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Abstract

Multilingual language models (LMs) have be-
come a powerful tool in NLP, especially for
non-English languages. Nevertheless, model
parameters of multilingual LMs remain large
due to the larger embedding matrix of the vo-
cabulary covering tokens in different languages.
Instead, monolingual LMs can be trained in
a target language with the language-specific
vocabulary only. In this paper, we propose
vocabulary-trimming (VT), a method to reduce
a multilingual LM vocabulary to a target lan-
guage by deleting potentially irrelevant tokens
from its vocabulary. In theory, VT can com-
press any existing multilingual LM to any lan-
guage covered by the original model. In our
experiments, we show that VT can retain the
original performance of the multilingual LM,
while being considerably smaller in size than
the original multilingual LM. The evaluation is
performed over four NLP tasks (two generative
and two classification tasks) among four widely
used multilingual LMs in seven languages. The
results show that this methodology can keep
the best of both monolingual and multilingual
worlds by keeping a small size as monolingual
models without the need for specifically retrain-
ing them, and can even help limit potentially
harmful social biases.

1 Introduction

Multilingual language model (LM) pre-training
(Devlin et al., 2019; Conneau et al., 2019; Liu et al.,
2020; Xue et al., 2021) has been shown to be an ef-
ficient mechanism to store information from many
languages into a single model, without the need for
training multiple language-specific models. More-
over, it has been proven reliable for cross-lingual
tasks (Pires et al., 2019; Conneau and Lample,
2019) and can provide competitive performance
in most settings, generally similar to its monolin-
gual counterparts (Goyal et al., 2021), while being
generally less affected by culturally-dependant bi-
ases (Ahn and Oh, 2021). Similarly to monolingual

models, multilingual LMs can be used for zero/few-
shot learning (Scao et al., 2022) by increasing the
model size and, more frequently, can be specialized
to different tasks by fine-tuning to specific data. In
practice, however, there are a few practical issues
when training multilingual LM such as the curse of
multilinguality (Conneau et al., 2019; Pfeiffer et al.,
2022), a trade-off between the number of languages
and individual performance in a single language,
or the multilingual vocabulary construction, which
requires a careful design for better generalization
(Chung et al., 2020; Zheng et al., 2021; Liang et al.,
2023).

Besides such generalization concerns, multilin-
gual LMs usually consist of larger parameters than
their monolingual counterparts due to the need for
a large vocabulary covering multiple languages.
This becomes an important issue in practice when
the resources to host models are limited. For in-
stance, while using the same configuration (i.e.,
same number of layers and hidden units), the pa-
rameter size of T5SMALL (Raffel et al., 2020) and
mT5SMALL (Xue et al., 2021) are 140M and 300M,
respectively. This is only due to their difference in
vocabulary size, with T5 being 50k and mT5, 250k.
In fact, the embedding matrix stemming from the
LM vocabulary can occupy a large portion of the
parameter space. For instance, the ratio of the em-
bedding matrix to the full model’s parameter size
in multilingual LMs can be higher than 80% as T5
(see Figure 1).

In this paper, we propose a simple vocabulary
trimming (VT) method to remove tokens from the
vocabulary of multilingual LMs that may be irrel-
evant to the target language.1 This is achieved
by automatically identifying language-specific to-
kens from an underlying text corpus. We consider
two VT strategies of pre-FT VT (VT before fine-
tuning) and post-FT VT (VT after fine-tuning) and

1We release a Python library for VT at https://github.
com/asahi417/lm-vocab-trimmer.
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Figure 1: The ratio of the embedding matrix to the
number of parameters for each multilingual LM.

analyse them by varying the final vocabulary size.
We conduct experiments on two generation tasks,
question answering (QA) and question generation
(QG), and two classification tasks, sentiment anal-
ysis and natural language inference (NLI), across
seven different languages. The experimental results
show that both pre and post fine-tuning VT can re-
duce the model size while retaining the original
performance in generation tasks (QA and QG), and
particularly in classification tasks (sentiment and
NLI) where the results are close to being identi-
cal despite the significant reduction in vocabulary
size. In all tasks, the original performance can be
generally maintained with less than 40% of the full
model parameters for all languages.

Finally, even though pre-trained LMs have re-
ported impressive performance on various NLP
downstream tasks (Kenton and Toutanova, 2019;
Liu et al., 2019; Conneau et al., 2019), such LMs
also demonstrate worrying levels of social biases
in certain situations (May et al., 2019; Kurita et al.,
2019; Kaneko and Bollegala, 2021). One natural
question that arises is whether VT can have an
influence on the bias level in multilingual LMs, in-
cluding fine-tuned models. For this purpose, we
evaluate social bias in multilingual LMs after ap-
plying VT with different settings and compare it
against its monolingual counterpart. Experimen-
tal results show that the monolingual LM tends to
contain more bias than its multilingual versions.
Moreover, compared to the original multilingual
LM, the bias level has no significant change after
applying VT. These results suggest that a mono-
lingual LM can be induced by applying VT to its
corresponding multilingual LM, thereby obtaining
a less biased monolingual LM compared to its orig-
inal monolingual counterpart.

2 Related Work

Several studies have explored the possibility to
modify or adapt the vocabulary of LMs. For in-
stance, Artetxe et al. (2020) and Marchisio et al.
(2022) adapted a mono-lingual LM into another
language by learning the embedding matrix on the
new language, while fixing the other weights. Sim-
ilarly, Wang et al. (2019) augmented the vocabu-
lary of a multilingual LM to new languages with
multilingual word alignment (Lample et al., 2018).
Zheng et al. (2021) proposed to evaluate the ability
of a vocabulary to represent a particular language,
and Chung et al. (2020) proposed a multilingual
vocabulary construction that balances the trade-
off between optimizing for cross-lingual sub-word
sharing and the need for robust representation of
individual languages. XLM-V (Liang et al., 2023)
combines the idea of Zheng et al. (2021) and Chung
et al. (2020) to efficiently enlarge the vocabulary
size along with the model size scaling. Ostendorff
and Rehm (2023) used a multi-stage fine-tuning to
obtain a LM in the target language from other LM
in the source language. These prior works modify
existing mono/multi-lingual LMs to include new
languages, i.e. augmenting the multilinguality of
the LMs. In contrast, our study focuses on com-
pressing multilingual LMs into the target language
to effectively achieve smaller monolingual LMs,
i.e. reducing the multilingual representation of the
LMs while retaining the capability in a specific
target language.

The work of Abdaoui et al. (2020) is the most
relevant to our study as, to the best of our knowl-
edge, they introduced the idea of VT for the first
time. However, their analysis is limited to NLI
with pre-fine-tuning VT with mBERT (Devlin et al.,
2019) only, as well as a fixed vocabulary size af-
ter VT. In contrast, our study compares two VT
strategies, before and after fine-tuning, and show
how this latter strategy, not considered in Abdaoui
et al. (2020), can be a more effective compression
technique in some settings. Furthermore, we ex-
tend the experiments to generation tasks as well as
classification tasks with more recent LMs such as
mBART (Lewis et al., 2020) and mT5 (Xue et al.,
2021), and provide an exhaustive analysis on the
effect of VT.

