
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 14815–14833
December 6-10, 2023 ©2023 Association for Computational Linguistics

Mixture of Soft Prompts for Controllable Data Generation

Derek Chen♠ Celine Lee♡ Yunan Lu♠ Domenic Rosati† Zhou Yu♠
♠ Columbia University, † Scite AI, ♡ Cornell University

{dc3761, yl4021, zy2461}@columbia.edu,

dom@scite.ai, cl923@cornell.edu

Abstract

Large language models (LLMs) effectively gen-
erate fluent text when the target output follows
natural language patterns. However, structured
prediction tasks confine the output format to a
limited ontology, causing even very large mod-
els to struggle since they were never trained
with such restrictions in mind. The difficulty
of using LLMs for direct prediction is exac-
erbated in few-shot learning scenarios, which
commonly arise due to domain shift and re-
source limitations. We flip the problem on
its head by leveraging the LLM as a tool for
data augmentation rather than a model for di-
rect prediction. Our proposed Mixture of Soft
Prompts (MSP) serves as a parameter-efficient
procedure for generating multi-attribute data in
a controlled manner. Denoising mechanisms
are further applied to improve the quality of
synthesized data. Automatic metrics show our
method is capable of producing diverse and
natural text, while preserving label semantics.
Moreover, MSP achieves state-of-the-art results
on three benchmarks when compared against
strong baselines. Our method offers an alter-
nate data-centric approach for applying LLMs
to complex prediction tasks.

1 Introduction

Complex natural language understanding (NLU)
systems, such as semantic parsers, typically be-
come useful only after training on copious amounts
of labeled data (Chen et al., 2020). Due to the high
cost of annotation, obtaining a sufficient supply
of data quickly becomes infeasible. Low resource
settings are particularly common when expanding
a system into a new domain or service (Wang et al.,
2015). This task of learning a target domain from
limited data is referred to as domain-adaptive few-
shot learning (Zhao et al., 2020).

Modern large language models (LLMs) have
emerged as effective classifiers in low resource
settings (Sanh et al., 2022; Chung et al., 2022), and
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Figure 1: Standard in-context learning (top) directly
prompts a frozen LLM with a query and exemplars.
Prompt tuning (middle) trains a prompt that is then
used to query the LLM. MSP (bottom) learns a set of
soft prompts, mixes them together to generate attribute-
preserving examples, then merges the augmented and
original data to train a smaller, downstream model.

can even take advantage of few-shot examples with-
out the need for gradient updates through in-context
learning (ICL) (Brown et al., 2020; Xie et al., 2022).
However, off-the-shelf LLMs have shown evidence
of struggling with direct prediction in more compli-
cated NLU tasks, such as those involving hierarchy
or compositionality (Furrer et al., 2020; Qiu et al.,
2022; Dziri et al., 2023). LLMs with ICL also ex-
hibit problems when the target output requires a
specific structure not represented in the training
data (Reynolds and McDonell, 2021; Min et al.,
2022). Intuitively, few-shot exemplars fail to pro-
vide enough signal to learn custom outputs since
those formats were designed for specialized tasks,
and thus are unlikely to have appeared in open web
corpora typically used to train LLMs.

Alternatively, limited data issues can also be
tackled through data augmentation techniques, in-
cluding altering tokens at the surface level (Wei
and Zou, 2019) or mapping seed data into a latent
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state before generating new examples (Sennrich
et al., 2016). What these methods lack though is
control over the generation process. Specifically,
two aspects of control are critical when synthesiz-
ing data: label preservation and diversity. Label
preservation ensures the generated utterances re-
main faithful to the original attributes in the seed
data. Diversity ensures the generated utterances
provide better coverage of the target distribution to
guide the model toward better generalization.

To avoid the pitfalls of naive data augmentation,
we take advantage of the LLM’s ability to generate
fluent text by leveraging it as a tool for controlled
data generation. Concretely, we start by tuning a
set of parameter-efficient soft prompts for each of
the attributes present in the seed data. We then in-
troduce a novel method for combining the Mixture
of Soft Prompts (MSP) to generate diverse, class-
conditioned training data in a carefully controlled
manner. The synthetic data is finally used to train
a smaller, downstream model on the task at hand
(Figure 1). Using LLMs as data generators rather
than black-box predictors provides interpretability
and flexibility benefits since the synthesized data
can be directly inspected for quality.

We apply MSP to three diverse NLU tasks to test
its generalizability. Compared to directly prompt-
tuning an LLM with few-shot data, using the LLM
to augment the data instead is capable of outper-
forming a model of the same size by up to 27%
(see Table 9). We additionally compare to a wide
variety of competitive data augmentation and con-
trolled text generation baselines where our method
leads to superior downstream performance across
all three benchmarks. Qualitative analysis and hu-
man evaluation further verify that the data gener-
ated by MSP ranks higher on measures of quality,
specificity and correctness (see Table 2). Over-
all, our proposed method represents a novel, data-
centric approach for using prompt-tuned LLMs to
tackle domain-adaptive few-shot learning.

2 Task Formulation

Few-shot natural language understanding (NLU)
can take many forms such as semantic parsing or
named entity recognition. In such tasks, a model
aims to understand a natural language input, but
only has a limited number of training examples
xi to do so. Formally, we are given a dataset
Ds = ({xi, yi}n)s with n training examples that
all belong to some group of s source domains. The

goal is to expand into a target domain t, given
only m examples in domain t: Dt = ({xj , yj}m),
where m << n. Real life applications of NLU are
further complicated by the multi-aspect nature of
the target, where a single label yi may be composed
of multiple unique attributes {attra}.

2.1 Few-shot Direct Prediction

One straightforward way to approach this problem
is to pre-train a large neural network that is capa-
ble of handling low-resource scenarios. Recently,
LLMs have exhibited competitive performance in
multiple few-shot tasks by using the limited data
as exemplars for in-context learning (Sanh et al.,
2022). However, direct prediction in this manner
contains many drawbacks, such as lack of control
over the prediction process. This motivates us to
consider an alternative framework.

2.2 Data-Centered Alternative

Another way to deal with limited data is to perform
data augmentation where the few-shot seed data
is used to produce additional training examples
Dsyn = ({xk, yk}p). Afterwards, all the original
seed data is combined with the synthesized data
Ds ∪ Dt ∪ Dsyn to train a downstream model. To
the extent the downstream model is significantly
smaller than the original (~15x smaller in our case),
this process can be viewed as knowledge distilla-
tion through data transfer.

Using LLMs as a data augmentation tool rather
than a direct predictor confers multiple benefits: (a)
Generated data can be inspected, which improves
interpretability and explainability. (b) Supplemen-
tary modifications, such as data denoising or filter-
ing, can be stacked on top of the generated data,
which allows for more flexibility in improving per-
formance. (c) Data can be used to train smaller,
more computation-efficient models for faster infer-
ence. (d) Data is model agnostic, leading to trans-
ferability across model types (See Section 5.3). We
take advantage of all these points in our method.

