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Abstract

Federated learning (FL) enables multiple
participants to collaboratively train machine
learning models using decentralized data
sources, alleviating privacy concerns that arise
from directly sharing local data. However,
the lack of model privacy protection in
FL becomes an unneglectable challenge,
especially when people want to federally
finetune models based on a proprietary large
language model. In this study, we propose a
novel FL training approach that accomplishes
information exchange among participants via
tunable soft prompts. These soft prompts,
updated and transmitted between the server
and clients, assume the role of the global
model parameters and serve as messengers to
deliver useful knowledge from the local data
and global model. As the global model itself is
not required to be shared and the local training
is conducted based on an auxiliary model with
fewer parameters than the global model, the
proposed approach provides protection for the
global model while reducing communication
and computation costs in FL. Extensive experi-
ments show the effectiveness of the proposed
approach compared to several baselines. We
have released the source code at https:
//github.com/alibaba/FederatedScope/
tree/fedsp/federatedscope/nlp/fedsp.

1 Introduction

Large language models (LLMs) (Radford et al.,
2019; Brown et al., 2020; Zhang et al., 2022;
Chowdhery et al., 2022; Scao et al., 2022; Zeng
et al., 2022; OpenAI, 2023; Touvron et al., 2023)
have been witnessed incredible progress in the re-
cent years, which is tied to the support of large
amounts of training corpus and computation re-
sources. To further promote the development of
LLMs and broaden their applications, how to make
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good use of private and decentralized data can be
one of the critical steps, which brings both op-
portunities and challenges to federated learning
(FL) (Konečnỳ et al., 2016; McMahan et al., 2017;
Yang et al., 2019; Kairouz et al., 2021).

The main idea of FL is that multiple participants
collectively train a global model using their local
data, and the updates generated by each partici-
pant’s local training process are then aggregated
together to optimize the global model. On the one
hand, FL offers a feasible solution for finetuning
LLMs by utilizing multiple data sources without
private data leakage. Participants are allowed to
conduct local training processes based on their pri-
vate data, and then share the learned knowledge
through the exchange of model updates. In this
way, privacy concerns, raised by directly sharing
private data, can be alleviated.

However, on the other hand, the application of
FL can be constrained by concerns regarding model
privacy, especially when the finetuning process re-
lies on proprietary LLMs. In particular, during
each training round, the up-to-date global model
would be distributed to participants, which goes
against the interests of model owners and might be
deemed unacceptable in real-world scenarios.

Such conflicts between protecting data privacy
and model privacy are attributed to the training
paradigm of FL, which involves sharing model pa-
rameters to accomplish the knowledge exchange
process for collaboratively training models. To ad-
dress this challenge, we propose FEDSP, a novel
FL training approach that leverages tunable soft
prompts to enable the exchange of useful knowl-
edge among participants, achieving both data pri-
vacy and model privacy protection at the same time.

Soft prompts can be regarded as some additional
tunable parameters plugged into the model, which
are updated to capture knowledge from down-
stream tasks while keeping the model parameters
frozen in parameter-efficient finetuning (PEFT) al-
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gorithms (Houlsby et al., 2019; Lester et al., 2021;
Li and Liang, 2021; Hu et al., 2021; Zaken et al.,
2021). We incorporate these tunable soft prompts
in FL, serving as messengers among participants
to deliver knowledge learned from local data and
contained in the global model.

Specifically, at the start of an FL course, a server
broadcasts an auxiliary model (which typically has
much fewer parameters than the global model) to
participating clients. Then in each training round,
the server sends up-to-date tunable soft prompts
to selected clients, and these clients combine the
received soft prompts with their maintained auxil-
iary models. After that, each client performs local
training to accomplish the process consisting of (i)
Global Model Alignment, in which clients update
the auxiliary models to align them with the repre-
sentative capabilities of the global model, using the
up-to-date soft prompts; and (ii) Local Knowledge
Capturing, in which clients freeze their auxiliary
models and finetune the soft prompts to capture use-
ful knowledge from their local data. These updated
soft prompts are sent back to the server once the
local training is complete. The server is responsible
for aggregating and optimizing these soft prompts
to drive the next training round.