3 Vocabulary Trimming

To perform vocabulary trimming (VT), we first
need a multilingual LM as an input. The idea is to
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Figure 2: An illustration of vocabulary trimming for
Korean and French.

tailor model to a particular target language l, which
in principle belong to the same set of languages
used to trained the input multilingual LM.2 For
the target language l, VT first identifies language-
specific tokens on a language-specific corpus Cl,
and remove all the tokens along with their embed-
dings except for those appeared in Cl as described
in Figure 2. In our analysis (§ 5), we also con-
sider to keep the top-n most frequent tokens in Cl
to further reduce the model size by removing less
frequent tokens. We consider two VT strategies:
(1) before fine-tuning and (2) after fine-tuning.

The difference between these two strategies is
whether to perform VT before or after fine-tuning,
as shown in Figure 3. Both VTs have advantages
and drawbacks: while pre-FT VT can reduce the
time of fine-tuning as the trimmed LM is smaller
than the original LM, post-FT VT only need a fine-
tuned multilingual LM - this way, post-FT VT can
be used as a postprocessing step and no additional
language-specific training is required.

Finally, we release a simple LM vocabulary
trimming starting package to apply our proposed
technique to any input multilingual transformer-
based LM, along with all the models and code
needed to reproduce our experiments, at https:

//github.com/asahi417/lm-vocab-trimmer.

4 Evaluation

In this section, we present our experimental results
to test the reliability of our proposed VT methodol-
ogy in NLP tasks.

2In theory, vocabulary trimming could be applied to any
language model, even monolingual, but this analysis is out of
the scope of this paper.

Figure 3: Comparisons of Pre-FT vs Post-FT VT in an
example of fine-tuning on a task in French.

4.1 Experimental Setting

Tasks and datasets. In order to test the efficacy
of VT, we consider two generation tasks, ques-
tion answering (QA) and question generation (QG),
and two classification tasks, sentiment analysis and
natural language inference (NLI). As the datasets
for QA, we use SQuAD (Rajpurkar et al., 2016)
(English), Spanish SQuAD (Casimiro Pio et al.,
2019) (Spanish), FQuAD (d’Hoffschmidt et al.,
2020) (French), Italian SQuAD (Croce et al., 2018)
(Italian), JAQuAD (So et al., 2022) (Japanese), Ko-
rQuAD (Lim et al., 2019) (Korean), and SberQuAd
(Efimov et al., 2020) (Russian). For QG, we use
the same datasets adapted for QG via QG-Bench
(Ushio et al., 2022). For sentiment analysis, we use
Twitter-based datasets for English (Rosenthal et al.,
2017), Arabic (Rosenthal et al., 2017), French (Be-
namara et al., 2017), Italian (Barbieri et al., 2016),
German (Cieliebak et al., 2017), Portuguese (Brum
and Nunes, 2017), and Spanish (Díaz-Galiano et al.,
2018) from UMSAB (Unified Multilingual Senti-
ment Analysis Benchmark) (Barbieri et al., 2022).
All the sentiment analysis datasets contain three
labels: positive, neutral and negative. For NLI, we
use XNLI (Conneau et al., 2018), a multilingual
NLI dataset, including English, French, German,
Spanish and Arabic, which are the languages in-
cluded in the sentiment analysis experiment. We
fine-tune LMs on the training sets of each language,
which were translated automatically from English
and released in the original paper.

Evaluation metrics. For the evaluation, we use
the following standard metrics: answer span F1
score (Ans-F1) and exact match (EM) are used for
QA; METEOR (MTR) and BERTScore (BS) for
QG, which have been shown to be the most cor-
related metrics to human judgment (Ushio et al.,
2022); macro-F1 score for sentiment following
(Barbieri et al., 2022); and accuracy for NLI. As
the language-specific corpus Cl to extract vocabu-
lary counts for VT, we use mC4 (Xue et al., 2021),
one of the largest public multilingual corpora.
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Lang. Vocabulary Parameters
QA QG

No-Trim Post-FT Pre-FT No-Trim Post-FT Pre-FT
m

T
5

EN 209K (83.6%) 258M (86.1%) 70.1 / 55.5 70.2 / 55.5 70.1 / 56.4 23.8 / 90.0 23.8 / 90.0 24.0 / 90.1
ES 131K (52.4%) 178M (59.4%) 55.9 / 34.7 55.9 / 34.7 57.8 / 37.5 22.7 / 84.1 22.7 / 84.1 22.3 / 84.2
FR 131K (52.4%) 178M (59.4%) 50.0 / 30.9 50.0 / 30.9 48.6 / 29.4 17.5 / 80.7 17.5 / 80.7 16.1 / 79.2
IT 111K (44.4%) 157M (52.6%) 53.2 / 37.6 53.4 / 37.8 51.5 / 36.0 17.6 / 80.8 17.6 / 80.8 17.5 / 80.6
JA 125K (50.0%) 172M (57.6%) 65.7 / 65.7 65.7 / 65.7 63.0 / 63.0 29.0 / 80.9 29.0 / 80.9 28.6 / 81.0
KO 73K (29.2%) 119M (39.7%) 77.1 / 70.6 77.1 / 70.5 74.5 / 67.3 27.5 / 82.9 27.5 / 83.0 28.0 / 83.7
RU 147K (58.8%) 195M (65.1%) 73.7 / 51.4 73.8 / 51.4 74.8 / 53.4 26.4 / 84.3 26.4 / 84.3 28.9 / 86.4

m
B

A
R

T

EN 173K (69.2%) 532M (87.1%) 76.9 / 62.6 77.0 / 62.7 78.4 / 65.7 25.1 / 90.4 25.1 / 90.4 24.7 / 90.1
ES 87K (34.8%) 443M (72.7%) 64.1 / 42.2 64.5 / 42.8 63.7 / 43.9 22.9 / 83.6 22.8 / 83.6 22.8 / 84.0
FR 85K (34.0%) 442M (72.5%) 60.4 / 39.3 61.0 / 39.8 66.4 / 45.1 19.8 / 81.7 19.8 / 81.7 18.4 / 79.7
IT 67K (26.8%) 424M (69.5%) 64.7 / 50.0 64.9 / 50.2 65.8 / 49.8 18.0 / 80.6 17.9 / 80.7 18.9 / 81.1
JA 77K (30.8%) 434M (71.1%) 68.2 / 68.2 68.2 / 68.2 70.6 / 70.6 30.0 / 82.3 29.7 / 82.1 29.1 / 80.8
KO 46K (18.4%) 402M (65.9%) 79.3 / 72.3 79.2 / 72.1 83.2 / 77.3 30.2 / 83.9 30.3 / 84.0 30.2 / 83.8
RU 99K (39.6%) 456M (74.8%) 78.7 / 58.0 79.0 / 58.2 75.5 / 49.9 29.3 / 87.2 28.7 / 87.0 28.3 / 86.7

Table 1: Results on QA (Ans-F1/EM) and QG (MTR/BS), including both the vocabulary size and the number of
parameters after VT with the ratio to the original model (%). The best results in each LM and language are in
bold characters. Note that the parameter size of the original mT5 and mBART (No-Trim) is 300M and 611M,
respectively, both with a vocabulary size of 250K.