3 Mixture of Soft Prompts

3.1 Overview

Our method follows a three-step process of soft-
prompt tuning, data generation, and downstream
model training (see Fig 2). The full prompt fed into
the LLM can be broken down into four components:
instruction prefix, attribute soft prompts, domain
meta-data and retrieved exemplars.
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Figure 2: The instruction prefix (green) and attribute soft prompts (yellow, orange, red) are initialized (top left)
then tuned (top right) using few-shot data from the target domain, while keeping the LLM unchanged. Attribute
soft prompts are mixed before being fed into the LLM, with training signal expressed along dotted lines. During
inference (bottom), the prompt-tuned attributes are used to generate novel examples in a controlled manner.

3.2 Prompt Construction

Soft prompt tuning has emerged as a parameter-
efficient method for leveraging the power of LLMs
without the onerous computation requirements of
training from scratch (Lester et al., 2021). The
core of our approach relies on soft prompts, but
rather than tuning the prompts to make a direct
prediction, we instead instruct the LLM to generate
high quality training examples.

The full input contains four parts. (1) The first
is an instruction prefix initialized with the phrase
“Show me three distinct utterances that all express
the X” which is shared across all training examples.
(2) The soft prompts are initialized with the name
and description of attribute, e.g. “song is a musical
song or melody”, and are often domain-specific.
(3) The third part includes meta-data relevant to the
task such as slot-values or domain name. (4) Fi-
nally, a handful of exemplars are appended to guide
the model towards better data augmentation, se-
lected based on attribute overlap. (See Appendix B
for details.) The seed example itself is used as the
target utterance for training. (Top half of Fig 2)

3.3 Attribute Mixing

To control the characteristics of the synthesized
text, we condition the model on the desired at-
tributes during generation. However, prior works
on controlled text generation mainly focus on a
single attribute constraint, such as sentiment (Qian
et al., 2022a). In contrast, individual examples in
our tasks all contain multiple attributes. For exam-
ple, one task is multi-aspect intent detection, where
a single dialogue utterance may contain three intent

attributes (Figure 2, Box 1a). How should these
attribute embeddings be combined?

We experiment with five different methods of
composing attributes for data generation. For all
methods, we initialize a set of soft prompts SP for
each attribute attr in the ontology of the dataset.
Given a training example utterance xi and its set
of attributes yi, we compose a mixed prompt Pi

that combines all relevant attributes. To do so, we
draw the attribute embeddings {attr_emb} ⊆ SP
such that ∀attra ∈ yi, attr_emba is the attribute
prompt embedding corresponding to attra. Prompt
composition is then performed through one of the
five following attribute mixing methods.

Suppose a seed example consists of n attributes,
indexed by a. The Concat method simply concate-
nates all attribute embeddings together and places
the result in between the instruction prefix and the
remaining input text.

Pi = [attr_emb1; attr_emba; attr_embn] (1)

A key drawback of Concat is that a variable num-
ber of attribute embeddings produces a variable-
length input. To circumvent this inconvenience, we
also test a Pooling method which combines each at-
tribute embedding by taking the mean value across
the embedding dimensions. In doing so, the fixed
output dimensions allow for easy batch processing.

Pi =
1

N

N∑

a=1

attr_emba (2)

The limitation with simply averaging the embed-
dings is that it treats all embedding values equally.
To see how we can combine information in a more
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meaningful manner, we explore additional methods
that learn to weight the attribute embeddings.

The Attention mechanism method begins by av-
eraging input embeddings along the embedding
dimension, passing them to a feed-forward linear
layer, and going through a SiLU activation func-
tion (Elfwing et al., 2018). Layer norm followed
by a temperature modulated softmax then produces
an attention score αi. The attention score calcu-
lates a weighted sum of the attribute soft prompts,
resulting in a final mixed prompt.

q̄ = meanpool(attr_emba)

p = SiLU(Wq · q̄T )
αattn = softmax(LN(p))

Pi = αattn · q̄

(3)

Inspired by Asai et al. (2022), who use soft
prompts for knowledge sharing, we also test a mod-
ification to the Attention method that introduces
a Bottleneck layer into the process. More specif-
ically, the averaged input embeddings are down-
projected into a smaller dimension, and followed
by a non-linearity before being projected back up
to the original input embedding shape. This is
followed by layer norm and softmax as before to
calculate the attention score.

Hdown = WT
down(q̄)

Hup = WT
up(SiLU(Hdown))

α̂attn = softmax(LN(Hup))

Pi = α̂attn · q̄

(4)

Lastly, the CNN mixture method combines mul-
tiple soft prompts via a convolutional neural net-
work. We start by padding the attribute to a fixed
length. Then we pass the embedding through two
layers of convolutions, where a ReLU activation
function is used between each layer.

qcnn = pad(attr_emba)

qcnn = conv1(qcnn)

Pi = conv2(ReLU(qcnn))

(5)

3.4 Data Denoising
As the final step in the MSP pipeline, we take ad-
vantage of the fact that augmented data can be eas-
ily manipulated to further improve the data quality.
Specifically, we over-generate 20% more data and
then apply filtering to denoise the samples, bringing
the number of examples back in line with the origi-
nal amount. Filtering is accomplished by looping

Dataset Domain Train Dev Test

NLU++

Hotels generic 644 66 66
Hotels specific 300 34 34
Banking generic 1594 172 172
Banking specific 238 32 32

CrossNER

Politics 200 541 651
Science 200 450 543
Music 100 380 456
Literature 100 400 416
AI 100 350 431
General 15k 3.5k 3.7k

TOPv2
Weather 176 147 5682
Reminder 493 337 5767
Others 84k 12k 22k

Table 1: Number of examples included per domain in
the three NLU datasets we study, divided across splits.

through the synthesized examples and dynamically
choosing which ones to keep based on two factors.

The first factor is motivated by the observation
that certain attribute classes are over-represented
in the seed data. Thus, we sample examples at a
rate which is inversely proportional to how often an
attribute occurs. In effect, this re-balances the data
so all attributes have an equal chance of appearing.

The second factor aims to improve label preser-
vation by lowering diversity. During inspection
of preliminary results, we found that most errors
came as a result of low correctness because the gen-
erated data deviated too far away from the target
label. Thus, we counteract this by keeping synthe-
sized examples that are more similar to the origi-
nal seed data. Similarity between synthesized and
original data is measured using cosine similarity of
their SentenceTransformer (Reimers and Gurevych,
2019) embeddings. We found this method of keep-
ing similar synthesized examples to work better
than using a lower temperature during generation.

4 Experimental Setup

4.1 Datasets and Tasks

We test on three diverse, multi-attribute natural
language understanding datasets. These datasets
offer pre-determined few-shot splits and natural
division of source and target domains for testing.

