
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 14887–14909
December 6-10, 2023 ©2023 Association for Computational Linguistics

Qualitative Code Suggestion:
A Human-Centric Approach To Qualitative Coding

Cesare Spinoso-Di Piano1,2

Samira Abbasgholizadeh Rahimi1,2∗ Jackie Chi Kit Cheung1,2

McGill University1 Mila Quebec AI Institute2

{cesare.spinoso-dipiano@mail., samira.rahimi@, jackie.cheung@}mcgill.ca

Abstract

Qualitative coding is a content analysis method
in which researchers read through a text cor-
pus and assign descriptive labels or qualitative
codes to passages. It is an arduous and man-
ual process which human-computer interaction
studies have shown could greatly benefit from
NLP techniques to assist qualitative coders.
Yet, previous attempts at leveraging language
technologies have set up qualitative coding as
a fully automatable classification problem. In
this work, we take a more assistive approach
by defining the task of qualitative code sugges-
tion (QCS) in which a ranked list of previously
assigned qualitative codes is suggested from an
identified passage. In addition to being user-
motivated, QCS integrates previously ignored
properties of qualitative coding such as the se-
quence in which passages are annotated, the
importance of rare codes and the differences
in annotation styles between coders. We in-
vestigate the QCS task by releasing the first
publicly available qualitative coding dataset,
CVDQuoding, consisting of interviews con-
ducted with women at risk of cardiovascular
disease. In addition, we conduct a human evalu-
ation which shows that our systems consistently
make relevant code suggestions.

1 Introduction

In qualitative research, qualitative coding is a con-
tent analysis method that is used to analyze textual
corpora such as cultural and political texts, ques-
tionnaires and interview transcripts. First used in
social science studies, qualitative coding has be-
come a ubiquitous and universal method of anal-
ysis geared at providing researchers with an in-
depth understanding of their studied corpus (Elliott,
2018). It is now employed in several research dis-
ciplines including medicine, education, and psy-
chology (Chapman et al., 2015; Gough and Scott,
2000; Smith and McGannon, 2018). During the

∗Corresponding author

Figure 1: Excerpt from one of our interview transcripts
along with qualitative code suggestions made by one of
our systems (GPT-3.5). The codes that were originally
assigned to the passages by the qualitative coder are
underlined.

coding process, a researcher carefully scans each
document in their corpus, identifies passages that
are associated with their research question, and
assigns these passages descriptive labels or quali-
tative codes (Figure 1).

Despite its widespread use, coding remains an
arduous and time-consuming process as it requires
manually annotating a studied corpus line by line.
For instance, studies have shown that coding a 1-
hour interview transcript will typically take an ex-
perienced researcher between 4 to 8 hours of anno-
tation (Miles et al., 2019).

To increase coding efficiency and to reduce its
cognitive load on researchers, NLP practitioners
have attempted to insert language technologies into
the coding process by formulating it as a text classi-
fication task. However, as human-computer interac-
tion (HCI) studies have shown (Rietz and Maedche,
2021), qualitative coders prefer receiving sugges-
tions for identified passages as they code rather
than having yet-to-be-seen passages automatically
coded for them. This aversion towards a fully au-
tomatic coding system may explain why, to this
day, all available qualitative coding tools are used
solely as “electronic filing cabinets” (Fielding and

14887

Lee, 2002). That is, if automatic coding is not
approached in a user-centered manner, despite a de-
sire for automated assistance, coding tools such as
NVivo1 and MAXQDA2 will continue to be used
for their bookkeeping features only (Marathe and
Toyama, 2018).

In this work, we take a more user-centered ap-
proach to qualitative coding by proposing the task
of qualitative code suggestion (QCS) in which a
ranked list of previously assigned codes is sug-
gested from passages identified by a qualitative
coder. Our framing of qualitative coding reveals
technical subtleties which have not been addressed
in previous work. For instance, our task definition
exposes the necessity to evaluate code suggestions
based on the sequence in which documents are
coded as well as the importance, and difficulty, of
detecting rare codes. In addition, unlike other NLP
tasks that use human-sourced annotations, QCS ex-
pects differences in annotation styles and avoids at-
tempts to correct or homogenize these differences.
Although more challenging, we believe that this
human-centric approach is appropriate given that
qualitative coding is meant to aid a researcher in
their personal understanding of a corpus.

To summarize, the research questions we address
in our work are: 1) What previously unexplored
technical challenges arise from approaching qual-
itative coding in a user-centered manner? and 2)
How effective are current NLP methods at handling
these challenges? To this end, the contributions of
our work are as follows:

• Grounded in HCI studies on automated cod-
ing assistance, we propose the task of qual-
itative code suggestion (QCS) in which pre-
viously assigned codes are suggested from
passages identified by qualitative researchers.
This user-centered approach to qualitative cod-
ing reveals the importance of considering the
sequence in which passages are coded, detect-
ing rare codes, and preserving differences in
coders’ annotation styles.

• We release the first publicly available quali-
tative coding dataset, named CVDQuoding,
consisting of transcripts of interviews with
women at risk of cardiovascular diseases
along with the annotations of two qualitative

1https://lumivero.com/products/nvivo/
2https://www.maxqda.com/qualitative-data-analysis-

software

coders. This dataset is available by request to
the corresponding author, due to its sensitive
nature.

• We experiment with classification,
information-retrieval and zero-shot prompting
techniques to model QCS and conduct a
human evaluation which shows that our
systems consistently make relevant code
suggestions.3

2 Related Work

In qualitative research, content analysis is defined
as “a family of research techniques for making sys-
tematic, credible, or valid and replicable inferences
from texts and other forms of communications”
(Drisko and Maschi, 2016). These techniques rely
heavily on qualitative coding which has been used
extensively throughout different areas of research,
first in the social sciences and, now, across most
fields (Macnamara, 2006). There are two types of
qualitative coding: deductive and inductive (Sal-
daña, 2021). In deductive coding, all codes are
predefined and the coding process serves as a way
of validating or invalidating a hypothesis. In induc-
tive coding, codes are defined ad hoc as documents
are analyzed and, thus, the coding process is used
to discover new phenomena underlying a corpus.