Base language models. As the base LMs, given
computational constraints we chose the smallest
mT5 and mBART to fine-tune on QA and QG, and
XLM-R and XLM-V (Liang et al., 2023) for sen-
timent analysis and NLI. All these models have
a vocabulary size of 250K, except for XLM-V
which has a vocabulary size of 901K subword to-
kens. For our experiments, we compare the results
of pre/post-FT VT against vanilla LM fine-tuning
without VT, which we refer to as No-Trim.

Fine-tuning. For model fine-tuning, we rely on
lmqg (Ushio et al., 2023) for QA/QG, and Ray
Tune3 for sentiment analysis. In both cases, we use
the default search space for hyperparameter search.
For NLI, we follow the same hyperparameters used
in Liang et al. (2023). All the resulting models and
code will be released upon acceptance of the paper.

4.2 Results

We present the results for the generation and clas-
sification tasks in section 4.2.1 and section 4.2.2,
respectively.

4.2.1 Generation Tasks: QA & QG
Table 1 shows the overall results on QA and QG.
The results confirm that both of pre/post-FT VT can
maintain the original performance in most cases,
while being smaller than the original models by sig-
nificantly reducing the vocabulary size. First, post-
FT VT achieves at least the same performance as

3https://docs.ray.io/en/latest/tune/index.html

the vanilla fine-tuning for all the languages for both
LMs in QA and QG, except for a few cases such
as mBART QA in Korean and mBART QG in Rus-
sian, although the decrease is no more than 0.5%.
Meanwhile, pre-FT VT outperforms its vanilla fine-
tuning model with a relatively important margin in
some cases, such as mBART French QA and mT5
Spanish QA. In contrast, there are a few models
where pre-FT VT degrades the performance of the
original model such as mT5 QA in Korean (2.6%
decrease in Ans-F1) or mBART QA in Russian
(3.2% decrease in Ans-F1).

Since we keep all the vocabulary that appeared
in the language-specific corpus Cl, the percent-
age of reduced parameter depends on the lan-
guage, and generally VT can reduce the model size
for Asian (Japanese/Korean) and European (Span-
ish/French/Italian) languages efficiently (50% for
mT5 and 70% for mBART), but it remains high in
other languages (English/Russian).

4.2.2 Classification Tasks: Sentiment & NLI

Table 2 shows the results on sentiment analysis and
NLI. In this case, post-FT VT can robustly preserve
the original performance of the original No-Trim
baseline in both tasks for XLM-R and XLM-V,
while being no more than 40% and 60% in vocabu-
lary and overall parameter size, respectively, of the
original XLM-V and XLM-R models in all the non-
English datasets. XLM-V PT sentiment model is
the only post-FT VT where a slight decrease can be
observed (0.1%). On the other hand, the accuracy
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Lang. Vocabulary Parameter
Sentiment NLI

No-Trim Post-FT Pre-FT No-Trim Post-FT Pre-FT
X

L
M

-R
AR 49K (19.6%) 124M (44.7%) 66.3 66.3 60.9 75.7 75.7 73.8
DE 91K (36.4%) 156M (56.3%) 73.2 73.3 73.5 79.9 79.9 78.3
EN 173K (69.2%) 219M (78.7%) 68.4 68.5 67.9 84.6 84.6 70.6
ES 87K (34.8%) 153M (55.0%) 69.0 69.0 65.0 79.8 79.8 67.2
FR 85K (34.0%) 151M (54.6%) 71.8 71.8 72.1 80.1 80.1 79.6
IT 67K (26.8%) 138M (49.7%) 62.9 62.9 70.8 - - -
PT 66K (26.4%) 137M (49.3%) 70.7 70.8 70.2 - - -

X
L

M
-V

AR 92K (11.8%) 157M (20.2%) 59.8 59.8 64.7 75.5 75.6 76.1
DE 239K (30.7%) 269M (34.7%) 73.5 73.5 73.0 78.9 78.9 79.0
EN 484K (62.2%) 458M (58.9%) 63.9 63.9 61.3 84.4 84.4 84.5
ES 243K (31.2%) 279M (35.1%) 60.7 60.7 66.6 80.7 80.7 80.6
FR 218K (28.0%) 253M (32.6%) 68.8 68.8 59.5 78.6 78.6 79.0
IT 184K (23.7%) 227M (29.3%) 70.2 70.2 74.2 - - -
PT 181K (23.3%) 225M (28.9%) 66.6 66.5 52.8 - - -

Table 2: Results of sentiment analysis (macro F1) and XNLI (accuracy) including both the vocabulary size and the
number of parameters after VT with the ratio to the original model (%). The best results in each LM and language
are in bold characters. Note that the overall parameter size of the original XLM-R and XLM-V (No-Trim) is 278M
and 778M, respectively, with the vocabulary size being 250K and 901K vocabulary in each case.

of Pre-FT VT appears to be sensitive to the lan-
guage and task, where it improves the performance
in some languages such as Italian (XLM-R and
XLM-V achieve 7.9% and 3.8% increase for sen-
timent analysis), but it decreases the performance
with non-trivial margin in other languages such as
Arabic, where XLM-R decreases 5% for sentiment
analysis and 2% for XNLI. Since XLM-V has a
larger vocabulary size, the percentage of reduced
parameters at VT is more prominent in XLM-V, as
seen in Arabic (20.2%) and Portuguese (28.9%) for
example.

5 Vocabulary Size Analysis

In our main experimental results (§ 4.2), all the
unique tokens that appeared in the monolingual
corpus were kept, which resulted in a low compres-
sion ratio for some languages such as English and
Russian. In this analysis, we constrain the number
of vocabulary and choose the top-n vocabulary at
VT in terms of the frequency in the corpus (see
§ 3). For QA and QG, we compare mT5SMALL
results with n from [5K, 10K, 15K, 30K, 60K,
90K, 120K], which correspond to an overall param-
eter size of [49M, 54M, 59M, 74M, 105M, 136M,
166M], respectively. For sentiment analysis and
NLI, we experiment with XLM-RBASE with n from
[5K, 10K, 15K, 30K, 60K], which correspond to
[89M, 93M, 97M, 109M, 132M] of parameter size,
respectively4.

4The full results with top-n can be found at Appendix B
and Appendix A.