NLU++ Our first task is multi-aspect intent de-
tection (Casanueva et al., 2022), where a model
should predict all intents present in the given dia-
logue turn. Since it is possible to predict too many
or too few intents, success is measured by F1 score.
Two topics, hotels and banking, are in the dataset,
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with both containing generic and specific versions.
This effectively yields four blocks of examples.
The cross-domain setting in the paper evaluates on
the generic version of each topic, so we set three
blocks as the source domains (ie. hotel generic, ho-
tel specific, banking specific) and leave the fourth
block as the target domain (ie. banking generic).
The target output is in the form of a list of intents.

CrossNER Our second task is cross-domain
named entity recognition, where the main chal-
lenge is transferring from the general news domain
to one of five specialized domains with custom
entity types (Liu et al., 2021b). For example, Poli-
tics contains unique politician and election entities
not found in other domains. The target output is a
series of (entity category, entity value) pairs.

TOPv2 The third task we examine is composi-
tional, task-oriented semantic parsing (Chen et al.,
2020). The generic source data consists of six indi-
vidual domains: Alarm, Event, Messaging, Navi-
gation, Music, and Timer. The two target domains
are Reminder and Weather, whose training datasets
allow only 25 SPIS (samples per intent and slot).
Following the setup of the original paper, we also
perform preprocessing steps to build the canonical
form for prediction. The final format consists of
multi-intent labels followed by slot-value pairs.

4.2 Baseline Methods

Direct Prediction We use FLAN-T5 XXL
(Chung et al., 2022) as our base model for gen-
erating data. GODEL (Peng et al., 2022) serves as
our smaller downstream LLM, which starts with a
T5 backbone (Raffel et al., 2020) and is fine-tuned
on dialogue related data. At just 770M parameters,
the student model contains roughly 15 times fewer
parameters than the teacher. For a fair comparison,
we use the exact same model again to make direct
predictions with a prompt-tuning-only setup.

We also compare against billion-parameter mod-
els optimized through in-context learning and
chain-of-thought prompting (Wei et al., 2022),
namely GPT-3.5-turbo and GPT-4 1. The in-context
learning prompt consists of four components: an
instruction prefix; a comprehensive list of domain-
specific attributes; relevant meta-data; and five
question-answer exemplars. The exemplars are
selected based on the frequency of their attributes

1Due to the high cost of using GPT-4, we run experiments
for just one domain per dataset.

across the dataset, with the top-ranked candidates
chosen as representative examples. The instruction
prefix was manually prompt engineering across
dozens of attempts to ensure fairness. We perform
chain-of-thought prompting by breaking apart the
task into 3 steps. First, we ask the model to pre-
dict the domain of the sentence. Next, we have the
model think about what attribute types are present
in the utterance. Finally, we have the LLM directly
predict the attribute values of the given input.

Data Augmentation To improve upon the vanilla
student model, we augment the few-shot data with
various techniques. We first try the very simple
Easy Data Augmentation (EDA) (Wei and Zou,
2019) which randomly drops and swaps tokens.
We also consider masked in-filling (Kobayashi,
2018) that masks out certain portions of text and
uses a BERT model to fill them back in. We also
look into BART-large model (Lewis et al., 2020)
trained on paraphrase corpora (Dolan and Brockett,
2005; Zhang et al., 2019). Finally, we also com-
pare against round-trip translation (RTT) across
five pivot languages (Sennrich et al., 2016). These
techniques all generate diverse data, but may not be
accurate since they have no mechanism to enforce
attribute labels to appear in the synthesized data.

Controlled Text Generation We also test meth-
ods that condition on the attributes during genera-
tion to encourage label preservation. We consider
a Conditional LM (CLM), which fine-tunes GPT2
to produce an example utterance when given a seri-
alized representation of the attribute label (Anaby-
Tavor et al., 2020). Another direction performs
weighted decoding of the logits during inference,
where we use DExperts for constrained text gen-
eration (Liu et al., 2021a). We also consider a
conditional variational auto-encoder (CVAE) (Hu
et al., 2017; Xia et al., 2020) that learns to generate
attribute constrained outputs by sampling from the
latent space between the encoder and decoder. We
additionally examine a lexically-motivated base-
line, Keyword2Text (K2T) where the probability
distribution is shifted toward target keywords dur-
ing decoding time (Pascual et al., 2021). Lastly,
we experiment with a prompt-tuning baseline (PT)
that uses GPT-4 to generate synthetic examples.
This includes an option that applies our denoising
technique (PT + Denoising) before training on the
downstream task. All rhese techniques exhibit a
stricter adherence to labels, but may lack diversity.
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4.3 Automatic Evaluation
Beyond downstream accuracy, we also evaluate the
synthesized data quantitatively with three metrics.
Distinct@K measures the diversity of text based
on unique n-grams, where we set k=1,2,3 follow-
ing common practice (Li et al., 2016). Perplexity
represents text fluency, which we measure through
GPT2-large (Radford et al., 2019). Third, we use
Correctness to check how well the synthetic data
preserves the proper attribute labels. To do so, we
train an oracle with all available data (ie. no longer
few-shot) to classify the primary attributes within
an utterance. (More details in Appendix A)

4.4 Implementation Details
The instruction prefix is set to a length of 100 to-
kens, while the attribute token length is set to 20
tokens. After hyper-param tuning, we settle on
3e-2 as the learning rate for the teacher model and
3e-5 for the student 2 (See Appendix B). Augmen-
tation methods are standardized to generate four
new datapoints per seed example.

5 Results and Analysis

5.1 Main Results
As seen in Table 3, MSP w/ Bottleneck achieves
state-of-the-art results across all three datasets,
with an average 20.3% improvement over the origi-
nal baselines. MSP reaches the highest end-to-end
scores on 8 out of 9 possible domains, while also
demonstrating competitive performance on the one
remaining domain (ie. TOPv2 Reminder). Notably,
the one area where MSP does not achieve the high-
est rank, it is actually surpassed by a meta-learning
technique. However, meta-learning and data aug-
mentation are orthogonal methods, so in practice,
these two can and should be combined to produce
even better results than either alone.

Despite the remarkable ability of large pre-
trained LMs to generate coherent and fluent lan-
guage, their capacity to produce structured outputs
is limited. In particular, performance from direct
prediction models deteriorate when dealing with
utterances featuring more complex structures and
diverse attributes, such as TOPv2. Leveraging a
billion-parameter model brings marginal improve-
ment, but performance is still well below data syn-
thesis baselines. As seen in Table 4, even when
the LLM is scaled to the size of GPT-4 (OpenAI,

2Our code and further implementation details can be found
at https://github.com/derekchen14/mixture_soft_prompts.