In terms of assistive technologies for qualitative
coding, studies have investigated various computa-
tional approaches to automate parts of the deductive
qualitative coding process. Efforts by Crowston
et al. (2012); Scharkow (2013); McCracken et al.
(2014); Liew et al. (2014) have investigated the
use of rule-based learning and supervised learning
to automate the assignment of codes to passages.
More recently, Grandeit et al. (2020); Xiao et al.
(2023) have explored using BERT-based models
and GPT3 respectively to predict a previously as-
signed code from a passage. In all cases, deductive
coding was cast as a fully automatable classifica-
tion problem and metrics such as F1 and annotator-
system agreement scores were used to measure
performance.

At the same time, there has been extensive work
from the HCI community on how qualitative coders
would like automation to assist them during the cod-
ing process (Marathe and Toyama, 2018; Feuston
and Brubaker, 2021; Chen et al., 2018; Haug et al.,

3The code can be found at https://github.com/
cesare-spinoso/QCS.git

14888

https://lumivero.com/products/nvivo/
https://www.maxqda.com/qualitative-data-analysis-software
https://www.maxqda.com/qualitative-data-analysis-software
https://github.com/cesare-spinoso/QCS.git
https://github.com/cesare-spinoso/QCS.git

2021). These studies show that while researchers
desire automation, they believe the coding agency
should remain in their hands. Thus, methods that
introduce language technologies in the qualitative
coding process should favour assisting coders by
highlighting ambiguous passages (Drouhard et al.,
2017), by helping them remain consistent in their
annotation style (Sporer, 2012), or by interactively
refining the definition of codes (Bakharia et al.,
2016). These assistive approaches differ from pre-
vious human-in-the-loop annotation studies (Mon-
tani and Honnibal, 2018) since, as Jiang et al.
(2021a) point out, “qualitative analysis is a unique
case for human-AI collaboration because uncer-
tainty is essential to qualitative analysis itself.” In
other words, qualitative coding is unique because
the act of coding data, and the uncertainty that
comes with it, is valued by researchers as it culti-
vates their understanding of their corpus.

3 Qualitative Code Suggestion

We present properties of qualitative coding which
have surfaced from the user-centered perspective
we take in this work. We show that these properties
warrant a new task definition that centers around
suggestions and rare codes.

3.1 Properties of Qualitative Coding
In qualitative coding, researchers code their corpus
to gain a deeper understanding of a certain phe-
nomenon related to their research question. As
a result, in deductive and inductive coding, the
first few documents that are coded are critical for
the researcher’s own understanding. Once the re-
searchers have read through enough documents,
properties of qualitative coding arise which, ac-
cording to HCI studies (Rietz and Maedche, 2021;
Marathe and Toyama, 2018), should be considered
when developing assistive coding techniques. We
further develop these properties below:

1. Data saturation. Coders that carry out qual-
itative coding reach a personal point of data
saturation after which few new codes will
appear (Saunders et al., 2018). It is at this
point where suggesting relevant codes for an
identified passage may be helpful for a qual-
itative coder. These suggestions could help
the qualitative coder consider relevant code
assignments without needing to sift through
irrelevant codes. At the same time, suggest-
ing several relevant codes minimizes the shift

towards complete automation as coders could
still reject suggestions.

2. Rare codes. Even though new codes may be
rare past the point of data saturation, their oc-
currences remain possible and scientifically
important to the coders (van Rijnsoever, 2017).
That is, the rarity of a code is in and of itself an
important scientific finding. Thus, while sug-
gesting relevant codes may alleviate some of
coding’s cognitive load, detecting rare codes
may be just as important.

3. Annotation style. Finally, since coding is
meant to cultivate a particular researcher’s un-
derstanding of a corpus, no two coders will
have the same annotation style (Loslever et al.,
2019). Thus, previous efforts to homogenize
code annotations, for instance by grouping
similar codes from different coders together,
should be avoided. Although convenient for
modeling purposes, this merging is not sup-
ported by the user-centered approach we take
in this work.

3.2 Task Definition

Our task definition, which is applicable to both
deductive and inductive coding, integrates the pre-
viously discussed properties into the main QCS
task and the novel code detection subtask.

Qualitative code suggestion (QCS) Consider
the setting in which a corpus is comprised of N
documents D = {d1, d2, . . . , dN}. Each docu-
ment, di, is a set of text spans {tn}len(di)n=1 which
have been identified and assigned codes by a qual-
itative coder. Now, suppose K ∈ {1 . . . N} is a
particular coder’s point of data saturation. In this
case, we collect all the codes assigned to text spans
from documents d1 to dK and create a set of codes
C = {c1, . . . , cm}. The task of QCS that we define
here consists of ranking, in order of relevance, the
set of codes in C with respect to every identified
text span in the set of documents past the point of
data saturation, i.e. {t ∈ di : i = K + 1 . . . N}.4

Novel code detection subtask Furthermore,
since documents are coded sequentially, some rare
codes may only surface in the test set portion of
the corpus, {dK+1, . . . , dN}, and, thus, might not

4We leave the additional task of text span extraction as
future work as this extension to QCS goes beyond the scope
of this study.

14889

be part of C. As detecting rare codes may be just
as important as suggesting relevant ones, we add
a novel code detection subtask to our task defini-
tion which consists of assigning the novel code to
a text span if one of its truly assigned codes is not
in C. To create training instances for this subtask,
we assign the novel code to all text spans in the
training set that have been assigned a code with a
training frequency of 1. All of the text spans in the
validation and test sets with at least one assigned
code that does not appear in the training set are
assigned the novel code.

4 The CVDQuoding Dataset

To investigate the QCS task, we release the first
publicly available qualitative coding dataset
which we name CVDQuoding. In this section,
we describe the dataset and how it was created. In
addition, we draw parallels between CVDQuod-
ing and the properties of qualitative coding we
described in Section 3.1.

CVDQuoding is a dataset consisting of 15 tran-
scripts of interviews conducted with women at risk
of cardiovascular diseases (CVDs) as well as anno-
tations carried out by two qualitative coders. These
qualitative coding annotations consist of text spans
identified by the qualitative coders, as well as the
codes that were assigned to each text span. Ad-
ditional details about the dataset as well as com-
parisons with previous qualitative coding datasets,
which have all been closed-source, can be found in
Table 4 in Appendix A.1.