In contrast to the existing FL training paradigm
that entails sharing the parameters of the global
model, the proposed FEDSP suggests exchanging
tunable soft prompts during training rounds, which
ensures privacy protection for the global model.
Meanwhile, clients are only expected to update the
auxiliary models and soft prompts in the local train-
ing process, which mitigates both computation and
communication overhead compared to federally
finetuning of large global models like LLMs.

We conduct a series of experiments with two
LLMs (GPT2-XL and OPT-1.3B) on seven bench-
marking datasets, showing that FEDSP achieves
competitive performance compared to baseline
methods while significantly reducing the model
size by 14.5×/8.5× on GPT2-XL/OPT-1.3B. These
experimental results demonstrate the effectiveness
and advantages of the proposed idea that using tun-
able soft prompts as knowledge messengers in FL.

2 Preliminary

Because of the huge model size (billions of param-
eters), large language models (LLMs) (Chowdh-
ery et al., 2022; Zeng et al., 2022; OpenAI, 2023;
Touvron et al., 2023; Zhao et al., 2023; Chen et al.,

2023) are usually kept at the cloud server who owns
adequate resources for inferring, finetuning, and
training. Nowadays, users of LLMs have to send
the instructions to the cloud server and wait for
the model-generated results, or upload their private
data1 for finetuning the LLMs on their downstream
tasks. The server can also benefit from the user
instructions and human feedbacks to continually
improve the model performance.

Such usage of LLMs might bring privacy issues
from two different perspectives. For the users of
LLMs, they might not be allowed to upload their
private data to the server, especially in some sce-
narios with highly sensitive information such as
health care, so-called data privacy. For the cloud
servers (i.e., the model owners), they tend to keep
the proprietary language model private to ensure
their interests, so-called model privacy. As a result,
how to provide protection for both data privacy
and model privacy is a practical and challenging
problem when training, finetuning, and deploying
LLMs in real-world applications.

Federated Learning (FL) (Konečnỳ et al., 2016;
McMahan et al., 2017) is one of the considered
solutions for alleviating the aforementioned data
privacy issue. Different from the centralized train-
ing paradigm that needs to gather users’ local data
for training a global model, FL proposes to aggre-
gate participants’ model updates to avoid directly
sharing the private data. To be more specific, at
each training round, a server broadcasts the up-to-
date global model to the participating clients. Each
client updates the received global model based on
its local data, and then sends the model updates
back to the server for performing federated aggre-
gation. Formally, the federated aggregation at the
t-th training round can be defined as:

wt
g =

K∑

k=1

Nk

N
wt

k, (1)

where K is the number of clients, N is the total
amount of training data, wk is the updated model
parameters of the k-th client, and wg is the aggre-
gated global model parameters.

Nevertheless, as the global model is required
to be shared in the training process of FL, the
model privacy issue has not been well addressed
yet, which motivates us to make an improvement in
providing both data privacy protection and model
privacy protection in FL.

1https://platform.openai.com/docs/guides/fine-tuning
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Figure 1: Overall architecture of the proposed FEDSP.

3 Methodology

In this section, we describe the details of the pro-
posed FEDSP. The intuition behind FEDSP is to
adopt some tunable soft prompts to replace the
shared global model in the training process of FL,
which serves as messengers to deliver useful knowl-
edge in the local data and the global model to the
server and clients, as introduced in Section 3.1.
With the help of these tunable soft prompts, clients
are expected to perform local training for updating
an auxiliary model and the soft prompts alterna-
tively, and send the updated soft prompts to the
servers for sharing the knowledge learned from
their local data (more details in Section 3.2). The
overall architecture of the proposed FEDSP is illus-
trated in Figure 1.

3.1 Tunable Soft Prompts

The existing FL algorithms (Yang et al., 2019;
Kairouz et al., 2021) leverage the global model pa-
rameters to exchange the useful knowledge learned
from participants’ local data. However, it might
raise the model privacy issue when the training pro-
cess is conducted on a private model, such as fine-
tuning a proprietary large language model on down-
stream tasks. Inspired by the parameter-efficient
finetuning (PEFT) algorithms (Lester et al., 2021;
Li and Liang, 2021), we propose to adopt tunable
soft prompts to tackle such a model privacy issue.