Quality Specificity Accuracy

Paraphrase 3.4 3.1 4.4
CLM 3.6 3.3 4.2
MSP 4.4 4.3 4.7

Table 2: Human evaluation results comparing three
methods on a 5-point Likert scale. MSP ranks high-
est across all metrics with average Fleiss κ = 0.72.

2023), direct prediction yields worse performance
than MSP. On the other hand, by leveraging LLMs
for data augmentation, our method successfully
leans into the innate strengths of language models
as text generators rather than forcing them to learn
specialized target output sequences.

Compared to the data augmentation baselines,
MSP consistently leads to better results across all
three datasets. Qualitatively, we observe that all
four naive augmentation methods produce exam-
ples which ultimately deviate away from the de-
sired semantic attributes. This causes a degrada-
tion in downstream performance compared to MSP
(See Table 11).

While the controlled text generation (CTG)
methods are able to outperform the naive GODEL
baseline, CTG underperforms the same GODEL
model by an average of 10% when augmented with
MSP synthesized data. This performance trend is
reflected even when using GPT-4 for controlled text
generation, as shown in Table 4. Qualitative anal-
ysis reveals the CTG methods are unable to pick
up the complex structure required by the multi-
attribute generation task, so this synthesized data
ends up as noise and actually hurts performance.
On the other hand, MSP is able to reliably handle
lexical, semantic and structural constraints.

5.2 Synthesized Data Quality

For human evaluation, we surveyed 30 fluent En-
glish speakers who reviewed the generated utter-
ances according to given metrics: (1) Quality - the
text is grammatically correct, coherent and fluent.
(2) Specificity - the text is specific to the target
topic, rather than generically applicable. (3) Accu-
racy - the text correctly reflects the desired semantic
attributes. The results can be seen in Table 2. Test-
ing against the top DA method (Paraphrase) and
the top CTG method (CLM), our method (MSP)
ranks highest across all metrics, with particularly
large improvements in Specificity.

Beyond downstream accuracy, we also use auto-
matic evaluation to judge the quality of the synthe-
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Method Hotels Banking Politics Science Music Literature AI Reminder Weather

Original
Baselines

LSTM-based † 67.3 49.2 61.5 52.1 51.7 48.4 45.2 45.8 65.1
(Ro)BERTa-based † 79.3 74.2 68.7 69.4 68.3 63.6 58.9 63.7 76.0
Transformer-based † 75.4 65.2 70.4 66.8 72.1 67.1 60.3 70.5* 77.7*

Direct
Prediction

Few-Shot (GODEL) 74.5 64.2 76.7 72.0 75.8 69.2 64.7 60.5 77.1
ICL (GPT-3.5-turbo) 52.4 52.1 54.4 57.2 67.2 52.9 48.4 39.0 69.6
ICL (FLAN-T5) 59.0 60.5 27.6 26.8 13.8 34.7 56.9 55.1 63.2
Prompt-tune (GPT-J-6B) 68.2 59.5 63.9 52.4 62.9 62.9 52.3 49.5 69.7
Prompt-tune (FLAN-T5) 81.2 69.2 71.6 68.0 69.3 58.3 57.1 50.6 72.9

Data
Augmentation

Easy Data Augmentation 81.8 68.0 77.3 72.1 76.3 71.0 65.4 62.5 80.6
Round Trip Translation 77.3 71.2 75.3 71.0 74.1 66.3 63.0 54.8 77.6
Paraphrasing (BART) 76.6 64.9 79.9 72.6 75.8 71.0 65.7 61.0 81.7
Masked In-Fill 78.2 69.6 79.7 74.2 76.8 70.3 65.3 63.8 78.5

Controlled
Text Generation

Conditional LM 76.8 71.5 75.7 73.9 76.2 69.8 63.9 67.8 80.2
DExperts 83.1 71.8 78.2 71.4 72.6 66.3 63.6 50.9 69.7
Conditional VAE 77.0 70.4 74.0 69.6 72.9 67.9 64.3 46.0 69.1
Keyword2Text 74.8 67.8 74.8 72.4 75.3 68.2 62.3 64.0 81.0

Our Method

MSP w/ Concat 83.5 84.2 77.3 72.8 71.2 66.3 62.7 62.2 82.9
MSP w/ Pooling 83.8 82.9 80.6 73.0 79.0 71.9 66.7 62.8 83.9
MSP w/ Attention 86.5 84.1 78.2 73.9 77.1 72.1 65.7 64.5 83.3
MSP w/ Bottleneck 89.7 84.6 79.5 74.8 80.0 69.6 65.9 65.1 84.6
MSP w/ Convolution 85.0 80.3 80.5 73.6 78.7 67.8 65.0 61.0 83.2

Table 3: End-to-end F1-scores for NLU++, CrossNER, and TOPv2. †Original baseline scores are aggregated from
previous works (See Section 4.1). *BART Copy-Ptr with meta-learning. For exact model types, please refer to the
appendix. Different MSP mixtures achieve state-of-the-art in all domains except one.

Hotels Music Weather

Direct
Prediction

ICL 67.7 68.4 72.1
CoT 75.4 66.5 67.9

Controlled
Text Gen

PT only 76.9 72.3 75.8
PT + denoise 77.1 70.3 78.6

Table 4: GPT-4 underperforms MSP for NLU++ Hotels,
CrossNER Music, and TOPv2 Weather domains. The
first two rows show direct prediction using in-context
learning and prompt-tuning on GPT-4. The latter two
rows show end-to-end scores using GPT-4 to generate
additional training data. PT is short for Prompt-tuning.

sized data. DA methods have lower linguistic qual-
ity, but achieve higher attribute conservation since
changing a few tokens can easily harm readability,
but usually do not change the overall meaning. In
contrast, CTG methods generally exhibit high flu-
ency, but their low correctness scores also reveal
a difficulty in capturing all the desired semantic
attributes. Table 6 shows that MSP generated data
strikes a balance between diversity and correctness,
without the need for any manual tuning.

5.3 Ablations

In order to understand the impact of each part in the
MSP pipeline, we run ablations along one domain
from each dataset. Results in Table 7 show that all
parts of our technique provide meaningful gains.
In particular, the instruction prefix tells the model
to generate similar examples, and removing this

prompt consistently leads to the lowest scores. As
expected, removing any part of the trainable soft
prompts leads to substantial degradation.

The last row in Table 7 includes one final tweak
to the method which swaps out the Flan-T5 back-
bone for GPT-J-6B (Wang and Komatsuzaki, 2021).
This change from a sequence-to-sequence model
to a causal language model highlights the flexi-
bility of our approach since the transferrability of
data is agnostic to its provenance. Although the
downstream model trained with GPT-augmented
data is not as strong as the model trained with
T5-augmented data, it does clearly outperform the
GPT-J-6B model performing direct prediction.