The annotations in CVDQuoding were origi-
nally created as part of a larger project to inves-
tigate the interest of women at risk of CVDs in
using AI tools (Bousbiat et al., 2022) and were
subsequently adapted for our purposes. During the
interviews, women were asked about the health
challenges they face and their opinions about us-
ing an AI tool to help them manage their risk of
CVDs. For this work, we extracted the 15 inter-
view transcripts and tagged the text spans coded
by each coder and the questions asked by the inter-
viewer using XML. Readers may refer to Table 6
in Appendix A.2 for the complete list of questions
asked during each interview and to Figure 6 in Ap-
pendix A.1 for an example of a tagged transcript
excerpt.

CVDQuoding exhibits the properties of qual-
itative coding presented in Section 3.1. In terms
of data saturation, both coders create many new

codes in the first five interviews, and this trend ta-
pers off as they code more transcripts (Figure 2).
In addition, coder 1 finds new rare codes in ev-
ery transcript whereas coder 2 ceases to create
new codes by interview 7. Moreover, both coders
clearly exhibit significantly different annotation
styles with coder 1 creating 207 codes with an av-
erage of 4 text spans per code and coder 2 cre-
ating 23 codes with an average of 19 text spans
per code. This difference can be attributed to the
specificity of coder-2’s codes, which tend to be
more abstract (e.g., “Health Measures Taken”) than
coder-1’s codes (e.g., “CVD-related examinations,
tests or measures”). For additional details about
CVDQuoding, including a sample list of codes,
see Appendix A.1.

Figure 2: Distribution of the number of new codes in-
troduced per interview for each coder.

5 Modeling Approaches

We investigate the ability of current NLP meth-
ods to rank lists of codes by relevance as well as
detect novel codes from text spans. To this end,
we describe our data formatting decisions and the
modeling paradigms we explore.

We choose to explore three distinct modeling
paradigms, classification, information-retrieval and
zero-shot prompting, based on the following intu-
itions. Firstly, the classification paradigm assumes
that the confidence scores of a multi-label clas-
sifier can be used to rank codes. Secondly, the
information-retrieval paradigm assumes that codes
can be treated as documents and that text spans are
the queries used to rank them. Finally, the zero-
shot prompting paradigm assumes that the descrip-
tiveness of codes is sufficient for a large language
model (LLM) to rank them based on the text span.

14890

5.1 Data Formatting

For all three modeling paradigms, we associate ev-
ery contiguous text span t ∈ di that was coded by
one of the qualitative coders with its immediate
context c. In the case of CVDQuoding, we define
the context c as being the question asked right be-
fore t. Thus, in our case, every model has access to
a tuple (q, t) consisting of a question, q, and a text
span, t, highlighted by a qualitative coder. We use
the previous question as an approximation of the
context as most coding decisions in CVDQuoding
involve considering a text span as the answer to a
preset question. For example, the code “Interest
in AI tools" is assigned to “Very interested, yes”
because it is the answer to “Are you interested in
using AI tools for CVD?”.

5.2 Classification Paradigm

We build a |C| + 1 multi-label binary classifier
trained on the first K annotated transcripts to pre-
dict the assignment of each code c ∈ C as well as
the novel code to a text span. We use the scores
produced for each code to sort the set of codes
C for a test instance (q, t) ∈ {(q, t) : t ∈ di, i =
K+1 . . . N}. Furthermore, an instance is assigned
the novel code only if it is given the highest score
among all codes.

5.3 Information-retrieval Paradigm

In the information-retrieval paradigm, we treat
an instance (q, t) as a query and use two neural-
retrieval architectures to rank the set of codes C
with an additional step for the novel code detection
subtask.

We build two neural-retrieval architectures origi-
nally presented by Reimers and Gurevych (2019):
the bi-encoder and the cross-encoder. In the bi-
encoder, a representation is learned for the text
span t, the previous question q and the code c. The
representations of the test span, ht, and the previ-
ous question, hq, are max pooled together and a
score is computed by applying a cosine similarity
between the pooled representation and the code
representation, hc. In the cross-encoder, represen-
tations are learned for the concatenations of the
code with the question, q [SEP] c, and with the text
span, t [SEP] c. The representations, hq [SEP] c and
ht [SEP] c are max pooled together and a classifica-
tion head is placed on top of the pooled represen-
tation to produce scores. In both cases, the code
scores produced are used to rank all but the novel

code.
For the novel code detection subtask, a classifi-

cation head is trained on top of the vector of scores
ŷi which consists of the scores computed between
each code c ∈ C and the input instance (q, t)i.
Thus, if there are 10 codes in the training set (ex-
cluding novel), then for every instance (q, t)i the
classifier is passed a 10-dimensional vector ŷi com-
puted from either the bi-encoder or cross-encoder.

5.4 Zero-shot Prompting Paradigm

In the zero-shot prompting paradigm, we provide
an autoregressive LLM M with a prompt contain-
ing general instructions, the list of codes C and a
text span t to code along with its previously asked
question q. Refer to Appendix A.3 for the prompt
template. Upon generation, the suggested codes
are extracted via an exact-match search and the
order in which the codes are generated is used as
their predicted rank. Furthermore, the generation
“predicts” the novel code either if M generates the
string “None of the above” first (which is included
in the prompt template) or if no exact matches are
found in its generation.

6 Experiments

We investigate our approaches to modeling the
QCS task in order to determine the ability of cur-
rent NLP-based methods to allow for a more user-
centered approach to qualitative coding. We dis-
cuss the experimental setup to test our modeling
paradigms as well as our evaluation methodology.

6.1 Experimental Setup

To experiment with each of the paradigms pre-
sented in the previous section, we sort CVDQuod-
ing by annotation-time, group it by coder, and
consider it at different possible points of data sat-
uration. More specifically, for each coder, we
consider training on {d1, . . . , dK} and testing on
{dK+1, . . . , d15} for K = 1 . . . 14 where di is the
ith annotated transcript in annotation-time. We re-
serve 20% of each training set for validation. We
summarize our workflow in Figure 3.