These soft prompts are continuous vectors added
to the LLMs, serving as instructive contexts to in-
fluence the generation process of LLMs by steer-

ing the probability distribution of the next token.
By optimizing these soft prompts over the train-
ing datasets via backward propagation, the knowl-
edge contained in the data can be captured and
condensed into their parameters.

In this study, we follow the tunable soft prompts
proposed by PREFIX-TUNING (Li and Liang,
2021). The tunable soft prompts would be updated
and transmitted between the server and clients
for exchanging useful knowledge. Note that soft
prompts should be plugged into a model first, and
are updated based on the training data while other
parameters of this model are kept frozen. For the
server that owns the global model, it is straightfor-
ward and reasonable to add tunable soft prompts to
the global model. However, adding and maintain-
ing soft prompts for the clients becomes challeng-
ing, since clients could not access the global model
due to the model privacy issue.

In order to tackle such a challenge, each client is
expected to integrate the tunable soft prompts with
an auxiliary model and perform an alternative local
training process. Before we introduce more details
of the local training, we first pay more attention
to the auxiliary model. In the proposed FEDSP,
the auxiliary model should be tied to the global
model but could not cause model privacy leakage,
and had better be a shadow model that has fewer
parameters than the global model considering data
quantity and computation resources of a client can
be limited in some application scenarios.

Motivated by the aforementioned requirements,
we construct the auxiliary model by substantially
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reducing the depth of the global model and apply-
ing the cross-layer parameter sharing, inspired by
the main idea of Albert (Lan et al., 2020). Given
that most of the LLMs adopt the transformer-based
architecture (Vaswani et al., 2017), such a design
of the auxiliary model is suitable for plugging and
tuning the soft prompts shared by the server.

The example illustrated in Figure 1(a) shows
that, the server owns a global model with total L
layers and each layer is concatenated with some
prefix prompts, while each client keeps an auxiliary
model with only 1 layer and plugged with L-layer
prefix prompts. Using the auxiliary model, clients
only need to update the tunable soft prompts based
on their local data and exchange the updated soft
prompts with others to accomplish the FL course.
Thus the proposed FEDSP provides privacy pro-
tection for the global model as the global model is
only maintained by the server and won’t be shared.
Meanwhile, clients need fewer computation and
communication resources for updating the auxil-
iary model and soft prompts in the local training
process compared to those of training the global
model as in previous studies.

In the rest of this section, we describe the local
training process of clients in the proposed FEDSP,
showing how to deliver useful knowledge via up-
dating and exchanging the tunable soft prompts.

3.2 Training Procedure

At the beginning of an FL course, the server first
initializes the auxiliary model according to its
global model, and broadcasts the generated aux-
iliary model to all the participating clients. Then
the server sends the up-to-date soft prompts to the
selected clients at each training round, while the
clients finetune the received soft prompts and also
update the auxiliary model accordingly. The up-
dated soft prompts are uploaded to the server for
performing federated aggregation, and then the ag-
gregated soft prompts are plugged into the global
model and further optimized by the server. Finally,
the up-to-date soft prompts are sent to clients to
start a new training round.

Note that compared to the existing FL training
paradigms that exchange the global model, in the
proposed FEDSP, the models kept at the server (i.e.,
the global model) and clients (i.e., the auxiliary
models) have different model sizes but are plugged
with the same prompts. As a result, to narrow
the optimization gap and make the federal training

process meaningful, we propose to provide a good
initialization of the auxiliary model and perform an
alternative local training process for the clients.

Initialization The different model sizes between
the server and clients might lead to the misaligned
representation, and further cause the updating of
the soft prompts mismatch between the server and
clients. Such a mismatch seriously hinders effec-
tive knowledge exchange between the server and
clients in an FL course.