6 Related Work

Our paper tackles multi-aspect few-shot learning
where the target is a structured output contain-
ing multiple attributes, and the model only has a
few examples from which to learn such a pattern.
Given the complexity of the task, previous research
trained custom models for each dataset (Zheng
et al., 2022; Schucher et al., 2022). Instead, we
leverage the power of LLMs (Brown et al., 2020;
Chung et al., 2022) to design a more general solu-
tion through controlled data synthesis.

In particular, we compose multiple Soft Prompts
to generate the desired training data for the down-
stream task. Consequently, we build upon foun-
dational work studying soft prompt tuning (Lester
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Dataset Attributes and Meta-data Generated Text

NLU++ Intents: ‘change’, ‘booking’
Domain: Hotels

Original: change booking
Generated: I have a reservation that I need to modify

CrossNER Entity categories: ‘artist’;
Entities: ‘John O ’Reilly’,

‘Bobby Rondinelli’, ‘John
Miceli’, ‘Chuck Burgi’
Domain: Music

Original: Chuck Burgi ( 1991-1992 , 1992-1995 , 1996-1997 ) , John Miceli
( 1992 , 1995 ) , John O ’Reilly ( 1995-1996 ) and Bobby Rondinelli ( 1997-
2004 ) .
Generated: He was followed as musical artist by Chuck Burgi (1992-1995,
1996-1997 ), John Miceli ( 1992, 1995 ), John O ’Reilly ( 1995-1996 ) and
Bobby Rondinelli ( 1997-2004 ).

TOPv2 Intents: ‘help_reminder’
Domain: Reminder

Original: How does the reminder notification sound when it plays out loud?
Generated: Set a reminder for my dentist appt

Table 5: Qualitative examples of synthesized data applying our method (MSP) on different datasets. The generated
utterances typically demonstrate the preservation of the desired semantic attributes and lexical entities of the target
domain, as seen in NLU++ and CrossNER. We select an example from TOPv2 to highlight where MSP struggles.

NLU++ CrossNER TOPv2
Distinct@1/2/3 Correct. Perpl. Distinct@1/2/3 Correct. Perpl. Distinct@1/2/3 Correct. Perpl.

EDA 8.80 / 45.1 / 69.7 94.8 1.33 19.8 / 53.6 / 68.9 81.3 1.07 12.3 / 47.7 / 70.7 73.0 1.45
RTT 7.90 / 29.4 / 48.9 94.7 1.24 15.3 / 33.5 / 42.6 81.2 1.05 11.4 / 33.8 / 53.3 75.5 1.34
Paraphrase 6.40 / 22.4 / 36.8 92.2 1.23 12.8 / 26.1 / 31.4 89.9 1.06 9.55 / 26.1 / 40.6 76.0 1.31
In-Fill 5.45 / 23.5 / 38.8 93.8 1.36 10.2 / 23.6 / 29.1 91.9 1.06 9.15 / 27.1 / 41.1 69.8 1.54

CLM 2.00 / 5.90 / 10.5 76.8 1.27 11.9 / 23.7 / 29.7 86.4 1.07 7.05 / 18.9 / 29.7 79.4 1.43
DExperts 4.60 / 13.1 / 21.9 53.4 1.15 7.74 / 21.6 / 30.1 22.9 1.03 2.35 / 4.85 / 7.10 62.3 1.27
CVAE 0.25 / 0.80 / 2.20 19.2 2.00 53.9 / 73.0 / 81.6 68.2 1.09 5.10 / 16.2 / 28.1 71.5 1.45

MSP 3.90 / 13.95 / 23.4 98.0 1.27 14.5 / 32.7 / 40.7 93.6 1.06 7.10 / 20.9 / 33.9 74.8 1.43

Table 6: Automatic evaluation results with Distinct@K measuring diversity, Correctness measuring label preserva-
tion and Perplexity representing text fluency. Correct and Perpl are short for correctness and perplexity, respectively.

Hotels Literature Reminder

MSP w/ Bottleneck 89.7 68.0 65.1
- data denoising 88.5 67.1 64.9
- instruction 82.2 63.4 62.4
- meta-data 89.4 67.3 64.2
- attribute prompt 87.6 64.1 63.8
- exemplars 88.8 65.5 62.2
+ GPT-J-6B 84.5 63.9 63.7

Table 7: Ablation studies about the impact of individual
components in the pipeline of MSP on the downstream
task performance. The first row is the baseline with all
components under bottleneck mixing method. The (-)
sign indicates the absence of a specific step.

et al., 2021; Vu et al., 2022), as well as other param-
eter efficient fine-tuning methods (Houlsby et al.,
2019; Li and Liang, 2021). Alternatively, Wang
et al. (2022) and Chen et al. (2022) perform data
augmentation with prompting, but their prompts
are not compositional since their task setups are
focused on single-aspect class prediction.

Data Augmentation is a common technique in
NLP for counteracting the limited data available
with few-shot learning (Feng et al., 2021; Chen
and Yin, 2022). Flavors of data augmentation in-
clude surface form alteration (Wei and Zou, 2019),

latent perturbation (Sennrich et al., 2016; Fabius
et al., 2015) or auxiliary supervision (Chen and Yu,
2021). Our method can be considered a form of text
generation with transformers (Kumar et al., 2020;
Ng et al., 2020), which lately rely on increasingly
larger language models (Yoo et al., 2021; Wang
et al., 2021a,b). Whereas these methods paraphrase
or pseudo-label a seed utterance, MSP instead con-
ditions on a label to control the generation of text.

As a result, our method is also related to Con-
trolled Text Generation techniques. Unlike con-
strained lexical decoding (Pascual et al., 2021),
which aims to produce text that contains a pre-
specified set of keywords, our work is focused on
controlling the semantics of the output, such as a
topic or user intent (Mou et al., 2016; Hokamp
and Liu, 2017; Post and Vilar, 2018; Yao et al.,
2019). For semantic control, a wide range of op-
tions exist for guiding generation towards a single
attribute, including those that train a model from
scratch (Keskar et al., 2019; Wang et al., 2019) or
those which only tune a few parameters (Ribeiro
et al., 2021; Lin et al., 2021; Yu et al., 2021; Liu
et al., 2023). There are even methods that keep
the base model frozen and instead manipulate the
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logits with weighted decoding to control the out-
put (Dathathri et al., 2020; Krause et al., 2021;
Yang and Klein, 2021; Zhang and Song, 2022).
These methods can stay on topic, but often sacri-
fice the ability to generate specific tokens, while
MSP is able to maintain both semantic and lexical
control, yielding superior results.