We train and test models from each of our three
modeling paradigms and for all of the configu-
rations discussed above. For the classification
paradigm, we use |C|+ 1 SVM classifiers as well
as a single DistilBERT (Sanh et al., 2020) classi-
fier with a multi-label sequence classification head.
We use DistilBERT due to the computational costs

14891

CVDQuoding

c₁₄ c₂₂

c₁₁

c₁ q₁

Interview

question

c₁₄ c₂₂ q₂

c₁₁ q₂

…

Train

1 … K

c₁

c₁₄ c₂₂

c₁₁

c₁ Interviewer: <question_1>How do y …</question_1>

Participant:

Interviewer: Ok. <question_2>And … </question_2>

Participant: c₁₄ c₂₂

c₁₁

c₁

Interview 1

Interview K

Interview 15
Text

Span
Code(s)

q₂ c₃ c₂₅ Test

K+1 … 15
…

Figure 3: Visualization of the data formatting we apply to the raw annotations from CVDQuoding to run our
experiments with our different modeling paradigms.

of hyperparameter tuning over 2 × 14 = 28 in-
dividual datasets. For the information-retrieval
paradigm, we use DistilBERT as the encoder for
the bi-encoder architecture. For the cross-encoder,
we experiment with both DistilBert and ConvBERT
(Jiang et al., 2021b). We use ConvBERT based on
the intuition that text spans often contain phrases
which are lexically similar to a code’s description.
If this is the case, then ConvBERT’s span-based ker-
nels may be better suited at soft matching a code’s
description in a text span than a fully attention-
based masked language model like DistilBERT.
Moreover, ConvBERT has computational costs
(e.g., GPU memory requirements) in the same order
of magnitude as DistilBERT. Finally, for our zero-
shot prompting paradigm, we use OpenAI’s GPT-
3.5 Turbo (Brown et al., 2020) accessible through
its API5. Additional hyperparameter configurations
and training details can be found in Appendix A.3.

In addition to the models discussed above, we
use an information-retrieval baseline commonly
used in neural-retriever papers. We use the Okapi
BM25 retriever (Trotman et al., 2014) to compute
scores between each code and instance (q, t). In
addition, we place a logistic regression model on
top of the vector of scores to make the novel class
prediction.

5https://platform.openai.com/docs/api-reference

6.2 Evaluation Methodology
We subject our modeling paradigms to two distinct
rounds of evaluations. In Section 6.2.1, we evalu-
ate how well our systems provide code suggestions
based on the original annotations from CVDQuod-
ing. In Section 6.2.2, we further evaluate our
systems suggestions by asking human judges to de-
termine their relevance. We present a visualization
of our two-phase evaluation in Figure 4.

Interview

question

Text

Span
Code(s)

q₂

Code

ranking

c₁₂ c₂₅ c₄₂ c₃ …

Original

Annotations

Evaluation

Human

Evaluation

c₃ c₂₅

c₁₂ c₂₅ c₄₂ c₃ … Relevant:

c₂₅ c₄₂ c₃

Figure 4: The original annotations evaluation relies on
the codes assigned to the test text spans in CVDQuod-
ing while the human evaluation asks judges to deter-
mine which of the top-4 suggested codes are relevant
(for a sample of test instances).

6.2.1 Original Annotations Evaluation
QCS For the main QCS task, we compute
the mean reciprocal rank (MRR) score and a
soft normalized discounted cumulative gain at k
(sNDCG@k) score. These metrics allow us to

14892

https://platform.openai.com/docs/api-reference

measure how highly our systems rank the codes
that were originally assigned to the text spans in
CVDQuoding by the qualitative coders.

To compute the MRR, we exclude the rank of
the novel code as we are interested in a system’s
ability to suggest previously assigned codes. Ad-
ditional details about the computation of the MRR
are presented in Appendix A.4.

To compute the sNDCG@k metric, we approx-
imate a suggested code’s c relevance score for a
text span i, reli(c), and subsequently carry out the
standard NDCG computation. The relevance score,
reli(c), is computed by calculating the BERTScore
(Zhang et al., 2019) between suggested and true
codes. More specifically, the relevance score
rel i(c), for a code c ∈ C and a text span i is

rel i(c) = max
c′ ∈C true

i

BERTScore(c, c′)

where C true
i is the set of codes originally assigned

to a text span i by one of the two qualitative coders.
Once all the relevance scores are computed,

we use them in the standard NDCG computa-
tion. To do so, we sort the list of relevance
factors (reli(c) : c ∈ C) to compute the
true_rank_scores list for a text span i. In addi-
tion, the predicted_rank_scores for a text span
i is computed as the list of relevance factors sorted
by the model’s scores for each code. Both these
lists are then used in the standard NDCG formula.
Additional details are presented in Appendix A.4.

Finally, we add a cutoff k to sNDCG as is usu-
ally done in standard NDCG to account only for
the top k results creating sNDCG@k. We choose
to evaluate our systems with k = 4 as no more
than 4 codes are assigned to text spans throughout
CVDQuoding.

Novel code detection For the novel code detec-
tion subtask, we compute both the macro and micro
F1 scores. We report both averages due to the im-
balance in the ratio between novel and not-novel
classes.

6.2.2 Human Evaluation
In addition to using CVDQuoding’s original anno-
tations to evaluate our systems’ ability to provide
relevant code suggestions, we conduct a human
evaluation where we ask human judges to ascer-
tain the relevance of our systems’ code suggestions.
This additional evaluation phase is necessary be-
cause it is common for text spans to have several

alternative and relevant code assignments which
the original coders may not have considered.

Evaluation setup To gather human judgements,
we hired two human evaluators, both with expe-
rience in qualitative research, and asked them to
judge the relevance of our systems’ code sugges-
tions. In particular, we randomly sample 32 in-
stances from the annotations of coders 1 and 2 at
the same point of data saturation of K = 10 and as-
sign a human evaluator to each sample. We extract
the top-4 suggestions of each model described in
Section 6.16 and ask the evaluator to judge whether
each suggestion is “Relevant” or “Irrelevant” based
on the question and the text span. Additional de-
tails about the human evaluation can be found in
Appendix A.5.

Metrics We use the annotations from the human
evaluation to recompute the rank-based metrics pre-
sented in Section 6.2.1. We recompute the MRR
and the sNDCG@k of the 32 code suggestions
based on the human evaluator’s relevance judge-
ments. That is, for a sampled instance i, Ci

true
becomes the set of codes selected as “Relevant” by
the evaluator. In addition, we also compute the pre-
cision at 4 (P@4) of each system using the human
evaluator’s annotations. Details about the computa-
tion of P@4 are presented in Appendix A.4.

7 Results

We present the results of our experiments with re-
spect to both the original annotations and the hu-
man evaluation annotations.

7.1 Original Annotations

Using the original annotations as the gold stan-
dard labels, we present the MRR and sNDCG@4
scores for the main ranking task of QCS as well
as the macro and micro F1 for the novel code de-
tection subtask. In particular, we show the MRR
and sNDCG@4 scores at K = 10 for coders 1 and
2 (Table 1) and the F1 scores for the novel code
prediction task at K = 5 (Table 2). In addition, we
provide plots of the MRR for coders with respect
to K (Figure 5 and in Appendix A.6). Additional
results for all points of data saturation, presented
using both scatter plots and tables, can be found in
Appendix A.6.