To alleviate such a mismatch, the server lever-
ages knowledge distillation (KD) (Hinton et al.,
2015) techniques to initialize the auxiliary models
before sharing them with clients. The main idea is
to align the representations of the student models
(i.e., auxiliary models) with the large teacher model
(i.e., the global model), which is widely used in pre-
vious studies (Cheng et al., 2021; Xiao et al., 2023)
for representation alignment. Formally, given the
last hidden states of the teacher model HT and the
student model HS , the loss function of KD can be
defined as:

L = MSE(HT ,WSHS), (2)

where MSE is the mean square error function, WS

is a learnable transformation matrix.
Notably, the tunable soft prompts are not added

to the global model and auxiliary models during the
KD process. And the aforementioned KD process
is only performed by the server at the beginning
of an FL course, whose computation cost is afford-
able. After initialization, the auxiliary models are
broadcast to all participating clients and updated by
clients according to their local data independently.

Alternative Local Training When receiving the
auxiliary models, which have fewer layer numbers
compared to the global model, the clients apply the
cross-layer parameter sharing (Lan et al., 2020) to
imitate the auxiliary models as the global model
in the local training process. Each shared layer is
concatenated with the corresponding tunable soft
prompts. In this way, the tunable soft prompts in
the server and clients are served in the same manner
in an FL course.

During the local training process, clients adopt
an alternative training method to achieve both
global model alignment and local knowledge cap-
turing, as shown in Figure 1 (b). To be more spe-
cific, firstly clients concatenate the received soft
prompts with the local auxiliary models, and fine-
tune the parameters of the auxiliary models while
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Table 1: The comparisons between the proposed FEDSP and baselines with GPT2-XL.

Methods ARC-C ARC-E HellaSwag OpenBookQA PIQA RACE SciQ

ZERO-SHOT 25.1 58.2 40.0 23.0 70.9 33.0 83.2
FINETUNE 30.0 62.9 40.7 30.0 73.2 43.2 92.5
PREFIX-TUNING 28.2 58.9 40.4 25.6 72.3 38.2 92.9

FEDPROMPT 27.5 59.4 40.7 26.2 71.9 38.3 92.8
FEDPROMPT-SINGLE 20.1 38.3 35.0 12.4 63.9 31.6 72.3

FEDSP (ours) 26.5 61.2 40.9 24.2 71.0 35.2 92.8
w/o KD 17.8 41.4 40.1 13.0 62.2 36.7 84.4
w/o CS 21.0 44.6 40.0 10.6 66.6 37.2 89.2
w/o AT 25.6 56.4 37.1 13.4 69.7 34.3 81.0

freezing the soft prompts. Since these soft prompts
have been plugged into the global model and up-
dated by the server before being shared, the purpose
of freezing soft prompts and updating the auxiliary
models is to align the representation of auxiliary
models and the global model, with the help of the
same soft prompts. Such an alignment is a neces-
sary step in local training as the misaligned might
cause a mismatch of the soft prompts between the
server and clients.

After the global model alignment, clients per-
form prompt tunning as those used in PEFT algo-
rithms, which implies that clients freeze the aux-
iliary models and only finetune the soft prompts
for learning useful knowledge from local data, so-
called local knowledge capturing. These updated
soft prompts are sent back to the server, serving
as messengers to deliver useful knowledge learned
from participants’ local data.

4 Experiments

4.1 Models and Datasets

We conduct a series of experiments with two popu-
lar large language models, i.e., GPT2-XL (Radford
et al., 2019) and OPT-1.3B (Zhang et al., 2022).
Specifically, both GPT2-XL and OPT-1.3B adopt
the transformer-based architecture (Vaswani et al.,
2017). GPT2-XL has 48 layers and 1.5 billion pa-
rameters, and OPT-1.3B has 24 layers and 1.3 bil-
lion parameters. For the benchmarking datasets, we
adopt seven question-answering datasets for quan-
titative analysis, including ARC-C/E (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), Open-
BookQA (Mihaylov et al., 2018), PIQA (Bisk et al.,
2020), RACE (Lai et al., 2017), and SciQ (Welbl
et al., 2017). We use accuracy as the evaluation
metric in the experiments.

