2, ..., |B|} is the set of indices of
batch B. M = {1, 2, ..., |M|} denotes the indices
set of instances in memoryM. P (i) = {p ∈M :
yp = yi} is the indices of instances which have
the same label as zi from the memory. τ2 is the
temperature hyperparameter.

The optimization objective in the memory replay
stage is

L2 = Lce + λ2Lcp, (11)

where Lce is cross entropy loss and λ2 is the factor
to adjust the loss weight.

5.5 Adversarial Memory Augmentation

Due to the constrained memory budgets, the per-
formance of current-past contrastive learning in the
memory replay stage is hindered by the overfitting
problem. To alleviate overfitting and enhance the
effect of representation recovery, we incorporate
adversarial data augmentation (Zhu et al., 2020):

Ladv =

min
θ

E(x,y)∼M

[
1

K

K−1∑

t=0

max
∥δt∥≤ϵ

L2 (F (x+ δt), y)

]
.

(12)
Intuitively, it performs multiple adversarial attack
iterations to craft adversarial examples, which is
equivalent to replacing the original batch with a K-
times larger adversarial augmented batch. Please
refer to Appendix B for details about Eq. 12.

6 Experiments

6.1 Experiment Setups
Datasets To fully measure the ability of InfoCL,
we conduct experiments on 4 datasets for 3 dif-
ferent text classification tasks, including relation
extraction, event classification, and intent detec-
tion. For relation extraction, following previous
work (Han et al., 2020; Cui et al., 2021; Zhao et al.,
2022), we use FewRel (Han et al., 2018) and TA-
CRED (Zhang et al., 2017). For event classifica-
tion, following Yu et al. (2021) and Wu et al. (2022),
we use MAVEN (Wang et al., 2020) to build our
benchmark. For intent detection, following Liu
et al. (2021), we choose HWU64 (Liu et al., 2019)
dataset. For the task sequence, we simulate 10 tasks
by randomly dividing all classes of the dataset into
10 disjoint sets, and the number of new classes
in each task for FewRel, TACRED, MAVEN and
HWU64 are 8, 4, 12, 5 respectively. For a fair com-
parison, the result of baselines are reproduced on
the same task sequences as our method. Please re-
fer to Appendix C for details of these four datasets.
Following previous work (Hu et al., 2022; Wang
et al., 2022), we use the average accuracy (Acc) on
all seen tasks as the metric.

Baselines We compare InfoCL against the fol-
lowing baselines: IDBR (Huang et al., 2021), KCN
(Cao et al., 2020), KDRK (Yu et al., 2021), EMAR
(Han et al., 2020), RP-CRE (Cui et al., 2021), CRL
(Zhao et al., 2022), CRECL (Hu et al., 2022), ACA
(Wang et al., 2022) and CEAR (Zhao et al., 2023).
See Appendix D for details of the baselines.

Some baselines are originally proposed to tackle
one specific task. For example, RP-CRE is de-
signed for continual relation extraction. We adapt
these baselines to other tasks and report the corre-
sponding results. Since ACA and CEAR consist of
data augmentation specially designed for relation
extraction, they cannot be adapted to other tasks.

Implementation Details For InfoCL, we use
BERTbase (Devlin et al., 2019) as the encoder fol-
lowing previous work (Cui et al., 2021; Wang et al.,
2022). The learning rate of InfoCL is set to 1e-5
for the BERT encoder and 1e-3 for other modules.
Hyperparameters are tuned on the first three tasks.
The memory budget for each class is fixed at 10 for
all methods. For all experiments, we use NVIDIA
A800 GPUs and report the average result of 5 dif-
ferent task sequences. More implementation details
can be found in Appendix E.
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Datasets FewRel TACRED MAVEN HWU64