6We do not consider the Okapi BM25 baseline suggestions
due to their poor quality.

14893

MRR sNDCG@4

Coder 1 Coder 2 Coder 1 Coder 2

Okapi BM25 0.15 0.53 0.70 0.79
SVM 0.51 0.75 0.80 0.85
DistilBERT 0.55 0.75 0.70 0.79
Bi-Encoder 0.48 0.74 0.80 0.86
Cross-Encoder
(DistilBERT)

0.55 0.64 0.81 0.82

Cross-Encoder
(ConvBERT)

0.59 0.77 0.83 0.86

GPT-3.5 0.57 0.73 0.74 0.83

Table 1: Results of the models’ performance on the QCS
main ranking task. The MRR and sNDCG@4 scores
are computed based on the original annotations from the
CVDQuoding dataset and using K = 10 as the point
of data saturation.

Macro F1 Micro F1

Coder 1 Coder 2 Coder 1 Coder 2

Okapi BM25 0.56 0.57 0.59 0.80
SVM 0.32 0.30 0.44 0.30
DistilBERT 0.55 0.45 0.59 0.80
Bi-Encoder 0.36 0.45 0.57 0.80
Cross-Encoder
(DistilBERT)

0.51 0.46 0.59 0.78

Cross-Encoder
(ConvBERT)

0.36 0.57 0.57 0.79

GPT-3.5 0.41 0.44 0.53 0.80

Table 2: Novel class detection subtask results. Macro
and micro F1 scores are computed using K = 5.

The information-retrieval and zero-shot prompt-
ing paradigms are the best performing On
the main QCS ranking task, we observe that the
information-retrieval paradigm, modeled through
the ConvBERT cross-encoder, and the zero-shot
prompting paradigm, modeled through GPT-3.5,
achieve the highest MRR and sNDCG@4 scores
across both coders for most data saturation points.
While GPT-3.5 achieves the highest MRR in most
cases for coder 1 (11 out of 14), ConvBERT ob-
tains the largest number of maximal MRR scores
for coder 2 (7 out of 14). In addition, ConvBERT
obtains the largest number of maximal sNDCG@4
scores for both coders.

Detecting novel codes is a challenging subtask
For the novel code detection subtask, no modeling
paradigm is able to outperform the Okapi BM25
baseline. These relatively poor performances in-
dicate that detecting novel codes is a challenging
subtask.

7.2 Human Evaluation

Using the human evaluation annotations as the gold
standard labels, we present the results for the same
rank-based metrics, along with the added P@4 re-
sults, and contrast them with the results in the pre-
vious section (Table 3).

Systems consistently make several relevant code
suggestions While the human evaluators have a
recall with respect to the original annotations of
0.94 and 0.95 for coders 1 and 2 respectively, they
identify, on average, 3 times more relevant codes
than in the original annotations. As a result, we
observe a statistically significant jump between the
MRR and sNDCG@4 scores computed on the sam-
ple of 32 text spans using the original annotations
and the human evaluation annotations across all
models. On average, the human-evaluation-derived
MRR is 66% and 34% higher than the MRR com-
puted using the original annotations for coders 1
and 2, respectively. In fact, in the case of coder 2,
the recomputed MRR for GPT-3.5 is 1. This jump
is less drastic for the sNDCG@4 metric with rela-
tive increases of 40% and 19% for coders 1 and 2
respectively. In addition to making consistently rel-
evant code suggestions, our best performing mod-
els achieve P@4 scores above 0.5 indicating that,
on average, our systems are able to suggest more
than one relevant code for a given passage. Alto-
gether, these additional results demonstrate that hu-
man evaluations are necessary for QCS systems as
they provide interpretations for codes which were
highly ranked but which the qualitative coders may
not have originally considered in their code assign-
ments.

MRR sNDCG@4 P@4

Coder 1 Coder 2 Coder 1 Coder 2 Coder 1 Coder 2

SVM 0.80 0.93 0.970 0.978 0.40 0.55
DistilBERT 0.72 0.91 0.969 0.975 0.41 0.65
Bi-Encoder 0.86 0.90 0.972 0.979 0.50 0.66
Cross-Encoder
(DistilBERT)

0.78 0.93 0.965 0.982 0.46 0.68

Cross-Encoder
(ConvBERT)

0.87 0.95 0.973 0.987 0.51 0.56

GPT-3.5 0.74 1.00 0.973 0.989 0.32 0.53

Table 3: MRR, sNDCG@4 and P@4 scores computed
using the annotations collected during the human evalu-
ation.

8 Analysis

We discuss the implications of our results in rela-
tion to the three properties of qualitative coding
which we uncovered through our human-centric ap-

14894

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.2

0.3

0.4

0.5

0.6

0.7

Model
SVM

Okapi-BM25

DistilBERT

BiEncoder

Cross-Encoder (DistilBERT)

Cross-Encoder (ConvBERT)

OpenAI GPT-3.5

Point of Data Saturation

M
ea

n
R

ec
ip

ro
ca

l R
an

k

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Model
SVM

Okapi-BM25

DistilBERT

BiEncoder

Cross-Encoder (DistilBERT)

Cross-Encoder (ConvBERT)

OpenAI GPT-3.5

Point of Data Saturation

M
ea

n
R

ec
ip

ro
ca

l R
an

k

Figure 5: Plot of MRR across data saturation points K = 1 to 14 for coder 1 (left) and for coder 2 (right)

proach and the ability of our modeling paradigms
to consider these properties.

Firstly, across both coders and all models, we
observe a steady rise in our systems’ ability to
make code suggestions consistent with the original
annotations of CVDQuoding (See scatter plots
through annotation-time in Figure 5 as well as in
Appendix A.6). This poor performance for small
values of K is consistent with inductive coding
which, for the first documents, is exploratory and
unpredictable by nature. In fact, the moment at
which this rise in performance plateaus may be a
helpful signal to identify when a coder has reached
their personal point of data saturation and, thus,
when code suggestions could start to be beneficial.
Secondly, across all saturation points and for both
coders, we observe relatively poor performance
in detecting novel codes. This difficulty suggests
that the “catch-all” bucket method we use in this
work is inappropriate and that more sophisticated
representations of novelty need to be learned to
properly detect rare codes. Finally, we notice that,
on average, our systems’ MRR and the sNDCG@4
calculated using coder 2’s annotations are 58% and
7% higher respectively than when calculated using
coder 1’s annotations. This result is natural given
coder 2’s annotation style of assigning high-level
codes to larger text spans is much more amenable
to machine learning techniques. Thus, in the future,
methods that are able to identify annotation styles
and incorporate them in their modeling may be
more suitable at solving QCS in a user-tailored
fashion.