4.2 Baselines

We compare the proposed FEDSP with five differ-
ent kinds of baseline methods, including:

• ZERO-SHOT, which directly evaluates the
pre-trained language models without updating
based on the downstream datasets.

• FINETUNE, which finetunes the entire LLMs
on the downstream datasets, respectively.

• PREFIX-TUNING (Li and Liang, 2021),
which adds tunable soft prompts and only fine-
tunes them on the downstream datasets, re-
spectively. Note that the parameters of LLMs
are frozen during the finetuning process.

• FEDPROMPT (Zhao et al., 2022), which
applies PREFIX-TUNING in the field of FL.
Clients need to keep both the global model
and the soft prompts and only update and ex-
change the soft prompts. Note that the param-
eters of the global model are frozen.

• FEDPROMPT-SINGLE, a variant of FED-
PROMPT, which reduces the layer number of
clients’ global model to 1 to ensure the privacy
protection of the global model. This setting is
similar to that of FEDSP.

4.3 Implementation Details

The experiments are conducted on eight NVIDIA
GeForce RTX 3090 GPUs. We implement the pro-
posed approach and baseline methods based on
Huggingface Transformers (Wolf et al., 2020) and
FederatedScope (Xie et al., 2023), and conduct the
evaluation with the support of lm-eval2. Follow-
ing previous study (Zhao et al., 2022), we divide

2https://github.com/EleutherAI/lm-evaluation-harness
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Table 2: The comparisons between the proposed FEDSP and baselines with OPT-1.3B.

Methods ARC-C ARC-E HellaSwag OpenBookQA PIQA RACE SciQ

ZERO-SHOT 23.5 56.9 41.5 23.4 71.5 34.2 84.4
FINETUNE 27.7 61.3 42.7 31.4 75.2 37.0 92.5
PREFIX-TUNING 27.4 57.7 41.9 27.2 73.2 38.5 89.6

FEDPROMPT 26.8 57.6 41.8 27.4 72.9 38.4 89.8
FEDPROMPT-SINGLE 24.6 54.4 38.3 19.0 68.8 30.4 80.5

FEDSP (ours) 26.8 58.0 42.1 26.0 71.9 36.6 89.9
w/o KD 22.1 53.5 40.8 17.6 68.0 32.2 80.7
w/o CS 24.3 53.5 40.6 18.0 69.3 36.0 76.5
w/o AT 26.2 56.4 35.1 21.8 71.0 33.2 89.8

each dataset into 10 partitions, and each client owns
one of them. A linear decay learning rate sched-
uler with a warm-up proportion of 0.1 is used in
the experiments. We adopt AdamW (Loshchilov
and Hutter, 2019) as the optimizer with β1 = 0.9,
β2 = 0.999, the weight decay is set to 0.01, and
the batch size is set to 16. The layer number of the
auxiliary model used in FEDSP is set to 1.

We conduct the grid search for the optimal hyper-
parameters. Specifically, the learning rate is tuned
in {1e-4, 2e-4, 5e-4}, the training round is tuned
in {20, 50, 100, 200}, and the local training step
is tuned in {10, 20}. For the methods that adopt
prefix-tunning, we set the dimension of the tunable
soft prompts to 40. And we conduct knowledge
distillation for 5000 training steps with an initial
learning rate of 5e-4. Inspired by previous study Li
and Liang (2021), we adopt the reparametrization
strategy with a hidden size of 512 on HellaSwag,
RACE, and SciQ datasets.

4.4 Experimental Results

Comparisons The comparison results between
FEDSP and baseline methods are demonstrated in
Table 1 and 2. From these results we can observe
that, FINETUNE brings a large performance boost
on the downstream tasks compared to those results
achieved by ZERO-SHOT, and costs lots of com-
putation resources. Therefore, PREFIX-TUNING,
which only tunes soft prompts, achieve comparable
performance but needs much fewer resource than
FINETUNE. These results are consistent with pre-
vious studies (Li and Liang, 2021; He et al., 2021)
and show the effectiveness of PEFT techniques.