5.1 Generation Tasks: QA & QG
Figure 4 shows the results of mT5 on QA and QG.
Noticeably, post-FT VT can reduce the vocabulary
size to 60K for both QA and QG in all the lan-
guages with a trivial gap (0.3% decrease of EM in
Russian QA and 0.1% decrease of BS in French
QG), and that is 35% of the original mT5 in the pa-
rameter size. Furthermore, post-FT VT can further
reduce the vocabulary to 5K tokens with no more
than 0.4% decrease in each metric for both QA and
QG in English, French, and Italian, which is 16%
of the original mT5 in the parameter size. Mean-
while, pre-FT VT outperforms the No-Trim result
in all the languages in QA, and the majority of
the languages in QG (English, Italian, Korean, and
Russian), but the result is sensitive to the choice of
n. For example, Japanese/Korean QA and Russian
QG with pre-FT VT for top-5K (16% of the origi-
nal mT5) outperforms No-Trim as well as post-FT
VT, but Japanese QG with pre-FT VT is worse in
any choice of n on contrary. This larger variation
of results may also be due to the parameter size
space, as the optimal parameters for the original
multilingual LM (which is the one trained for post-
FT VT) may differ. We leave this extended analysis
for future work.

5.2 Classification Tasks: Sentiment & NLI
Figure 5 and Figure 6 show the results of XLM-
R on sentiment and NLI. In NLI, we can see that
post/pre-FT VT both can reduce the vocabulary to
30K (39% of the original XLM-R in the parameter
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Figure 4: QG (METEOR) and QA (Ans-F1) results for
mT5 with pre/post-FT VT for different vocabulary sizes
compared to the original multilingual LM (No-Trim).

size) without any decrease except 0.3% of pre-FT
VT for German, and there is no decrease more than
0.4% even with top-15K of post-FT VT. In senti-
ment analysis, pre-FT VT with top-10K (33% of
the original XLM-R in the parameter size) can re-
tain the accuracy of the No-Trim baseline in French
and Italian. Moreover, post-FT VT with 30K can
retain the original F1 score without a major drop in
sentiment analysis, yet the decrease in F1 score is
slightly more prominent than NLI (1.1% in Arabic
sentiment analysis).

The sentiment analysis datasets are collected
from Twitter, so one dataset in a single language
can contain tokens from other languages (hash-
tags or named-entities, or even code-switching). In
contrast, XNLI translates English NLI into other
languages, so there is less chance for a dataset to

Figure 5: Sentiment analysis macro-F1 results of XLM-
R with pre/post-FT VT for different vocabulary sizes
compared to No-Trim.

Figure 6: NLI accuracy of XLM-R with pre/post-FT VT
for different vocabulary sizes compared to No-Trim.

contain tokens from other languages. This can
explain the effectiveness of top-n VT in NLI com-
pared with sentiment analysis, as smaller values of
n should result in a vocabulary with fewer tokens
from the other languages, which limits the ability
of the models to handle foreign tokens.

6 Monolingual vs. Multilingual LMs: The
Case of Social Bias

There has been extensive literature in NLP com-
paring monolingual and multilingual LMs (Muller
et al., 2021; Goyal et al., 2021). As for the perfor-
mance, there is no clear consensus on which type is
better for certain languages, tasks or settings. How-
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ever, there are other important factors that play a
role in this comparison. First, monolingual mod-
els tend to have a smaller vocabulary size, which
makes them more practical. In contrast, a single
multilingual model can be used for a large number
of languages. Moreover, multilingual LMs are less
prone to capture and carry cultural- or language-
dependant biases. This is due to the combination of
languages and cultures into a single model, which
makes it less biased toward specific cultures (Liang
et al., 2020; Ahn and Oh, 2021). Prior works have
shown that different types of biases consistently
appear in language-specific models (Nadeem et al.,
2021; Nangia et al., 2020; Blodgett et al., 2021;
Dhamala et al., 2021; Kaneko et al., 2022; Zhou
et al., 2022). While the comparison of monolingual
and multilingual LMs is not the main focus of this
paper, this analysis is certainly relevant. Trimming
the vocabulary of a multilingual model essentially
makes the model smaller, and therefore alleviates
one of the main drawbacks of using multilingual
language models on language-specific tasks, which
is its larger size. On top of that, this strategy en-
ables the usage of monolingual models with poten-
tially less social bias. In the following, we present a
comparison of monolingual and multilingual LMs
(both trimmed and not trimmed) in terms of social
bias and general performance.

6.1 Experimental setting

Social bias datasets. To study the effect of VT
on social bias existing in pre-trained LMs, we first
conduct experiments on two commonly used social
bias evaluation datasets for masked LMs: Stere-
oSet (SS; Nadeem et al., 2021)5 and crowdsourced
stereotype pairs benchmark (CP; Nangia et al.,
2020)6. SS consists of associative contexts cov-
ering four types of social biases: race, gender, reli-
gion, and profession; while CP is crowdsourced
and annotated by workers in the United States,
which contains nine types of social biases: race,
gender, sexual orientation, religion, age, nationality,
disability, physical appearance, and socioeconomic
status. In order to further investigate the impact
of pre/post-FT VT on LMs, we trim and fine-tune
models on sentiment analysis with different orders
and evaluate the social bias in such models on the
Equity Evaluation Corpus (EEC; Kiritchenko and

5https://github.com/moinnadeem/StereoSet
6https://github.com/nyu-mll/crows-pairs

Mohammad, 2018)7 considering two bias types:
gender and race. The EEC dataset was specifically
with the aim to examine social bias for sentiment
analysis systems.

Evaluation metrics. We compare the pseudo-
likelihood scores returned by each model for
stereotypical and anti-stereotypical sentences us-
ing AULA (All Unmasked Likelihood with At-
tention weights) (Kaneko and Bollegala, 2022).8.
AULA has been shown to be robust against the
frequency biases of the masked tokens and pro-
vides a more reliable assessment in contrast to al-
ternative metrics when evaluating social biases in
masked language models (MLMs). Given a sen-
tence pair in the test dataset: “My mom spent all
day cooking for Thanksgiving" vs. “My dad spent
all day cooking for Thanksgiving", the first sen-
tence is considered as stereotypical while the sec-
ond one is anti-stereotypical. AULA computes the
percentage of stereotypical sentences preferred by
the MLM over anti-stereotypical ones as the bias
score. An MLM is considered to be unfairly biased
if it returns higher pseudo-loglikelihood scores for
stereotypical sentences than the corresponding anti-
stereotypical sentences. The AULA score falls
within the range of [0,100] and an unbiased model
would return a bias score close to 50. On the other
hand, a bias score greater than or less than 50 in-
dicates the bias direction towards the stereotype
or anti-stereotype, respectively. Since the original
AULA is not fitted to evaluate fine-tuned models,
we adapt AULA to the EEC dataset obtain the bias
score for the LMs fine-tuned on sentiment analysis,
and denote this metric as EEC-AULA. Specifically,
given a model that predicts sentiment labels (e.g.,
positive, neutral, negative) to sentences, we con-
sider the percentage of stereotypical test sentences
with a more negative label over anti-stereotypical
ones as the corresponding bias evaluation measure.