Models T8 T9 T10 T8 T9 T10 T8 T9 T10 T8 T9 T10
IDBR (Huang et al., 2021) 73.7 71.7 68.9 64.2 63.8 60.1 64.4 60.2 57.3 80.2 78.0 76.2
KCN (Cao et al., 2020) 80.3 78.8 76.0 72.1 72.2 70.6 68.4 67.7 64.4 83.7 82.7 81.9
KDRK (Yu et al., 2021) 81.6 80.2 78.0 72.9 72.1 70.8 69.6 68.9 65.4 85.1 82.5 81.4
EMAR (Han et al., 2020) 86.1 84.8 83.6 76.6 76.8 76.1 76.8 75.7 73.2 85.5 83.9 83.1
RP-CRE (Cui et al., 2021) 85.8 84.4 82.8 76.1 75.0 75.3 77.1 76.0 73.6 84.5 83.8 82.7
CRL (Zhao et al., 2022) 85.6 84.5 83.1 79.1 79.0 78.0 76.8 75.9 73.7 83.1 81.3 81.5
CRECL (Hu et al., 2022) 84.6 83.6 82.7 81.4 79.3 78.5 75.9 75.1 73.5 83.1 81.9 81.1
ACA (Wang et al., 2022) 87.0 86.3 84.7 78.6 78.8 78.1 – – – – – –
CEAR (Zhao et al., 2023) 86.9 85.6 84.2 81.1 80.1 79.1 – – – – – –

InfoCL (Ours) 87.8 86.8 85.4 79.7 78.4 78.2 78.2 77.1 75.3 86.3 85.3 84.1

Table 2: Accuracy (%) on all seen classes after learning the last three tasks. We report the average result of 5
different runs. The best results are in boldface. ACA and CEAR is specially designed for continual relation
extraction and cannot be adapted to other tasks.

Models Few. TAC. MAV. HWU.

InfoCL 85.4 78.2 75.3 84.1

w/o f-s con. 84.9 77.6 74.7 83.4
w/o c-p con. 85.0 78.1 75.1 83.7
w/o adv. aug. 84.8 77.9 75.0 83.6

Table 3: Ablation study of InfoCL. “f-s con.” and “c-
p con.” denote fast-slow and current-past contrastive
learning. “adv. aug.” denotes adversarial memory aug-
mentaion mechanism.

6.2 Main Results

Table 2 shows the performance of InfoCL and base-
lines on four datasets for three text classification
tasks. Due to space constraints, we only illustrate
results on the last three tasks. The complete ac-
curacy and standard deviation of all 10 tasks can
be found in Appendix G. As shown, on FewRel,
MAVEN and HWU64, our proposed InfoCL con-
sistently outperforms all baselines and achieves
new state-of-the-art results. These experimental re-
sults demonstrate the effectiveness and universality
of our proposed method. Regarding the TACRED
dataset, it has been noticed that a large fraction of
the examples are mislabeled, thus compromising
the reliability of the evaluation (Alt et al., 2020;
Stoica et al., 2021). Here we strongly advocate
for a more reliable evaluation on other high-quality
text classification datasets.

7 Analysis

7.1 Ablation Study

We conduct an ablation study to investigate the ef-
fectiveness of different components of InfoCL. The

Models FewRel MAVEN

Accuracy Drop Accuracy Drop

CRL 75.3 13.3 59.8 21.2
CRECL 74.9 13.6 59.2 21.9
InfoCL 78.6 11.8 61.3 20.7

Table 4: Average Accuracy (%) and accuracy drop (%)
on analogous classes. For each dataset, we select 20%
classes which are most likely to be confused with other
classes.

results are shown in Table 3. We find that the three
core mechanisms of InfoCL, namely fast-slow con-
trast, current-past contrast, and adversarial mem-
ory augmentation, are conducive to the model per-
formance. Furthermore, the fast-slow contrastive
learning performed in the new task training stage
seems to be more effective than the other com-
ponents, indicating that learning comprehensive
representations for the new task is more essential
to mitigate representation bias problem.

7.2 Performance on Analogous Classes
We reveal that the representation bias problem is
the underlying cause of confusion on analogous
classes in CL. Since InfoCL aims to learn more
sufficient representations and mitigate the bias, we
also conduct experiment to explore this point. Fol-
lowing (Wang et al., 2022), we use the cosine dis-
tance of the average embedding of the instances
as a metric to identify analogous classes. Specif-
ically, we select 16 and 24 classes (20% of all of
the classes) for FewRel and MAVEN, which are
most likely to be confused with other classes. The
list of these classes are shown in Appendix F. If
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Figure 3: Accuracy (%) w.r.t. different memory sizes of different methods.
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Figure 4: The representations of instances from P57
(“director”) and P58 (“screenwriter”). P57 and P58 are
in different tasks and P57 is learned before P58 appears.

these selected classes are in the former five tasks,
we record the average final accuracy and the ac-
curacy drop on them. As shown in Table 4, the
performance on analogous classes of our model
is superior and drops the least, demonstrating that
our model succeeds in alleviating confusion among
analogous classes.