In addition, the ranked-based metrics computed
using human judgments point to a promising future
for the downstream viability of QCS systems. The

recomputed MRR and the additional results from
the P@4 show that not only are our systems able
to correctly rank relevant codes, but they are also
likely to highly rank more than one relevant code,
potentially forcing the coder to further reflect on
their coding decisions without needing to consider
irrelevant codes.

9 Conclusion

In this work, we approached qualitative coding in
a novel user-centered manner and showed that this
approach gives rise to technical subtleties related
to qualitative coding which have not been previ-
ously investigated. These subtleties include the
importance of considering a coder’s personal point
of data saturation, the difficulty of detecting rare
codes and the necessity to avoid homogenizing dif-
ferent annotation styles. We showed that each of
these properties is reflected in both the CVDQuod-
ing dataset we introduced and the experimental
results of our modeling of QCS. Lastly, our human
evaluation showed that solely relying on automatic
metrics computed with respect to the original anno-
tations made by the qualitative coders is insufficient
to describe the performance of QCS systems. The
results derived from our human evaluation show
that QCS systems can consistently provide sev-
eral relevant code suggestions and, thus, that this
human-centric approach to qualitative coding may
be able to truly assist researchers in their study of
textual corpora.

Limitations

This work includes a few limitations which we
leave as future work. Firstly, we did not conduct

14895

an evaluation of the impact of QCS in an applied
setting. This lack of downstream experiments pre-
vents us from determining the full impact of auto-
matically providing code suggestions to qualitative
coders. For instance, an automatic QCS system
may remove more agency from the coder than an-
ticipated if they begin to blindly trust suggestions.
Secondly, despite our best efforts, our work falls
short of investigating all possible technical avenues
to solving QCS. In particular, we do not investigate
fine-tuning sequence-to-sequence models as pre-
liminary experiments showed poor performance.
In addition, we do not explore the full range of
abilities offered to us by LLMs such as GPT-3.5.
For instance, using GPT-3.5 to generate synthetic
annotations may have helped the performance of
our larger neural-based models which are known
to perform poorly in data-scarce settings.

Ethics Statement

We strongly believe in the work done by qualitative
researchers and the human understanding that they
provide to complex bodies of text. This work is
an effort to develop methods that help rather than
replace the arduous work conducted by qualitative
researchers and coders.

The data collection of this study has been ap-
proved by the Faculty of Medicine and Health Sci-
ences Institutional Review Board (IRB) of McGill
University (IRB Internal Study Number: A03-B22-
21A). All necessary participant consent has been
obtained and the appropriate institutional forms
have been archived.

Acknowledgements

We would like to thank the anonymous reviewers
for their feedback and valuable suggestions. In
addition, we would like to thank Andrei Mircea,
Aylin Erman, Dan Poenaru, Jad Kabbara, Ian Po-
rada, Ines Arous, Sabina Elkins and Yu Lu Liu for
their insightful feedback on the multiple iterations
of this paper.

This work was supported by the Fonds de
Recherche du Québec – Nature et Technologies
(FRQNT). Jackie Chi Kit Cheung is supported by
the Canada CIFAR AI Chair program. Samira Ab-
basgholizadeh Rahimi is a Canada Research Chair
(Tier 2) in Advanced Digital Primary Health Care,
and received salary support (Research Scholar Ju-
nior 1 Career Development Award) from the Fonds
de Recherche du Québec-Santé (FRQS) during this

study.
The authors acknowledge the material support of

NVIDIA in the form of computational resources.

References
Aneesha Bakharia, Peter Bruza, Jim Watters, Bhuva

Narayan, and Laurianne Sitbon. 2016. Interactive
topic modeling for aiding qualitative content analysis.
In Proceedings of the 2016 ACM on Conference on
Human Information Interaction and Retrieval, pages
213–222.

I. C. Bousbiat, G. Roland, Y. Shahram, C. Rodriguez,
P. Pluye, J. Légaré, H. Bergman, I. Vedel, G. Bis-
leri, MP. Gagnon, and S. Abbasgholizadeh-Rahimi.
2022. “CVD Prevention among Women in Primary
Care Using AI: Work-in-Progress”. Family Medicine
Forum/Forum en médecine familiale, Toronto, On-
tario.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

AL Chapman, M Hadfield, and CJ Chapman. 2015.
Qualitative research in healthcare: an introduction
to grounded theory using thematic analysis. Jour-
nal of the Royal College of Physicians of Edinburgh,
45(3):201–205.

Nan-Chen Chen, Margaret Drouhard, Rafal Kocielnik,
Jina Suh, and Cecilia R Aragon. 2018. Using ma-
chine learning to support qualitative coding in so-
cial science: Shifting the focus to ambiguity. ACM
Transactions on Interactive Intelligent Systems (TiiS),
8(2):1–20.

K. Crowston, E.E. Allen, and R. Heckman. 2012. Using
natural language processing technology for qualita-
tive data analysis. International Journal of Social
Research Methodology, 15(6):523–543.

James W Drisko and Tina Maschi. 2016. Content anal-
ysis. Pocket Guide to Social Work Re.

Margaret Drouhard, Nan-Chen Chen, Jina Suh, Rafal
Kocielnik, Vanessa Pena-Araya, Keting Cen, Xiangyi
Zheng, and Cecilia R Aragon. 2017. Aeonium: Vi-
sual analytics to support collaborative qualitative cod-
ing. In 2017 IEEE Pacific Visualization Symposium
(PacificVis), pages 220–229. IEEE.

Victoria Elliott. 2018. Thinking about the coding pro-
cess in qualitative data analysis. The Qualitative
Report, 23(11):2850–2861.