General performance. As a proxy to test the
general performance, we use the general language
understanding evaluation (GLUE; Wang et al.,
2018) benchmark.9 We acknowledge the limita-
tions of using this benchmark to draw reliable con-
clusions at large (Ethayarajh and Jurafsky, 2020)

7https://saifmohammad.com/WebPages/Biases-SA.
html

8https://github.com/kanekomasahiro/evaluate_
bias_in_mlm

9https://gluebenchmark.com/; Models are tested on
the development sets of each task.
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Base Model Vocab Trimming
Vocabulary

Social Bias General Performance

AULA EEC-AULA
GLUE

Pre-FT Post-FT CP SS Gender Race

Monolingual (RoBERTa) - 50K 50K 58.1 58.8 64.8 85.7 78.0

Multilingual (XLM-R)

- 250K 250K 49.5 54.9 44.3 62.0 77.9
Pre-FT VT (EN) 173K 173K 49.5 54.9 42.5 56.9 78.0
Post-FT VT (EN) 250K 173k 49.5 54.9 44.3 62.0 77.9
Pre-FT VT (50K) 50K 50K 49.3 55.0 41.0 62.4 76.9
Post-FT VT (50K) 250K 50K 49.5 54.9 44.3 62.0 77.9

Table 3: Results of pre/post-FT VT models compared with the original monolingual and multilingual models on
two social bias analysis benchmarks (AULA for pre-trained masked language models and EEC-AULA for models
fine-tuned on sentiment analysis) and the GLUE benchmark. The VT models are trimmed on English vocabulary
with different vocabulary sizes: EN (full English vocabulary) and 50K (top 50K subword tokens). Note that for
post-FT VT, the results on AULA are exactly the same as the original XLM-R. The green and red colours represent
the social bias towards anti-stereotypical sentences (scores lower than 50) and stereotypical sentences (scores higher
than 50), respectively. The lighter colour indicates less social bias observed in the LM.

but it nevertheless provides a good proxy for un-
derstanding the overall performance of comparable
models in standard NLP tasks. Moreover, these
experiments are only aimed at analysing the effect
of vocabulary trimming on general performance.

Models. We compute the bias scores of
RoBERTa (Liu et al., 2019) as base monolingual
LM, and XLM-R (Conneau et al., 2019) as its mul-
tilingual counterpart (they have been trained with
the same architecture and in an overlapping cor-
pus. We explore two VT settings to be applied
to XLM-R: XLM-R with the standard VT includ-
ing the full English vocabulary (VT XLM-R) and
XLM-R with VT for top-50K English vocabulary
(top-50K VT XLM-R), which is the same vocabu-
lary size as the monolingual RoBERTa model. Our
experiments are based both on masked language
models on AULA (in which the post-VT does not
have any effect) and models fine-tuned on the senti-
ment analysis presented in § 4.1 on EEC-AULA, as
well as on the corresponding GLUE training sets.

6.2 Results
Table 3 shows the performance of pre-FT and post-
FT VT models against the original monolingual
and multilingual LMs on social bias evaluation
datasets and the GLUE benchmark. Both AULA
and GLUE results are computed using the LMs
without fine-tuning (i.e., RoBERTa, XLM-R, VT
XLM-R, and top-50K VT XLM-R), whereas the
EEC-AULA results are computed using the models
applying VT and fine-tuning strategies. We observe
that the monolingual model contains the highest
levels of social biases compared to the multilin-

gual models with different settings. In particular,
RoBERTa obtains the overall highest bias score on
the EEC dataset after fine-tuning, with an alarm-
ingly high 85.7 score on race.10 On the other hand,
compared to the original XLM-R, there is no signif-
icant change in performance on social biases and
GLUE evaluation tasks for pre-FT VT and post-
FT VT models. This is important as we can apply
the proposed VT method to any multilingual LM,
obtaining a monolingual one with consistent per-
formance on the GLUE benchmark and less social
biases than the original monolingual model pre-
trained in the target language, without using any
ad-hoc debiasing methods.

7 Discussion

Vocabulary trimming before and after fine-
tuning. According to the results, pre-FT VT ap-
pears to be generally more effective in classification
tasks (see section 4.2.2). For generation tasks, both
pre/post-FT VT robustly retain the original perfor-
mance while being able to considerably reduce the
model size (see section 4.2.1). As a guideline to
choose the type of VT in such a case, post-FT VT
should be more suitable if one already has a fine-
tuned model, as no additional training is needed
for this case. Moreover, post-FT is more robust
as a compression mechanism as the performance
is largely maintained with respect to that of the
original multilingual LM. On the other hand, if one
needs to fine-tune a model from scratch and the
computation resources are limited, we recommend

10Appendix C includes a breakdown by type of the social
bias results.
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exploring pre-FT VT, as fine-tuning on a trimmed
LM should be more efficient due to its smaller vo-
cabulary and parameters and, in some cases, can
lead to better overall results. However, this process
has to be done carefully as the set of optimal pa-
rameters could differ from the original multilingual
LM fine-tuning process.

Monolingual and multilingual LM comparison.
While in this paper we have not compared monolin-
gual and multilingual models, the question would
be whether we need vocabulary trimming strate-
gies in a world where monolingual LMs exist. In
this case, a monolingual model may perform simi-
larly to a multilingual model (Goyal et al., 2021).
However, the multilingual model is often larger
mainly due to larger vocabulary storage require-
ments. In contrast, our proposed VT technique
does not require any extra LM training or com-
putational resources. Indeed, only a multilingual
LM is needed and we can induce multiple smaller
language-specific monolingual models. This may
reduce the carbon footprint overall and especially
help with less-resource languages when a high-
quality monolingual model does not exist. Finally,
our social bias analysis see § 6 shows how monolin-
gual models exhibit larger social biases (especially
racial) than a VT-induced multilingual LM. This is
consistent with prior work suggesting that a multi-
lingual LM has been trained with more languages,
and hence more cultural variety, and these diverg-
ing viewpoints can compensate each other (Ahn
and Oh, 2021).

8 Conclusion

In this paper, we proposed vocabulary-trimming
(VT), a method to reduce the vocabulary of a mul-
tilingual LM to a vocabulary specific to any given
target language. VT can induce a monolingual
LM in the target language by leveraging an exist-
ing multilingual LM. The main advantage of this
filtering step is the reduced size, as well as avoid-
ing having to train monolingual LMs from scratch,
which would be computationally demanding. Our
experiments show how VT can retain the high per-
formance of the original multilingual LM, while
largely reducing the model size. For all languages
evaluated, a 35% compression rate proves suffi-
cient to keep the original performance of the larger
mT5 multilingual LM in both QA and QG, with a
similar 39% in NLI and 55% in sentiment analy-
sis with XLM-R. Interestingly, in some cases, the

compressed LM can even achieve better results
than the original larger model when trimmed be-
fore fine-tuning. Since the main goal of the paper
was to compress a multilingual LM while keeping
its original performance, we leave the analysis of
this behaviour for future work.

Limitations

We have not tested our methodology in truly low-
resource languages. Because of this, there could
be a different behaviour when we apply VT to a
language with lower resources or that is poorly rep-
resented in the underlying training corpus. The
LMs we used in the paper limited their size up to
600M, and we have not considered larger models
such as mT5XXL or BLOOM (Scao et al., 2022),
due to our limited computational resources. As the
language-specific corpus to compute frequency, we
employ mC4, which is one of the largest multilin-
gual corpora. Nonetheless, this is used as a proxy
and having access to the full multilingual model
could give potentially better results.