7.3 Comprehensive Representation Learning
InfoCL employs contrastive learning to learn com-
prehensive representations via mutual information
maximization. To assess the efficiency of repre-
sentation learning process of our method, we di-
rectly compute the mutual information of the rep-
resentations. Same as Section 4.3, we measure
I(X1;Z1) on T1 and I(Z;Y ) after the final task
with all classes. For InfoCL, I(X1;Z1) = 2.32
and I(Z;Y ) = 2.38 on FewRel, I(X1;Z1) =
3.20 and I(Z;Y ) = 2.37 on MAVEN. Compared
with baselines in Table 1, both mutual informa-
tion metrics are higher, indicating our method can
learn more sufficient representation to mitigate the

representation bias.

To provide an intuitive demonstration of the ef-
fective representations acquired by InfoCL, we
conducted a case study. We select two analogous
classes from FewRel, P57 (“director”) and P58
(“screenwriter”). We use t-SNE to visualize the
representations of these two classes after the model
learned them. As illustrated in Figure 4, for both
methods, the accuracy of P57 reaches 100% after
learning it. However, due to the representation bias,
when P58 appears, the accuracy of CRL dramat-
ically declined. In contrast, InfoCL maintains a
relatively stable performance. Notably, even with-
out training for P58, the representations of two
classes in our method exhibit a noticeable level of
differentiation, highlighting InfoCL’s capacity to
acquire more comprehensive representations.

7.4 Influence of Memory Size

Memory size is the number of stored instances for
each class, which is an important factor for the per-
formance of replay-based CL methods. Therefore,
in this section, we study the impact of memory size
on InfoCL. As Table 2 has reported the results with
memory size 10, here we compare the performance
of InfoCL with strong baselines on FewRel and
MAVEN under memory sizes 5 and 20.

Table 3 demonstrates that InfoCL consistently
outperforms strong baselines across various mem-
ory sizes. Surprisingly, even with a memory size of
5, InfoCL achieves comparable performance to the
baselines with a memory size of 20, highlighting its
superior capability. As the memory size decreases,
the performance of all models degrades, showing
the importance of memory for replay-based meth-
ods. Whereas, InfoCL maintains a relatively stable
performance, showcasing its robustness even in
extreme scenarios.
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8 Conclusion

In this paper, we focus on continual learning for
text classification in the class-incremental setting.
We formally investigate the representation learn-
ing process of CL and discover the representation
bias will lead to catastrophic forgetting on analo-
gous classes. Based on our analysis, we propose
InfoCL, which utilizes fast-slow and current-past
contrastive learning to learn more comprehensive
representations and alleviate representation corrup-
tion. An adversarial augmentation strategy is also
employed to further enhance the performance of
the representation recovery. Experimental results
show that InfoCL learns effective representations
and outperforms the latest baselines.

Limitations

Our paper has several limitations: (1) Our pro-
posed InfoCL utilizes fast-slow and current-past
contrastive learning to learn more comprehensive
representations, which introduces extra compu-
tational overhead and is less efficient than other
replay-based CL methods; (2) We only focus on
catastrophic forgetting problem in continual text
classification. How to encourage knowledge trans-
fer in CL is not explored in this paper.
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A Comparison with Some Related Work

As aforementioned in Section 2, some related work
also applied contrastive learning on continual learn-
ing. In this section, we provide more detailed dis-
cussion of these work.

Both of Co2L (Cha et al., 2021) and CRL (Zhao
et al., 2022) use supervised contrastive learning and
knowledge distillation to learn more consistent rep-
resentations. We would like to highlight two signif-
icant differences between our work and them. First,
we formally analyze the representation bias prob-
lem from an information bottleneck perspective and
propose that maximizing I(Xi;Zi) can effectively
mitigate this bias. Second, while Co2L employs a
vanilla supervised contrastive loss for representa-
tion learning, we introduce two novel contrastive
learning techniques: fast-slow and current-past con-
trastive learning. Our method not only enables the
model to acquire more comprehensive representa-
tions but also improves its ability to retain previ-
ously learned knowledge. As shown in Table 2, our
method outperforms Co2L/CRL on four datasets.