Lastly, MSP is related to techniques that com-
bine multiple prompts together. Nayak et al. (2022)
propose combining soft prompts through concate-
nation, but their aim is to improve direct prediction
in a vision-based task, as opposed to data gener-
ation for NLU tasks. Qin and Eisner (2021) tar-
get classification tasks using pre-trained LMs, but
their mixture-of-experts technique selects individ-
ual prompts from multiple candidates to satisfy
a single constraint, rather than mixing multiple
prompts to meet multiple constraints. Our work
is most similar to those that perform multi-aspect
text generation (Yang et al., 2022; Gu et al., 2022;
Qian et al., 2022b). However, the primary aim of
improving text quality aligns with our secondary
aim (Subsection 5.2). Whereas these prior efforts
focus exclusively on text generation, our method
controls generation as a means to an end.

7 Conclusion

Our paper presents an alternative method for few-
shot learning using LLMs as an intermediate data
augmentation tool rather than for direct prediction.
By performing data generation as an intermediate
step for improved end-to-end task performance,
our method yields such benefits as interpretability,
flexibility and modularity. Compared against other
strong data augmentation methods, we show that
MSP yields higher quality data that can be effec-
tively used to improve performance in downstream
tasks. This parameter-efficient method to perform
controlled data generation is a powerful paradigm
for using LLMs in low-resource scenarios; the posi-
tive results from the methods proposed in this work
suggest promising future work in exploring tighter
controls and smarter filtering mechanisms for data
augmentation. Ultimately, we encourage others to
consider use LLMs as a tools for generating data,
rather than only for generating direct predictions.

14823



8 Limitations

The largest model we could feasibly access is a T5-
XXL which contains 11 billion parameters. While
we did test against GPT-3.5 and GPT-4, it is en-
tirely feasible that a GPT5 (unknown size) or OPT3
(175 billion), or PALM model (540 billion) may
outperform our results in these few-shot settings
using prompt-tuning with exemplars. However,
we would posit that as the ability of these truly
gigantic models improve, their ability to generate
superior training data would also improve in con-
cert, so our method would still be worthwhile. Evi-
dence for this hypothesis is seen from the transition
from GPT-J-6B to T5-XXL, which leads to bet-
ter prompt-tuning results along with better MSP
results. However, we cannot know for sure at the
moment without access to more compute resources.

The other major limitation of our work is the
lack of a clear optimization target during data gen-
eration. We used BLEU score of the synthesized
example compared to the original seed example as
a proxy for measuring model convergence. How-
ever, it turns out that achieving a higher BLEU
score during MSP training does not always trans-
late to superior downstream results. Ideally, we
would be able to directly leverage the downstream
accuracy as a training signal back to optimizing the
MSP model, which we leave to as future work.
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A Oracle Correctness Classifier

In order to perform automatic evaluation on correct-
ness, we train an oracle attribute classifier based
on DeBERTa-XLarge (He et al., 2021). However,
there is a chicken-and-egg problem since the goal
of the downstream task is also to predict attributes.
To get around this issue, we make three key simpli-
fying assumptions. To begin, we use all available
data for training, rather than limiting to the few-
shot setting. For example, we go from 25 SPIs to
over 1000 SPIs on the TOPv2 dataset. Since this
classifier is meant to operate an an oracle rather
than a display of model capability, we even include
examples from the development set for training.
Secondly, we only focus on the main attribute (in-
tent) rather than second-order details (slots). Fi-
nally, we simplify the attribute prediction task by
classifying each attribute individually, rather than
in a compositional manner. Whereas our final
model must perform the task by sequentially gener-
ating the label, we take advantage of the ontology
to turn this into a classification task over a finite
number of labels. In doing so, we obtain a cor-
rectness classifier that is able to reach over 90%
accuracy across all target domains (See Table 13).

B Training Setup Details

To select the exemplars, we first represent each
example in the seed data by its attributes. Then,
for each of those examples, we sort the available
training data by amount of overlap with the rep-
resentation to find the top 10 closest in attribute
alignment. From those top-ranked candidates, we
randomly sample two examples to serve as exem-
plars during data generation. We tested with 1, 2,
or 3 exemplars and found that k=2 typically worked
best, although 1 exemplar was not far behind.

We use a parameter of 4, for the num generations.
When training the MSP model, we tested the learn-
ing rates from [1.0, 0.3, 0.1, 0.03]. We found that
the range of rates were much higher than expected.
For final tests, we used lr=0.3. We train with an
effective batch size of 24, for example with batch-
size flag set to 8 and gradient accumulation set to
3 steps. However, if the GPU runs out of memory,
we might lower this to 6 and 4, respectively. For
fine-tuning the downstream task on GODEL large
model, we test the learning rate across [1e-4, 3e-5,
1e-5, 3e-6] for up to 14 epochs with early stopping,
and found 3e-5 worked best.

C Generalization to Out-of-Domain

The motivation behind this work is to leverage con-
trollable data synthesis as a means of expanding
products and services into target domains where la-
beled data is scarce. By definition, these new areas
are out-of-domain (OOD) for a model trained only
on source domains. Our strategy for generalizing
to OOD spaces is to perform data augmentation.

Successful data augmentation ideally helps a
model generalize on a test set given a limited train-
ing set by expanding the seed data to cover the en-
tire solution space. As a result, reliably controlling
this process is akin to automating data collection.
Following the principles of active learning, ideal
data collection involves selecting examples to label
that provide high coverage and high impact (Set-
tles, 2009). Turning back to data augmentation,
these goals translate to promoting diversity and
label preservation, as mentioned in Section 1.

Our method (MSP) has a number of levers to pull
in order to increase diversity. One idea is to sim-
ply increase the temperature parameter of the LLM
during text generation. Another path is to shuffle
the exemplars used for guidance or change the way
the exemplars are retrieved. Building upon this,
one could even exclude the seed example from the
exemplars to minimize the copying behavior com-
mon to LLMs. A particularly exciting direction to
pursue is composing novel attribute combinations
not seen in the seed set. For example, one utter-
ance might have ‘greet’ and ‘change’ intents in an
airline domain (e.g. Hello, I would like to change
my flight), while a second utterance contains ‘re-
quest_info’ and ‘when’ intents for e-commerce (e.g.
Can you tell me when the store opens?). These
could be remixed to generate a wholly new utter-
ance with ‘request_info’ and ‘change’ intents in
the restaurant domain (e.g. I’d like to know how
I can change my reservation). We actually tested
all these ideas during preliminary experimentation.
As it turns out, they don’t help.

In fact, we found that label preservation quickly
overtook diversity in terms of being the most im-
portant factor for influencing downstream impact.
Consequently, we actually had to take painstak-
ing efforts to dial down the diversity. We lowered
temperature parameters. We selected very simi-
lar exemplars for guidance. We only used attribute
combinations that were found in the seed data. And
we even added a denoising step to minimize varia-
tion (Subsection 3.4). Although limiting diversity
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worked in our case, we believe this is largely due
to the static nature of our test sets, while the dis-
tribution of real life test environments exhibit an
ever-expanding long tail. In either case, the flex-
ibility of MSP allows the practitioner to choose
what they want, whether that’s precision within a
specific area or robustness to cover OOD.