When applying FL for privacy protection, we
can see that FEDPROMPT achieves similar perfor-
mances with PREFIX-TUNING on all the down-
stream datasets, demonstrating the effectiveness of

FL algorithms in maintaining the performance com-
pared to the central training algorithms. However,
there exists a noticeable gap between the perfor-
mance achieved by FEDPROMPT and FINETUNE,
which is attributed to the fact that the number of
tunable parameters in FEDPROMPT is much fewer
than those in FINETUNE.

Further, FEDPROMPT-SINGLE performs sig-
nificantly worse than FEDPROMPT, and even
worse than ZERO-SHOT on almost all the adopted
datasets. These experimental results further con-
firm that the misalignment between the server’s and
clients’ models might bring the optimization gap
and make the federal training process meaningless,
as discussed in Section 3.2.

The proposed FEDSP achieves much better per-
formance compared to FEDPROMPT-SINGLE, and
is competitive with those of FEDPROMPT and
PREFIX-TUNING. For example, evaluated on the
ARC-C dataset with GPT2-XL/OPT-1.3B, the per-
formance of FEDSP is significantly better than
FEDPROMPT-SINGLE with an improvement of
6.4%/2.2%, and is similar to FEDPROMPT within
1% performance gap. These results show the ef-
fectiveness and advantage of FEDSP in solving the
misalignment issue and using tunable soft prompts
as messengers for knowledge delivery. Meanwhile,
with the help of these tunable soft prompts, it is
worth pointing out that the proposed FEDSP pro-
vides both privacy protection for local data and
global model, and needs fewer computation and
communication costs compared to baselines.

Ablation Study We conduct an ablation study to
show the contributions of different techniques used
in the proposed FEDSP. We separately remove the
effect of using knowledge distillation (w/o KD),
cross-layer sharing (w/o CS), and alternative train-
ing (w/o AT). The experimental results are reported
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Table 3: Model performance w.r.t. different selected layers of the auxiliary models.

ARC-C ARC-E HellaSwag OpenBookQA PIQA RACE SciQ

GPT2-XLBOT 26.5 61.2 40.9 24.2 71.0 35.2 92.8
GPT2-XLMID 22.7 60.9 39.6 15.0 70.4 35.3 90.9
GPT2-XLTOP 25.2 59.4 39.2 9.6 70.8 35.6 86.3

OPT-1.3BBOT 26.8 58.0 42.1 26.0 71.9 36.6 89.9
OPT-1.3BMID 27.0 56.4 40.8 23.2 70.8 35.8 89.5
OPT-1.3BTOP 26.5 56.6 39.1 24.0 70.9 35.6 89.4

at the bottom of Table 1 and 2.
From these results, we can observe that remov-

ing any one of the adopted techniques brings a sig-
nificant performance drop on most of the adopted
datasets. For example, when removing KD/CS/AT
on the ARC-C dataset, the model performance
is decreased by 8.7%/5.5%/0.9% for GPT2-XL
and 4.7%/2.5%/0.6% for OPT-1.3B, respectively.
These results show that the techniques are all neces-
sary in FEDSP and have positive effects for further
improving overall model performance.

4.5 Further Discussions

In this section, we provide further discussions to
better understand the proposed FEDSP.

Auxiliary Model The auxiliary models are first
produced by the server according to the global
model, and then updated by the clients based on
their local data independently. In this part, we com-
pare different mechanisms for producing the aux-
iliary model, including varying the selected layer
from the global model and the layer numbers. The
specific layer of bottom/middle/top is 1/24/48 and
1/12/24 for GPT2-XL and OPT-1.3B, respectively

As shown in Table 3, the server can select
one of the layers from the bottom (denoted as
BOT), the middle (denoted as MID), or the top
(denoted as TOP) of the global model (i.e. LLMs)
to produce the auxiliary model. We can ob-
serve from the table that the BOT selection strat-
egy has the best performances on most datasets,
and the other two strategies have closed perfor-
mances. For example, compared with GPT2-
XLBOT/OPT-1.3BBOT on the ARC-E dataset, the
performances of GPT2-XLMID/OPT-1.3BMID and
GPT2-XLTOP/OPT-1.3BTOP have a degradation of
0.3%/1.6% and 1.8%/1.4%, respectively. These
results imply the fact that the bottom layer is more
suitable for achieving a good model alignment, as
it is directly connected with the word embedding
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Figure 2: Model performance w.r.t. different layer num-
bers of the auxiliary models on PIQA dataset.

layer for learning low-level representations, and
might change slighter than other layers during the
finetuning process.