CLASSIC (Ke et al., 2021) utilizes a contrastive
continual learning method for continual aspect sen-
timent classification task. However, it is specifi-
cally designed for the domain-incremental scenario,
where its primary goal is to facilitate knowledge
transfer across tasks. This objective is distinct from
our class-incremental scenario, and thus, the use of
InfoNCE in CLASSIC is not directly comparable
to our work.

OCM (Guo et al., 2022) proposes mutual infor-
mation maximization to learn holistic representa-
tion for online continual image classification. Our
work, in comparison to OCM, shares a similar mo-
tivation of learning more comprehensive represen-
tations. Here we provide clarifications on several
key differences between our work and OCM. First,
OCM focuses on online continual learning on im-
age classification, which is different with our sce-
nario. Second, for the first time, we provide a for-
mal analysis of catastrophic forgetting from the per-
spective of the information bottleneck. This analy-
sis sets us apart from OCM. Finally, the contrastive
learning in OCM relies on data augmentation of
the image to ensure performance. According to
their ablation study, without the random-resized-
crop augmentation, the performance of OCM will
drop drastically. In contrast, we design fast-slow
and current-past contrastive learning to get better
representations. This contrastive learning design is

also a distinguishing feature of our work.

B Details about Eq. 12

In memory replay stage, to alleviate the overfitting
on memorized instances, we introduce adversarial
data augmentation (Zhu et al., 2020):

Ladv =

min
θ

E(x,y)∼M

[
1

K

K−1∑

t=0

max
∥δt∥≤ϵ

L (F (x+ δt), y)

]
,

(13)
where F is the text classification model and (x, y)
is a batch of data from the memory bankM, δ is
the perturbation constrained within the ϵ-ball, K is
step size hyperparameter. The inner maximization
problem in (13) is to find the worst-case adversar-
ial examples to maximize the training loss, while
the outer minimization problem in (13) aims at
optimizing the model to minimize the loss of adver-
sarial examples. The inner maximization problem
is solved iteratively:

∇(δt−1) = ∇δL (F (x+ δt−1), y) , (14)

δt =
∏

∥δ∥≤ϵ

(
δt−1 + α · ∇(δt−1)

∥∇(δt−1)∥

)
, (15)

where δt is the perturbation in t-th step and∏
∥δ∥≤ϵ(·) projects the perturbation onto the ϵ-ball,

α is step size.
Intuitively, it performs multiple adversarial at-

tack iterations to craft adversarial examples, and
simultaneously accumulates the free parameter gra-
dients∇θL in each iteration. After that, the model
parameter θ is updated all at once with the accu-
mulated gradients, which is equivalent to replacing
the original batch with a K-times larger adversarial
augmented batch.

C Dataset Details

FewRel (Han et al., 2018) It is a large scale re-
lation extraction dataset containing 80 relations.
FewRel is a balanced dataset and each relation has
700 instances. Following Zhao et al. (2022); Wang
et al. (2022), we merge the original train and valid
set of FewRel and for each relation we sample 420
instances for training and 140 instances for test.
FewRel is licensed under MIT License.

TACRED (Zhang et al., 2017) It is a crowdsourc-
ing relation extraction dataset containing 42 rela-
tions (including no_relation) and 106264 instances.
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Following Zhao et al. (2022); Wang et al. (2022),
we remove no_relation and in our experiments.
Since TACRED is a imbalanced dataset, for each
relation the number of training instances is limited
to 320 and the number of test instances is limited to
40. TACRED is licensed under LDC User Agree-
ment for Non-Members.

MAVEN (Wang et al., 2020) It is a large scale
event detection dataset with 168 event types. Since
MAVEN has a severe long-tail distribution, we use
the data of the top 120 frequent classes. The orig-
inal test set of MAVEN is not publicly available,
and we use the original development set as our test
set. MAVEN is licensed under Apache License 2.0.