D Mixing Other Parameter-Efficient
Tuning Methods

Our core idea for mixing adapter weights is flexible
enough to accommodate other parameter-efficient
tuning methods such as LoRA (Hu et al., 2022).
Our key contribution is that the mixing should be
learned rather than relying on prompt engineer-
ing. To this point, we ran additional experiments
on NLU++ hotel, CrossNER music and TOPv2
weather by mixing LoRA weights where each
adapter matrix represents a single attribute. Specifi-
cally, we use the bottleneck method and replace the
attention projection linear layer with a correspond-
ing LoRA linear layer. The results were 86.4, 76.7
and 80.1, respectively, which outperform other non-
mixture baselines but do underperform MSP. We
did not have much time to tune the results, but note
that this experiment shows how learning to mix
already outperforms most other baselines.
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Method Politics Science Music Literature AI

Baselines

BiLSTM-CRF 56.6 50.0 44.8 43.0 43.6
Coach LSTM 61.5 52.1 51.7 48.4 45.2
BERT-tagger 68.7 69.4 68.3 63.6 58.9
Multi-Cell-LSTM 70.6 66.4 70.5 67.0 58.3
LST-NER 70.4 66.8 72.1 67.1 60.3

Domain
Adaptive

Pre-training

Multi-Cell-LSTM + DAPT 71.5 67.7 74.2 68.6 61.6
LST-NER + DAPT 73.2 70.1 76.8 70.8 63.3
Span-Integration + DAPT 72.1 68.8 75.7 69.0 62.6

Direct
Prediction

Few-Shot (GODEL) 76.7 72.0 75.8 69.2 64.7
In-context Learn (GPT-3.5) 54.4 57.2 67.2 52.9 48.4
In-context Learn (FLAN-T5) 27.6 26.8 13.8 34.7 56.9
Prompt-tune (GPT-J-6B) 63.9 52.4 62.9 62.9 52.3
Prompt-tune (FLAN-T5) 71.6 68.0 69.3 58.3 57.1

Data
Augmentation

Easy Data Augmentation 77.3 72.1 76.3 71.0 65.4
Round Trip Translation 75.3 71.0 74.1 66.3 63.0
Paraphrasing (BART) 79.9 72.6 75.8 71.0 65.7
Masked In-Fill 79.7 74.2 76.8 70.3 65.3

Controlled
Text Generation

Conditional LM 75.7 73.9 76.2 69.8 63.9
DExperts 78.2 71.4 72.6 66.3 63.6
Conditional VAE 74.0 69.6 72.9 67.9 64.3
Keyword2Text 74.8 72.4 75.3 68.2 62.3

Our Method

MSP w/ Concat 77.3 72.8 71.2 66.3 62.7
MSP w/ Pooling 80.6 73.0 79.0 71.9 66.7
MSP w/ Attention 78.2 73.9 77.1 72.1 65.7
MSP w/ Bottleneck 79.5 74.8 80.0 69.6 65.9
MSP w/ Convolution 80.5 73.6 78.7 67.8 65.0

Table 8: End-to-end F1-scores for CrossNER. Different MSP mixtures achieve state-of-the-art in all domains.

Hotels Banking

ConveRT 75.4 65.2
LM12-1B 67.3 49.2
RoB-base-QA 79.3 74.2
AlBERT-base-QA 76.7 72.7

Few-shot (GODEL) 74.5 64.2
In-context learn (GPT-3.5) 52.4 52.1
In-context learn (FLAN-T5) 59.0 60.5
Prompt tune (GPT-J-6B) 68.2 59.5
Prompt tune (FLAN-T5) 81.2 69.2

Easy Data Augmentation 81.8 68.0
Round Trip Translation 77.3 71.2
Paraphrasing (BART) 76.6 64.9
Masked In-Fill 78.2 69.6

Conditional LM 76.8 71.5
DExperts 83.1 71.8
Conditional VAE 77.0 70.4
Keyword2Text 74.8 67.8

MSP w/ Concat 83.5 84.2
MSP w/ Pooling 83.8 82.9
MSP w/ Attention 86.5 84.1
MSP w/ Bottleneck 89.7 84.6
MSP w/ Convolution 85.0 80.3

Table 9: Full end-to-end F1-scores evaluated on generic
splits of hotel and banking domains of NLU++.

Reminder Weather

Transfer learn (LSTM) 45.8 65.1
Transfer learn (RoBERTa) 63.7 76.0
Few-shot (T5-Large) 50.2 68.2

Fine tune (BART-CopyPtr) 55.7 71.6
Joint training (BART-CopyPtr) 58.9 74.7
Transfer learn (BART-CopyPtr) 68.0 75.9
Meta-Learn (BART-CopyPtr) 70.5 77.7

Few-shot (GODEL) 60.5 77.1
In-context learn (GPT-3.5) 39.0 69.6
In-context learn (FLAN-T5) 55.1 63.2
Prompt tune (GPT-J-6B) 49.5 69.7
Prompt tune (FLAN-T5) 50.6 72.9

Easy Data Augmentation 62.5 80.6
Round Trip Translation 54.8 77.6
Paraphrasing (BART) 61.0 81.7
Masked In-Fill 63.8 78.5

Conditional LM 67.8 80.2
DExperts 50.9 69.7
Conditional VAE 46.0 69.1
Keyword2Text 64.0 81.0

MSP w/ Concat 62.2 82.9
MSP w/ Pooling 62.8 83.9
MSP w/ Attention 64.5 83.3
MSP w/ Bottleneck 65.1 84.6
MSP w/ Convolution 61.0 83.2

Table 10: Full end-to-end accuracy evaluated on re-
minder and weather target domains within TOPv2.
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Easy Data Augmentation (EDA)

NLU++ Intents: ‘restaurant’, ‘when’
Domain: Hotels

Original: when do you start serving dinner?
Generated: do when dinner start serving you?

TOPv2 Intents: ‘delete_reminder’;
Slots types:‘person_reminded’, ‘todo’
Domain: Reminder

Original: Delete my reminder to pay ATAP business
taxes.
Generated: Delete my reminder to ATAP business
taxes.

Round Trip Translation (RTT)

CrossNER Entity categories: ‘miscellaneous’, ‘algorithm’,
‘task’;
Entities: ‘PCA’, ‘non-negative matrix factorization’,

‘K-NN’, ‘Feature extraction’, ‘NMF’, ‘linear discrimi-
nant analysis’, ‘LDA’, ‘canonical correlation analy-
sis’, ‘CCA’, ‘dimension reduction’, ‘principal compo-
nent analysis’, ‘feature vectors’, ‘pre-processing step’
Domain: AI

Original: Feature extraction and dimension reduction
can be combined in one step using principal compo-
nent analysis ( PCA ) , linear discriminant analysis (
LDA ) , canonical correlation analysis ( CCA ) , or
non-negative matrix factorization ( NMF ) techniques
as a pre-processing step followed by clustering by K-
NN on feature vectors in reduced-dimension space.
Generated: As a step, extraction and size reduction
techniques can be combined using the analysis of the
main components (PCA), linear discrimination anal-
ysis (LDA), canonic correlation analysis (CAS) or
non-negative matrix factorization (NMP) as a prelim-
inary processing phase, followed by the grouping of
K-NN on vectors in a space with a reduced dispersibil-
ity factor.