Similarly, we acknowledge the limitations of the
analysis comparing multilingual and monolingual
models in terms of social bias. Due to the evalua-
tion data available and the existence of comparable
monolingual and multilingual LMs, the evaluation
is focused on English only and the results could dif-
fer for other languages. Moreover, there are other
types of biases not covered in this evaluation.

Ethics Statement

Pre-trained LMs are known to contain undesirable
biases to generate toxic contents in some edge cases
(Schick et al., 2021), so the resulting models could
inherit such biases. While we have not analysed in
detail the output of all models in the tasks evaluated,
in this paper we have made an attempt to study this
effect in terms of social biases for both base pre-
trained LMs and fine-tuned LMs.

Acknowledgements

Jose Camacho-Collados and Yi Zhou are supported
by a UKRI Future Leaders Fellowship.

References
Amine Abdaoui, Camille Pradel, and Grégoire Sigel.

2020. Load what you need: Smaller versions of
mutililingual BERT. In Proceedings of SustaiNLP:
Workshop on Simple and Efficient Natural Language

14733

https://doi.org/10.18653/v1/2020.sustainlp-1.16
https://doi.org/10.18653/v1/2020.sustainlp-1.16


Processing, pages 119–123, Online. Association for
Computational Linguistics.

Jaimeen Ahn and Alice Oh. 2021. Mitigating language-
dependent ethnic bias in BERT. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 533–549, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4623–4637, Online. Association
for Computational Linguistics.

Francesco Barbieri, Valerio Basile, Danilo Croce, Malv-
ina Nissim, Nicole Novielli, and Viviana Patti. 2016.
Overview of the evalita 2016 sentiment polarity clas-
sification task. In Proceedings of third Italian con-
ference on computational linguistics (CLiC-it 2016)
& fifth evaluation campaign of natural language pro-
cessing and speech tools for Italian. Final Workshop
(EVALITA 2016).

Francesco Barbieri, Luis Espinosa Anke, and Jose
Camacho-Collados. 2022. XLM-T: Multilingual
language models in Twitter for sentiment analysis
and beyond. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
258–266, Marseille, France. European Language Re-
sources Association.

Farah Benamara, Cyril Grouin, Jihen Karoui, Véronique
Moriceau, and Isabelle Robba. 2017. Analyse
d’opinion et langage figuratif dans des tweets: présen-
tation et résultats du défi fouille de textes deft2017.

Su Lin Blodgett, Gilsinia Lopez, Alexandra Olteanu,
Robert Sim, and Hanna Wallach. 2021. Stereotyping
norwegian salmon: An inventory of pitfalls in fair-
ness benchmark datasets. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1004–1015.

Henrico Bertini Brum and Maria das Graças Volpe
Nunes. 2017. Building a sentiment corpus of
tweets in brazilian portuguese. arXiv preprint
arXiv:1712.08917.

Carrino Casimiro Pio, Costa-jussa Marta R., and Fonol-
losa Jose A. R. 2019. Automatic Spanish Translation
of the SQuAD Dataset for Multilingual Question An-
swering. arXiv e-prints, page arXiv:1912.05200v1.

Hyung Won Chung, Dan Garrette, Kiat Chuan Tan, and
Jason Riesa. 2020. Improving multilingual models
with language-clustered vocabularies. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4536–4546, Online. Association for Computational
Linguistics.

Mark Cieliebak, Jan Milan Deriu, Dominic Egger, and
Fatih Uzdilli. 2017. A twitter corpus and benchmark
resources for german sentiment analysis. In 5th Inter-
national Workshop on Natural Language Processing
for Social Media, Boston MA, USA, 11 December
2017, pages 45–51. Association for Computational
Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. Advances in
neural information processing systems, 32.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2475–2485, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Danilo Croce, Alexandra Zelenanska, and Roberto
Basili. 2018. Neural learning for question answering
in italian. In AI*IA 2018 – Advances in Artificial
Intelligence, pages 389–402, Cham. Springer Inter-
national Publishing.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya
Krishna, Yada Pruksachatkun, Kai-Wei Chang, and
Rahul Gupta. 2021. Bold: Dataset and metrics for
measuring biases in open-ended language genera-
tion. In Proceedings of the 2021 ACM conference
on fairness, accountability, and transparency, pages
862–872.

Martin d’Hoffschmidt, Wacim Belblidia, Quentin
Heinrich, Tom Brendlé, and Maxime Vidal. 2020.
FQuAD: French question answering dataset. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1193–1208, Online. Association
for Computational Linguistics.

Manuel C Díaz-Galiano, Eugenio Martínez-Cámara,
M Ángel García Cumbreras, Manuel García Vega,
and Julio Villena Román. 2018. The democratization
of deep learning in tass 2017. Procesamiento del
Lenguaje Natural, 60:37–44.

14734

https://doi.org/10.18653/v1/2021.emnlp-main.42
https://doi.org/10.18653/v1/2021.emnlp-main.42
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://aclanthology.org/2022.lrec-1.27
https://aclanthology.org/2022.lrec-1.27
https://aclanthology.org/2022.lrec-1.27
http://arxiv.org/abs/1912.05200v2
http://arxiv.org/abs/1912.05200v2
http://arxiv.org/abs/1912.05200v2
https://doi.org/10.18653/v1/2020.emnlp-main.367
https://doi.org/10.18653/v1/2020.emnlp-main.367
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.107


Pavel Efimov, Andrey Chertok, Leonid Boytsov, and
Pavel Braslavski. 2020. Sberquad–russian reading
comprehension dataset: Description and analysis.
In International Conference of the Cross-Language
Evaluation Forum for European Languages, pages
3–15. Springer.

Kawin Ethayarajh and Dan Jurafsky. 2020. Utility is in
the eye of the user: A critique of NLP leaderboards.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4846–4853, Online. Association for Computa-
tional Linguistics.

Naman Goyal, Jingfei Du, Myle Ott, Giri Ananthara-
man, and Alexis Conneau. 2021. Larger-scale trans-
formers for multilingual masked language modeling.
In Proceedings of the 6th Workshop on Represen-
tation Learning for NLP (RepL4NLP-2021), pages
29–33, Online. Association for Computational Lin-
guistics.

Masahiro Kaneko and Danushka Bollegala. 2021. De-
biasing pre-trained contextualised embeddings. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1256–1266, Online.
Association for Computational Linguistics.

Masahiro Kaneko and Danushka Bollegala. 2022. Un-
masking the mask–evaluating social biases in masked
language models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages
11954–11962.

Masahiro Kaneko, Aizhan Imankulova, Danushka Bol-
legala, and Naoaki Okazaki. 2022. Gender bias in
masked language models for multiple languages. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2740–2750, Seattle, United States. Association
for Computational Linguistics.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186.

Svetlana Kiritchenko and Saif M Mohammad. 2018.
Examining gender and race bias in two hundred sen-
timent analysis systems. NAACL HLT 2018, page 43.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black,
and Yulia Tsvetkov. 2019. Measuring bias in contex-
tualized word representations. In Proceedings of the
First Workshop on Gender Bias in Natural Language
Processing, pages 166–172.