HWU64 (Liu et al., 2019) It is an intent classifi-
cation dataset with 64 intent classes. Following Liu
et al. (2021), we use the data of the top 50 frequent
classes and the total number of instances are 24137.
HWU64 is licensed under CC-BY-4.0 License.

D Baselines

IDBR (Huang et al., 2021) proposes an information
disentanglement method to learn representations
that can well generalize to future tasks. KCN (Cao
et al., 2020) utilizes prototype retrospection and
hierarchical distillation to consolidate knowledge.
KDRK (Yu et al., 2021) encourages knowledge
transfer between old and new classes. EMAR (Han
et al., 2020) proposes a memory activation and
reconsolidation mechanism to retain the learned
knowledge. RP-CRE (Cui et al., 2021) proposes
a memory network to retain the learned represen-
tations with class prototypes. CRL (Zhao et al.,
2022) adopts contrastive learning replay and knowl-
edge distillation to retain the learned knowledge.
CRECL (Hu et al., 2022) uses a prototypical con-
trastive network to defy forgetting. ACA (Wang
et al., 2022) designs two adversarial class aug-
mentation mechanism to learn robust representa-
tions. CEAR (Zhao et al., 2023) proposes memory-
intensive relation prototypes and memory augmen-
tation to reduce overfitting to typical samples in
rehearsal stage.

E Implementation Details

We implement InfoCL with PyTorch (Paszke et al.,
2019) and HuggingFace Transformers (Wolf et al.,
2020). Following previous work (Cui et al., 2021;
Wang et al., 2022), we use BERTbase (Devlin et al.,
2019) as encoder. PyTorch is licensed under the

modified BSD license. HuggingFace Transformers
and BERTbase are licensed under the Apache Li-
cense 2.0. Our use of existing artifacts is consistent
with their intended use.

Specifically, for the input x in relation extraction,
we use [E11], [E12], [E21] and [E22] to denote the
start and end position of head and tail entity respec-
tively, and the representation z is the concatenation
of the last hidden states of [E11] and [E21]. For the
input x in event detection, the representation z is
the average pooling of the last hidden states of the
trigger words. For the input x in intent detection,
the representation z is the average pooling of the
last hidden states of the whole sentence.

The learning rate of InfoCL is set to 1e-5 for the
BERT encoder and 1e-3 for the other modules. For
FewRel, MAVEN and HWU64, the batch size is 32.
For TACRED, the batch size is 16 because of the
small amount of training data. The budget of mem-
ory bank for each class is 10 for all methods. The
size of the queue Q in fast-slow contrastive learn-
ing is 512 and the momentum coefficient η is 0.99.
The temperatures τ1, τ2 are set to 0.05. The loss
factors λ1, λ2 are 0.05. For the adversarial memory
augmentation, K=2, ϵ=3e-1, α=1e-1. For all ex-
periments, we use NVIDIA A800 GPUs and report
the average result of 5 different task sequences.

F Analogous Classes for Evaluation

We select the top 20% classes which are most likely
to be confused with other classes from FewRel and
MAVEN.

Specifically, we select the following classes from
FewRel: P706, P57, P22, P123, P127, P25, P17,
P551, P206, P58, P40, P35, P26, P131, P937.

For MAVEN, we select Achieve, Telling, Legal-
ity, Removing, Participation, Change_sentiment,
Attack, Motion, Body_movement, Becoming,
Creating, Defending, Arriving, Statement, Le-
gal_rulings, Escaping, Competition, Percep-
tion_active, Terrorism, Self_motion, Emptying,
Change, Manufacturing, Hold.