14896

http://fmf.cfpc.ca/
http://fmf.cfpc.ca/
http://arxiv.org/abs/2005.14165
https://doi.org/10.1080/13645579.2011.625764
https://doi.org/10.1080/13645579.2011.625764
https://doi.org/10.1080/13645579.2011.625764

Jessica L Feuston and Jed R Brubaker. 2021. Putting
tools in their place: The role of time and perspec-
tive in human-ai collaboration for qualitative analy-
sis. Proceedings of the ACM on Human-Computer
Interaction, 5(CSCW2):1–25.

Nigel G. Fielding and Raymond M. Lee. 2002. New pat-
terns in the adoption and use of qualitative software.
Field Methods, 14(2):197–216.

Stephen Gough and William Scott. 2000. Exploring
the purposes of qualitative data coding in educational
enquiry: Insights from recent research. Educational
Studies, 26(3):339–354.

Philipp Grandeit, Carolyn Haberkern, Maximiliane
Lang, Jens Albrecht, and Robert Lehmann. 2020.
Using BERT for Qualitative Content Analysis in Psy-
chosocial Online Counseling. In Proceedings of the
Fourth Workshop on Natural Language Processing
and Computational Social Science, pages 11–23, On-
line. Association for Computational Linguistics.

Saskia Haug, Tim Rietz, and Alexander Maedche. 2021.
Accelerating deductive coding of qualitative data:
An experimental study on the applicability of crowd-
sourcing. In Proceedings of Mensch und Computer
2021, pages 432–443.

Jialun Aaron Jiang, Kandrea Wade, Casey Fiesler, and
Jed R Brubaker. 2021a. Supporting serendipity: Op-
portunities and challenges for human-ai collaboration
in qualitative analysis. Proceedings of the ACM on
Human-Computer Interaction, 5(CSCW1):1–23.

Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen,
Jiashi Feng, and Shuicheng Yan. 2021b. Convbert:
Improving bert with span-based dynamic convolu-
tion.

Jasy Suet Yan Liew, Nancy McCracken, Shichun Zhou,
and Kevin Crowston. 2014. Optimizing Features in
Active Machine Learning for Complex Qualitative
Content Analysis. In Proceedings of the ACL 2014
Workshop on Language Technologies and Computa-
tional Social Science, pages 44–48, Baltimore, MD,
USA. Association for Computational Linguistics.

Pierre Loslever, Taisa Guidini Gonçalves, Káthia Marçal
de Oliveira, and Christophe Kolski. 2019. Using
fuzzy coding with qualitative data: example with sub-
jective data in human-computer interaction. TheoreT-
ical issues in ergonomics science, 20(4):459–488.

Jim Macnamara. 2006. The fork in the road of media
and communication theory and practice. 4th Annual
Summit on Measurement, pages 1–12.

M. Marathe and K. Toyama. 2018. Semi-automated cod-
ing for Qualitative research: A user-centered inquiry
and initial prototypes. volume 2018-April.

N. McCracken, J. Suet Yan Yan, and K. Crowston. 2014.
Design of an active learning system with human cor-
rection for content analysis. Proceedings of the Work-
shop on Interactive Language Learning, Visualiza-
tion, and Interfaces, pages 59–62.

M.B. Miles, A.M. Huberman, and J. Saldana. 2019.
Qualitative Data Analysis: A Methods Sourcebook.
SAGE Publications.

Ines Montani and Matthew Honnibal. 2018. Prodigy: A
new annotation tool for radically efficient machine
teaching. Artificial Intelligence to appear.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

T. Rietz and A. Maedche. 2021. Cody: An ai-based sys-
tem to semi-automate coding for qalitative research.

Johnny Saldaña. 2021. The coding manual for qualita-
tive researchers. The coding manual for qualitative
researchers, pages 1–440.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Benjamin Saunders, Julius Sim, Tom Kingstone,
Shula Baker, Jackie Waterfield, Bernadette Bartlam,
Heather Burroughs, and Clare Jinks. 2018. Satura-
tion in qualitative research: exploring its conceptual-
ization and operationalization. Quality & quantity,
52:1893–1907.

Michael Scharkow. 2013. Thematic content analysis
using supervised machine learning: An empirical
evaluation using German online news. Quality &
Quantity, 47(2):761–773.

Brett Smith and Kerry R McGannon. 2018. Developing
rigor in qualitative research: Problems and oppor-
tunities within sport and exercise psychology. In-
ternational review of sport and exercise psychology,
11(1):101–121.

Siegfried Ludwig Sporer. 2012. Making the subjec-
tive objective? computer-assisted quantification of
qualitative content cues to deception. In Proceed-
ings of the workshop on computational approaches
to deception detection, pages 78–85.

Andrew Trotman, Antti Puurula, and Blake Burgess.
2014. Improvements to bm25 and language models
examined. In Proceedings of the 19th Australasian
Document Computing Symposium, ADCS ’14, page
58–65, New York, NY, USA. Association for Com-
puting Machinery.

Frank J van Rijnsoever. 2017. (i can’t get no) satura-
tion: a simulation and guidelines for sample sizes in
qualitative research. PloS one, 12(7):e0181689.

Ziang Xiao, Xingdi Yuan, Q Vera Liao, Rania Abdel-
ghani, and Pierre-Yves Oudeyer. 2023. Support-
ing qualitative analysis with large language models:
Combining codebook with gpt-3 for deductive cod-
ing. In Companion Proceedings of the 28th Inter-
national Conference on Intelligent User Interfaces,
pages 75–78.

14897

https://doi.org/10.1177/1525822X02014002005
https://doi.org/10.1177/1525822X02014002005
https://doi.org/10.18653/v1/2020.nlpcss-1.2
https://doi.org/10.18653/v1/2020.nlpcss-1.2
http://arxiv.org/abs/2008.02496
http://arxiv.org/abs/2008.02496
http://arxiv.org/abs/2008.02496
https://doi.org/10.3115/v1/W14-2513
https://doi.org/10.3115/v1/W14-2513
https://doi.org/10.3115/v1/W14-2513
https://doi.org/10.1145/3173574.3173922
https://doi.org/10.1145/3173574.3173922
https://doi.org/10.1145/3173574.3173922
https://books.google.ca/books?id=Bt0uuQEACAAJ
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://doi.org/10.1145/3411764.3445591
https://doi.org/10.1145/3411764.3445591
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.1007/s11135-011-9545-7
https://doi.org/10.1007/s11135-011-9545-7
https://doi.org/10.1007/s11135-011-9545-7
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1145/2682862.2682863

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2019. Bertscore:
Evaluating text generation with BERT. CoRR,
abs/1904.09675.