Guillaume Lample, Alexis Conneau, Marc’Aurelio Ran-
zato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Interna-
tional Conference on Learning Representations.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Na-
man Goyal, Marjan Ghazvininejad, Luke Zettle-
moyer, and Madian Khabsa. 2023. Xlm-v: Overcom-
ing the vocabulary bottleneck in multilingual masked
language models. arXiv preprint arXiv:2301.10472.

Sheng Liang, Philipp Dufter, and Hinrich Schütze. 2020.
Monolingual and multilingual reduction of gender
bias in contextualized representations. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5082–5093, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Seungyoung Lim, Myungji Kim, and Jooyoul Lee. 2019.
Korquad1.0: Korean qa dataset for machine reading
comprehension. arXiv preprint arXiv:1909.07005.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Kelly Marchisio, Patrick Lewis, Yihong Chen, and
Mikel Artetxe. 2022. Mini-model adaptation: Ef-
ficiently extending pretrained models to new lan-
guages via aligned shallow training. arXiv preprint
arXiv:2212.10503.

Chandler May, Alex Wang, Shikha Bordia, Samuel Bow-
man, and Rachel Rudinger. 2019. On measuring so-
cial biases in sentence encoders. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 622–628.

Benjamin Muller, Antonios Anastasopoulos, Benoît
Sagot, and Djamé Seddah. 2021. When being un-
seen from mBERT is just the beginning: Handling
new languages with multilingual language models.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 448–462, Online. Association for Computa-
tional Linguistics.

14735

https://doi.org/10.18653/v1/2020.emnlp-main.393
https://doi.org/10.18653/v1/2020.emnlp-main.393
https://doi.org/10.18653/v1/2021.repl4nlp-1.4
https://doi.org/10.18653/v1/2021.repl4nlp-1.4
https://doi.org/10.18653/v1/2021.eacl-main.107
https://doi.org/10.18653/v1/2021.eacl-main.107
https://doi.org/10.18653/v1/2022.naacl-main.197
https://doi.org/10.18653/v1/2022.naacl-main.197
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.coling-main.446
https://doi.org/10.18653/v1/2020.coling-main.446
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38


Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020. CrowS-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953–1967, Online. As-
sociation for Computational Linguistics.

Malte Ostendorff and Georg Rehm. 2023. Effi-
cient language model training through cross-lingual
and progressive transfer learning. arXiv preprint
arXiv:2301.09626.

Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James
Cross, Sebastian Riedel, and Mikel Artetxe. 2022.
Lifting the curse of multilinguality by pre-training
modular transformers. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3479–3495, Seattle,
United States. Association for Computational Lin-
guistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 task 4: Sentiment analysis in Twitter.
In Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEval-2017), pages 502–
518, Vancouver, Canada. Association for Computa-
tional Linguistics.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
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Vocab. No-Trim (250K) 5K 10K 15K 30K 60K
Param. 278M 89M 93M 97M 109M 132M

Po
st

-F
T

(S
en

tim
en

t) AR 66.3 64.5 64.5 65.9 65.9 -
DE 73.2 70.4 72.4 72.1 73.7 73.3
EN 68.4 64.0 66.5 67.4 68.6 68.5
ES 69.0 66.2 67.2 67.8 68.4 69.0
FR 71.8 68.6 71.4 71.7 71.6 71.8
IT 62.9 60.8 61.9 63.5 62.3 62.9
PT 70.7 63.6 65.9 68.2 69.4 70.8

Pr
e-

FT
(S

en
tim

en
t) AR 66.3 58.6 61.9 63.1 63.2 -

DE 73.2 70.6 71.8 73.1 71.5 71.7
EN 68.4 64.6 66.6 67.7 66.0 68.4
ES 69.0 60.4 65.6 66.3 65.9 63.0
FR 71.8 70.3 74.3 73.8 72.2 74.0
IT 62.9 66.2 67.1 68.1 68.2 65.1
PT 70.7 65.5 67.5 69.6 67.9 63.3

Po
st

-F
T

(N
L

I) AR 75.7 75.0 75.8 75.8 75.7 -
DE 79.9 76.6 78.9 79.6 79.9 79.9
EN 84.6 80.5 83.6 84.3 84.6 84.6
ES 79.8 75.3 78.4 79.4 79.8 79.8
FR 80.1 77.2 80.0 80.1 80.2 80.1

Pr
e-

FT
(N

L
I) AR 75.7 73.0 75.0 75.4 75.7 -

DE 79.9 77.4 79.0 79.0 79.6 79.7
EN 84.6 83.3 84.7 84.4 85.1 84.3
ES 79.8 78.9 79.1 79.2 81.0 79.7
FR 80.1 77.3 78.9 78.2 80.1 78.7

Table 4: Results of XLM-R for sentiment analysis
(macro F1) and NLI (accuracy) with different top-n
vocabulary size at VT, where the best results in each
LM and language are in the bold characters.

(Volume 1: Long Papers), pages 1924–1935, Dublin,
Ireland. Association for Computational Linguistics.

A Top-n VT of XLM-R

Table 4 shows the results of XLM-R fine-tuned on
sentiment and NLI with post/pre-VT for different
top-n.

B Top-n VT of mT5

Table 5 shows the results of mT5 fine-tuned on QA
and QG with post/pre-VT for different top-n.

C Details of Results on Social Bias
Evaluation

Table 6 shows the details of social bias evalua-
tion (EEC dataset) regarding each emotion type ob-
served in the LMs fine-tuned on sentiment analysis.
Table 7 shows the details of social bias regarding
each bias type in both CP and SS datasets observed
in the comparison LMs.
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Vocab. No-Trim (250K) 5K 10K 15K 30K 60K 90K 120K
Param. 300M 49M 54M 59M 74M 105M 136M 166M

Po
st

-F
T

(Q
A

)

EN 70.1 / 55.5 72.4 / 59.7 73.2 / 60.5 73.7 / 60.9 72.7 / 58.8 71.0 / 56.4 70.5 / 55.8 70.3 / 55.6
ES 55.9 / 34.7 53.5 / 32.5 54.4 / 33.1 54.5 / 33.2 55.2 / 33.8 56.0 / 34.8 55.9 / 34.8 55.9 / 34.7
FR 50.0 / 30.9 50.0 / 31.5 48.9 / 29.9 48.6 / 29.3 49.9 / 30.1 49.8 / 30.5 50.2 / 30.9 50.0 / 30.8
IT 53.2 / 37.6 54.3 / 39.6 53.8 / 38.4 54.3 / 38.8 54.2 / 38.5 53.7 / 38.1 53.4 / 37.8 -
JA 65.7 / 65.7 54.4 / 54.4 60.3 / 60.3 62.6 / 62.6 60.4 / 60.4 64.9 / 64.9 65.6 / 65.6 65.7 / 65.7
KO 77.1 / 70.6 75.0 / 67.8 75.8 / 68.7 76.2 / 69.3 76.9 / 70.2 77.3 / 70.7 - -
RU 73.7 / 51.4 70.1 / 48.8 71.4 / 49.5 70.3 / 47.6 70.3 / 47.9 73.8 / 51.1 73.9 / 51.4 73.8 / 51.4