G Complete Experimental Results

The complete experimental results on all 10 tasks
are shown in Table 5.
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FewRel

Models T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
IDBR 97.9 91.9 86.8 83.6 80.6 77.7 75.6 73.7 71.7 68.9
KCN 98.3 93.9 90.5 87.9 86.4 84.1 81.9 80.3 78.8 76.0
KDRK 98.3 94.1 91.0 88.3 86.9 85.3 82.9 81.6 80.2 78.0
EMAR 98.1 94.3 92.3 90.5 89.7 88.5 87.2 86.1 84.8 83.6
RP-CRE 97.8 94.7 92.1 90.3 89.4 88.0 87.1 85.8 84.4 82.8
CRL 98.2 94.6 92.5 90.5 89.4 87.9 86.9 85.6 84.5 83.1
CRECL 97.8 94.9 92.7 90.9 89.4 87.5 85.7 84.6 83.6 82.7
ACA 98.3 95.0 92.6 91.3 90.4 89.2 87.6 87.0 86.3 84.7
CEAR 98.1 95.8 93.6 91.9 91.1 89.4 88.1 86.9 85.6 84.2

InfoCL 98.3±0.6 95.2±1.6 93.4±1.3 92.1±1.5 91.3±1.4 89.7±1.7 88.5±0.3 87.7±1.1 86.8±0.6 85.4±0.1

TACRED

Models T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
IDBR 97.9 91.1 83.1 76.5 74.2 70.5 66.6 64.2 63.8 60.1
KCN 98.9 93.1 87.3 80.2 79.4 77.2 73.8 72.1 72.2 70.6
KDRK 98.9 93.0 89.1 80.7 79.0 77.0 74.6 72.9 72.1 70.8
EMAR 98.3 92.0 87.4 84.1 82.1 80.6 78.3 76.6 76.8 76.1
RP-CRE 97.5 92.2 89.1 84.2 81.7 81.0 78.1 76.1 75.0 75.3
CRL 97.7 93.2 89.8 84.7 84.1 81.3 80.2 79.1 79.0 78.0
CRECL 96.6 93.1 89.7 87.8 85.6 84.3 83.6 81.4 79.3 78.5
ACA 98.0 92.1 90.6 85.5 84.4 82.2 80.0 78.6 78.8 78.1
CEAR 97.7 94.3 92.3 88.4 86.6 84.5 82.2 81.1 80.1 79.1

InfoCL 96.3±1.5 92.4±2.1 88.9±3.5 87.3±2.9 83.9±1.7 82.4±2.5 82.0±1.6 79.7±0.9 78.4±1.4 78.2±1.7

MAVEN

Models T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
IDBR 96.5 85.3 79.4 76.3 74.2 69.8 67.5 64.4 60.2 57.3
KCN 97.2 87.7 83.2 80.3 77.9 75.1 71.9 68.4 67.7 64.4
KDRK 97.2 88.6 84.3 81.6 78.1 75.8 72.5 69.6 68.9 65.4
EMAR 97.2 91.4 88.3 86.1 83.6 81.2 79.0 76.8 75.7 73.2
RP-CRE 96.7 91.8 88.2 86.5 83.9 81.4 79.4 77.1 76.0 73.6
CRL 96.0 90.7 87.1 84.8 82.9 80.7 78.7 76.8 75.9 73.7
CRECL 96.9 91.4 86.9 84.8 82.4 80.4 77.5 75.9 75.1 73.5

InfoCL 97.5±1.1 92.5±3.8 88.4±3.9 86.7±2.8 84.6±2.7 82.5±1.9 80.0±1.3 78.2±1.2 77.1±0.9 75.3±0.3

HWU64

Models T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
IDBR 96.3 93.2 88.1 86.5 84.6 82.5 82.1 80.2 78.0 76.2
KCN 98.6 94.0 90.7 90.4 87.0 84.9 84.4 83.7 82.7 81.9
KDRK 98.6 94.5 91.2 90.4 87.3 86.0 85.8 85.1 82.5 81.4
EMAR 98.4 94.4 91.4 89.5 88.2 86.3 86.2 85.5 83.9 83.1
RP-CRE 97.6 93.7 90.1 88.6 86.5 86.3 85.1 84.5 83.8 82.7
CRL 98.2 92.8 88.8 86.5 84.1 82.4 82.8 83.1 81.3 81.5
CRECL 97.3 93.0 87.5 86.1 84.1 83.0 83.1 83.1 81.9 81.1

InfoCL 97.7±1.3 93.6±1.5 90.2±1.2 90.0±1.3 88.3±1.1 86.6±2.1 86.8±1.7 86.3±1.9 85.3±1.3 84.1±1.0

Table 5: Accuracy (%) on all observed classes after learning each task. The best results are marked in bold.
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