TOPv2 Intents: ‘create_reminder’, ‘get_todo’,
‘get_recurring_date_time’;
Slots types:‘person_reminded’, ‘frequency’, ‘todo’,

‘recurring_date_time’, ‘date_time’
Domain: Reminder

Original: Remind me daily to buy a present for Papa
before July 28th.
Generated: Remind me to buy my father a present
every day before July 28th.

Paraphrase

CrossNER Entity categories: ‘party’, ‘organization’, ‘politician’
Entities: ‘Red-Green coalition’, ‘Bundestag’, ‘Renate
Künast’, ‘Joschka Fischer’, ‘Jürgen Trittin’, ‘SPD’
Domain: politics

Original: Despite losses for the SPD , the Red-Green
coalition government commanded a very slight major-
ity in the Bundestag and was renewed , with Joschka
Fischer as foreign minister , Renate Künast as minis-
ter for consumer protection , nutrition and agriculture
, and Jürgen Trittin as minister for the environment .
Generated: Despite losses for the SPD, the Red-
Green coalition government commanded a very slight
majority in the Bundestag and was re-elected, with
Joschka Fischer as foreign minister, Renate Künast
as minister for consumer protection, nutrition and
agriculture and Jürgen Trittin as Minister for the envi-
ronment.

TOPv2 Intents: ‘unsupported_weather’;
Slots types: ‘location’
Domain: Weather

Original: Any tornado warnings in my area?
Generated: What is the tornado warning in my area?

In-Fill

NLU++ Intents: ‘thank’, ‘cancel_close_leave_freeze’
Domain: Hotels

Original: thanks, I’ll leave the room before 7:25 a.m..
Generated: thanks, I’ll leave the office before 7:25
a.m..

CrossNER Entity categories: ‘product’;
Entities: ‘Octave’, ‘MATLAB’
Domain: AI

Original: Octave helps in solving linear and nonlin-
ear problems numerically , and for performing other
numerical experiments using a that is mostly compati-
ble with MATLAB.
Generated: Octave helps in solving linear and nonlin-
ear problems numerically , and for performing other
numerical experiments using a that is fully compatible
with MATLAB .

Table 11: The synthetic samples generated by Data Augmentation (DA) methods. The orange words highlight
wrong attributes, whereas the green words represent correctly generated attributes. Paraphrase performs well since
it is able to maintain attribute meanings. Despite the clear decrease in fluency, EDA also maintains attribute labels
and greatly assists downstream performance. RTT drops key entities in the pivot language, leading to noisy data.
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Controlled Language Model (CLM)

TOPv2 Intents: ‘update_reminder’,
‘get_recurring_date_time’
Slot types: ‘todo’, ‘recurring_date_time_new’,

‘frequency‘
Domain: Reminder

Original: Change the reminder to go the store for psa
to every Wednesday
Generated: Move the reminder to go the store for psa
to every Wednesday.

CrossNER Entity categories: ‘event’, ‘award’;
Entities: ‘Grand Prix Spécial du Jury’, ‘Palme d ’Or",

‘Cannes Film Festival’, ‘FIPRESCI prize’
Domain: Literature

Original: The film was presented at the Cannes Film
Festival , won the Grand Prix Spécial du Jury and the
FIPRESCI prize , and was nominated for the Palme d
’Or.
Generated: He won the Cannes Film Festival’s Grand
Prix Spécial du Jury and the FIPRESCI prize, as well
as the Palme d ’Or.

Decoding-Time Expert (DExperts)

NLU++ Intents: ‘cancel_close_leave_freeze’, ‘direct_debit’
Domain: banking

Original: cancel my direct debit to LA VN Kitchen
Generated: I need to cancel my booking at 10:00 a.m.
as I have a private meeting with my wife.

TOPv2 Intents: ‘get_recurring_date_time’, ‘up-
date_reminder’; Slots types: ‘todo’, ‘recur-
ring_date_time_new’, ‘frequency’
Domain: Reminder

Original: Update the reminder about medication to
once a day.
Generated: Change the reminder to pay the bill on
the 15th of every month to the 15th of every month.

Conditional Variational Auto-Encoder (CVAE)

CrossNER Entity categories: ‘book’, ‘writer’;
Entities: ‘Gulliver ’s Travels", ‘An Argument Against
Abolishing Christianity’, ‘Swift’, ‘A Modest Proposal’,
‘A Tale of a Tub’
Domain: Literature

Original: Swift is remembered for works such as
A Tale of a Tub ( 1704 ) , An Argument Against
Abolishing Christianity ( 1712 ) , Gulliver ’s Travels (
1726 ) , and A Modest Proposal ( 1729 ).
Generated: Swift is remembered for a Tubation’s
works in the 17th century, An Argument Abolberg,
Gulliver at A Modest Abishing and Robert Gposal,
music.

CrossNER Entity categories: ‘election’, ‘organization’, ‘coun-
try’, ‘miscellaneous’;
Entities: ‘Independence and Democracy’, ‘MEPs’,

‘2004 European Parliament election in Denmark’,
‘EDD’, ‘2004 European Parliament election in
Poland’, ‘UK’, ‘Sweden’, ‘2004 European Parliament
election in the United Kingdom’
Domain: Politics

Original: Following the 2004 European Parliament
election in the United Kingdom , 37 MEPs from the
UK , 2004 European Parliament election in Poland ,
2004 European Parliament election in Denmark and
Sweden founded a new European Parliamentary group
called Independence and Democracy as a direct suc-
cessor to the EDD group.
Generated: Following the 2004 European Parliament
election in the United Kingdom, 37 MEPs from Den-
mark from the UK and Sweden European Parliament
election in the United Kingdom general election in
Poland.

Table 12: Qualitative examples for Controlled Text Generation (CTG) methods. The orange words highlight wrong
attributes, whereas the green words represent correctly generated attributes. Despite largely staying on topic and
grabbing a few keywords, CVAE and DExperts tend to lose lexical control, leading to poor performance.

NLU++ CrossNER TOPv2
Hotels Banking Politics Science Music Literature AI Weather Reminder

Learning rate 1e-4 1e-4 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
Batch Size 10 10 8 10 10 10 10 8 8
Accuracy 97.0 94.5 93.0 94.8 95.5 94.1 92.4 99.3 96.5

Table 13: Results from training the correctness classifier
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