Besides, we vary the layer numbers of the aux-
iliary models, from 1 to 4, and report the experi-
mental results in Figure 2. To apply the cross-layer
sharing technique, the parameters of auxiliary mod-
els are shared L/N times where L is the total layer
number of the global model and N is the layer num-
bers of auxiliary models. We conduct evaluations
on the PIQA dataset, which show the proposed
FEDSP is able to achieve better performances with
the increase of selected layer number. For example,
based on GPT2-XL/OPT-1.3B, the performance
of FEDSP on PIQA improves from 71.0/71.9 to
71.4/72.9 when the number of selected layers in-
creases from 1 to 4. These results demonstrate that
the proposed method is flexible to satisfy different
requirements of computation resources from var-
ious applications, achieving a better balancing of
privacy protection and model utility.

Efficiency Comparisons We compare the model
sizes and communication costs of the proposed
approach and baselines, as shown in Table 4 and
5. The model size refers to the number of model
parameters loaded by the clients, and the commu-
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Table 4: Efficiency comparisons between FEDSP and
baselines on ARC-C with GPT2-XL.

Method Model Size Comm. Cost

ZERO-SHOT 1.6B -
FINETUNE 1.6B 1.6B
FEDPROMPT 1.6B 6.1M (0.4%)

FEDSP 111.1M (6.9%) 7.2M (0.5%)

Table 5: Efficiency comparisons between FEDSP and
baselines on ARC-C with OPT-1.3B.

Method Model Size Comm. Cost

ZERO-SHOT 1.3B -
FINETUNE 1.3B 1.3B
FEDPROMPT 1.3B 3.9M (0.3%)

FEDSP 153.8M (11.8%) 5.4M (0.4%)

nication cost refers to the number of parameters
being exchanged between the server and clients
for each training round. Here to better show such
comparisons, we assume that the communication
cost of FINETUNE in the context of FL is the same
as the model size of LLMs.

From the table, we can conclude the model size
and communication cost of FEDSP are signifi-
cantly less than FINETUNE (with degradation of
99.5%/99.6% and 93.1%/88.2% on GPT2-XL/OPT-
1.3B, respectively). Compared with FEDPROMPT,
FEDSP has similar communication cost while sig-
nificantly reducing the model size loaded by the
clients (with a decrease of 93.1%/88.2% on GPT2-
XL/OPT-1.3B, respectively). These results demon-
strate the efficiency of the proposed FEDSP for
knowledge exchanging in an FL course, since
clients only need to update the auxiliary model
and soft prompts in the local training process.

Privacy Protection The proposed FEDSP pro-
vides fundamental privacy protection (i.e., no shar-
ing data directly) with the help of the federated
learning framework. As the number of the model
parameters of soft prompts is much smaller than
that of the entire model, we believe that the level of
privacy-preserving of the proposed method would
be better or at least at the same level. Further, pri-
vacy protection can be enhanced by privacy protec-
tion algorithms, such as differential privacy tech-
niques (Triastcyn and Faltings, 2019; Wei et al.,
2020), to satisfy flexible protection requirements
from different applications.