Po
st

-F
T

(Q
G

)

EN 23.8 / 90.0 23.6 / 89.8 24.1 / 89.9 24.2 / 90.0 24.2 / 90.0 23.9 / 90.0 23.9 / 90.0 23.9 / 90.0
ES 22.7 / 84.1 21.4 / 83.6 22.0 / 83.8 22.2 / 83.9 22.4 / 84.0 22.7 / 84.1 22.7 / 84.1 22.7 / 84.1
FR 17.5 / 80.7 17.1 / 80.3 17.1 / 80.4 17.3 / 80.5 17.3 / 80.5 17.4 / 80.6 17.5 / 80.7 17.5 / 80.7
IT 17.6 / 80.8 17.3 / 80.7 17.5 / 80.8 17.5 / 80.8 17.6 / 80.7 17.6 / 80.8 17.6 / 80.8 -
JA 29.0 / 80.9 25.7 / 79.2 27.4 / 80.1 28.2 / 80.5 28.8 / 80.9 29.0 / 80.9 29.0 / 80.9 29.0 / 80.9
KO 27.5 / 82.9 27.3 / 82.8 27.4 / 82.9 27.4 / 82.9 27.4 / 82.9 27.5 / 83.0 - -
RU 26.4 / 84.3 26.0 / 84.0 26.2 / 84.2 26.3 / 84.2 26.3 / 84.2 26.3 / 84.3 26.4 / 84.3 26.4 / 84.3

Pr
e-

FT
(Q

A
)

EN 70.1 / 55.5 74.0 / 61.3 71.8 / 59.1 73.4 / 60.7 74.3 / 61.3 71.3 / 56.5 68.6 / 54.3 66.2 / 52.1
ES 55.9 / 34.7 56.7 / 36.7 58.1 / 37.5 62.2 / 41.4 59.8 / 40.1 58.0 / 37.0 58.9 / 38.1 52.0 / 32.7
FR 50.0 / 30.9 49.0 / 32.7 47.6 / 30.2 43.3 / 26.9 44.9 / 27.4 34.3 / 20.0 43.1 / 24.1 40.0 / 23.7
IT 53.2 / 37.6 57.6 / 43.7 61.5 / 46.8 61.2 / 45.6 57.8 / 42.1 56.5 / 40.5 55.4 / 39.2 -
JA 65.7 / 65.7 55.3 / 55.3 52.2 / 52.2 61.3 / 61.3 60.4 / 60.4 64.6 / 64.6 66.9 / 66.9 67.2 / 67.2
KO 77.1 / 70.6 79.5 / 72.6 83.7 / 77.7 82.7 / 76.4 80.4 / 73.7 81.6 / 75.1 - -
RU 73.7 / 51.4 73.5 / 51.7 76.9 / 56.4 77.4 / 56.9 75.9 / 54.2 75.1 / 53.0 75.0 / 53.0 73.3 / 51.4

Pr
e-

FT
(Q

G
)

EN 23.8 / 90.0 24.8 / 90.0 24.4 / 89.9 24.3 / 89.9 24.2 / 90.0 24.2 / 90.0 23.3 / 89.9 23.6 / 89.8
ES 22.7 / 84.1 21.9 / 84.1 21.9 / 83.9 22.7 / 83.7 22.0 / 84.3 22.6 / 84.4 20.4 / 79.6 22.6 / 84.1
FR 17.5 / 80.7 16.1 / 79.0 16.9 / 79.9 16.9 / 79.5 15.8 / 78.8 14.6 / 78.0 15.7 / 79.0 17.0 / 79.2
IT 17.6 / 80.8 17.4 / 80.4 17.8 / 81.1 18.0 / 80.8 17.1 / 80.6 17.4 / 80.9 17.4 / 80.8 -
JA 29.0 / 80.9 26.6 / 79.8 27.0 / 79.2 27.5 / 79.7 27.3 / 79.9 27.7 / 80.3 28.3 / 80.8 28.2 / 80.2
KO 27.5 / 82.9 28.4 / 83.4 27.8 / 83.4 28.2 / 84.1 28.8 / 83.4 28.4 / 83.4 - -
RU 26.4 / 84.3 27.7 / 85.9 30.0 / 86.6 29.0 / 86.5 29.2 / 86.3 29.0 / 86.6 29.2 / 86.7 28.9 / 86.0

Table 5: Results of mT5 for QA (Ans-F1/EM) and QG (MTR/BS) with different top-n vocabulary size at VT, where
the best results in each LM and language are in the bold characters.

Model AULA-EEC Anger Sadness Fear Joy No Emotion Type

G
en

de
rB

ia
s FT RoBERTa 64.8 50.0 67.8 71.5 64.3 60.8

FT XLM-R 44.3 46.9 39.4 51.4 34.4 39.7
Pre-FT XLM-R (EN) 42.5 33.8 55.8 45.1 40.7 42.7
Post-FT XLM-R (EN) 44.3 46.9 39.4 51.4 34.4 39.7
Pre-FT XLM-R (50k) 44.3 46.9 39.4 51.4 34.4 39.7
Post-FT XLM-R (50k) 41.0 41.2 45.8 47.2 36.9 37.2

R
ac

e
B

ia
s

FT RoBERTa 85.7 50.0 88.0 65.4 50.0 100.0
FT XLM-R 62.0 74.5 32.1 47.3 74.6 17.4
Pre-FT VT XLM-R (EN) 56.9 33.7 58.8 69.2 60.1 50.0
Pre-FT VT XLM-R (EN) 62.0 74.5 32.1 47.3 74.6 17.4
Pre-FT VT XLM-R (50k) 62.0 74.5 32.1 47.3 74.6 17.4
Post-FT VT XLM-R (50k) 62.4 55.7 70.3 70.9 59.1 59.0

Table 6: Social bias scores of LMs fine-tuned on sentiment analysis on each emotion type w/wo VT on the EEC
dataset.
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RoBERTa XLM-R VT XLM-R (EN) VT XLM-R (50K)

C
P

D
at

as
et

AULA 58.1 49.5 49.5 49.3
Age 59.8 49.4 49.4 49.4
Disability 68.3 66.7 66.7 68.3
Gender 53.4 48.5 48.5 48.1
Nationality 56.6 44.0 44.0 44.7
Physical-Appearance 52.4 58.7 58.7 55.6
Race-Color 56.8 43.8 43.8 44.0
Religion 53.3 54.3 54.3 53.3
Sexual-Orientation 67.9 54.8 54.8 54.8
Socioeconomic 66.3 58.1 58.1 57.6

SS
D

at
as

et AULA 58.8 54.9 54.9 55.0
Gender 62.4 55.3 55.3 54.9
Profession 60.4 54.3 54.3 54.6
Race 57.0 56.0 56.0 56.0
Religion 54.4 46.8 46.8 46.8

Table 7: Social bias scores of VT LMs compared to their original ones on both CP and SS datasets for each bias
type.
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