5 Related Work

Parameter-efficient Finetuning With the in-
creasingly larger scale of the pre-trained large
language models (LLMs), finetuning the entire
model becomes unaffordable for many individual
researchers. As an efficient adaptation of LLMs
to new downstream tasks, Parameter-efficient Fine-
tuning (PEFT) (Houlsby et al., 2019; Lester et al.,
2021; Li and Liang, 2021; Hu et al., 2021; Zaken
et al., 2021; He et al., 2021; Khashabi et al., 2022)
algorithms have emerged where only negligible
proportions of parameters in the original LLMs are
required to be updated. The main idea of PEFT
is to add continuous soft prompts to the original
model and only the parameters of the soft prompts
need to be finetuned. For example, Liu et al. (2021)
and Lester et al. (2021) propose to add a few con-
tinuous tunable parameters as soft prompts to the
input word embeddings, and Li and Liang (2021)
and Liu et al. (2022) suggest to prepend separate
soft prompts to every model layer.

Federated Learning in NLP In order to protect
data privacy, federated Learning (FL) has attracted
a lot of attention from both academic and indus-
trial (Konečnỳ et al., 2016; McMahan et al., 2017;
Yang et al., 2019; Kairouz et al., 2021). With more
and more language assistance products being ap-
plied in real-world applications, FL has also in-
creasingly appeared in the community of NLP to
address the problem of privacy leakage, such as
machine translation (Passban et al., 2022; Du et al.,
2023) and question answering (Chen et al., 2021;
Ait-Mlouk et al., 2022), and so on (Li et al., 2021;
Lin et al., 2022; Kuang et al., 2023; Cai et al., 2023;
Liu et al., 2023).

Besides data privacy, related works are also fo-
cused on the following challenges in the field of
NLP: (i) Data heterogeneity. For example, Chen
et al. (2021) proposes a federated matching frame-
work with a backbone-patch architecture to address
the non-identical and independent distribution (non-
IID) problem of the training data. Li et al. (2022)
propose to split the model into a local part and a
global part to handle the non-IID issue. (ii) Task
heterogeneity. For example, Dong et al. (2022a)
propose an Assign-Then-Contrast framework to
collaborate heterogeneous NLP tasks. Dong et al.
(2022b) propose a few-shot FL framework with
an energy-based weighting algorithm to enhance
the cross-task generalization ability. (iii) Efficient
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communication. For example, Passban et al. (2022)
presents a dynamic pulling FL method to dynam-
ically control the communication bandwidth. Du
et al. (2023) presents a federated nearest neighbor
framework to reduce the communication overhead.

Although FL can protect data privacy to some
extent, it is incapable to cope with the situation
when the server and clients need to protect their
model privacy. In this paper, we make the first
attempt to incorporate the idea of using tunable soft
prompts as messengers to meet the requirement of
protecting both data privacy and model privacy.

6 Conclusions

In this paper, we propose a novel FL training ap-
proach, named FEDSP, with tunable soft prompts
as messengers to accomplish the knowledge de-
livery among participants. Since the proposed
FEDSP does not need to share the global model, it
provides the necessary privacy protection for the
global model when finetuning LLMs. These soft
prompts are broadcast to the clients at each training
round, plugged into an auxiliary model, and used
to capture the knowledge from local data. Exten-
sive experiments on various benchmarking datasets
demonstrate the effectiveness of FEDSP, showing
that using tunable soft prompts as messengers in
FL is able to protect both model privacy and data
privacy, and achieve competitive performance with
baselines and needs much less computation and
communication costs.

Limitations

We propose to use tunable soft prompts as mes-
sengers for useful knowledge exchange in FL. As
for the limitations of this study, we conclude from
the following three perspectives: (1) The proposed
approach achieves privacy protection for both local
data and the global model, but at the same time
brings a slight performance drop compared to fine-
tuning the LLMs directly. It can be regarded as
a trade-off between privacy protection and model
utility. We hope that further research can achieve
a better balance on such a trade-off. (2) Some
adopted techniques, such as cross-layer sharing,
rely on the transformer-based architecture, which
is the most widely used architecture in LLMs. In
the long run, it could be better to choose a general
technique to construct the auxiliary model used in
FEDSP. (3) Although we conduct the first attempt
to provide protection for both local data and global

models, a future direction can be how to further
improve and adjust the privacy protection strength.
For example, how to protect the model architecture
of the global models, or how to utilize differential
privacy techniques to satisfy various real-world ap-
plications with different protection requirements.
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