14898

http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675

A Appendix

14899

A.1 Dataset Characteristics

Source
Corpus size

(in number of words)
Number of annotations Publicly available?

(Crowston et al., 2012) 84870 3011 No
(Grandeit et al., 2020) N/A 10000 No
(Xiao et al., 2023) N/A 668 No
CVDQuoding 63927 1175 Yes7

Table 4: Comparative analysis of our dataset with previously closed-source datasets. In this case, the number of
words are counted using space separation and the number of annotations refer to the number of text spans that have
been assigned one or more codes.

<question_2>Interviewer: Have you ever been informed about your cardiovascular
health, and if so how have you been informed?</question_2>

Participant 1: <code coder='2' value='Understanding of CVD'>So, I've been in
cardiology since '96. I used to work at the Montreal Heart Institute before so
<code coder='1' value='Sources of information'>I attended cardiac rounds and
went to conferences and things like that. I also like to read on health, so
media, papers and then conferences.</code></code>

Figure 6: Excerpt from Interview 1 of the CVDQuoding dataset with XML tags to identify the question asked and
the text spans that have been annotated. In the code tag, the attribute coder identifies which qualitative coder was
responsible for the annotation and the attribute value identifies the code assigned to the text span.

5 10 15 20 25 30
0

10

20

30

40

50

60

70

Coder 1

Coder 2

Distribution of the number of text spans per codes

Number of text spans

N
u
m

b
e
r
 o

f
c
o
d
e
s

Figure 7: Frequency of code assignment counts.

7Email the corresponding author.

14900

1 3
9

2
4

5
8

8
9

1
4

6

9
5

2
3

7

3
3

3
8

9
0

1
3

2

2
1

9

1
8

7

1
1

1

2
6

2

[1, 2]

[3, 4]

[5, 8]

[9, 16]

[17, 32]

[33, 64]

[65, 128]

[129, 256]

[257, 512]

[513,]

0

50

100

150

200

Coder 2

Coder 1

Distribution of the length of the text spans (whitespace separation)

Text spans length bins

N
u
m

b
e
r
 o

f
t
e
x
t
 s

p
a
n
s

Figure 8: Distribution of the length of text spans.

Annotator List of codes

Coder 1 Life-style modification, Needs to assure data confidentiality and security, Increasing
trust in the tool, Lack of knowledge, Additional comments about diet recommenda-
tions, CVD misconceptions, Level of interest in tracking information and prompts,
Level of interest in educational modules, Additional comments about educational
modules, Level of interest in transparency and explainability, Enthusiastic about
technology, App prompts, Frequency of push-notifications, Level of interest in
personalized workouts, Additional comments about explainability

Coder 2 Technology for CVD care, Cardiovascular Health Information, Accessibility, Deci-
sions Made, Additional Features Suggested, Understanding of CVD, Challenges,
Trust and Reliability, Transparency, Decision Involvement, Weight Tracking, Educa-
tional Models, Technical Support, Data Monitoring, Pedometer

Table 5: List of 15 codes created by coders 1 and 2 sorted by frequency over the entire CVDQuoding dataset.

14901

A.2 Interview Questions

Interview Questions

Question 1 How do you think cardiovascular diseases are generally described and understood
by the public?

Question 2 Have you ever been informed about your cardiovascular health? How?
Question 3 What are the most frequent and important decisions you face related to your cardio-

vascular health?
Question 4 What is your usual role in making decisions about your cardiovascular health and

preventing CVD?
Question 5 What do you think are some challenges and needs in preventing and managing

cardiovascular diseases (from your perspective as a woman at risk of CVD)?
Question 6 Have you ever considered a decision support system to help you in any decisions

related to your cardiovascular health?
Question 7 What are your thoughts on using digital technology (e.g., mobile apps, AI system-

s/robots) to make decisions in relation to your cardiovascular health?
Question 8 How would you like us to design and develop this Xi-Care tool that is useful, helpful

and effective for women at risk of CVD (e.g. no risks to users)?
Question 9 On a scale of 1 to 5 with 1 being not at all interested and 5 being very interested,

what is your level of interest in monitoring tools that track health data over time?
Question 10 On a scale of 1 to 5 with 1 being not at all interested and 5 being very interested,

what is your level of interest in a step-count feature?
Question 11 On a scale of 1 to 5 with 1 being not at all interested and 5 being very interested,

what is your level of interest in a weight tracking feature?
Question 12 On a scale of 1 to 5 with 1 being not at all interested and 5 being very interested,

what is your level of interest in educational modules on cardiovascular health?
Question 13 On a scale of 1 to 5 with 1 being not at all interested and 5 being very interested,

what is your level of interest in guided exercise activities?
Question 14 On a scale of 1 to 5 with 1 being not at all interested and 5 being very interested,

what is your level of interest in diet recommendations?
Question 15 Would you like to be able to follow your progress and receive push-notifications

through the Xi-Care tool?
Question 16 How difficult/easy do you think it will be for you to integrate the Xi-Care tool into

your daily life?
Question 17 To what extent would you trust or rely on the Xi-Care tool to make assessments

about your cardiovascular health and prevent and manage CVD?
Question 18 Do you foresee any challenges with integrating the Xi-Care tool in your daily life in

terms of ethics? Could you please describe these challenges?
Question 19 In terms of transparency, how important is it for you to be able to understand how

the Xi-Care tool works?
Question 20 Is there something else you’d like to add about ethical aspects in regards to the

Xi-Care tool that will be empowered by AI (Justice; Non-maleficence; Autonomy;
Beneficence; Explicability/Transparency)?

Table 6: List of questions asked during the interviews of the CVDQuoding dataset. Xi-Care is the name of the app
being proposed to participants of the study to help them control their risks of cardiovascular diseases (CVDs).

14902

A.3 Hyperparameter Configurations
We provide additional hyperparameter and archi-
tecture details for all our models.

A.3.1 Baseline
Okapi-BM25. We use an open-source imple-
mentation of the BM25 algorithm8. We use the
Okapi implementation with its default parameters
k1 = 1.5, b = 0.75, ε = 0.25 and a tokenizer with
space separation and lowercasing.

A.3.2 Classification Paradigm
SVM. We use the SVM implementation from
sklearn9. We transform all inputs to tf-idf features
with separate encodings for the question and text
span. We use the standard radial basis function ker-
nel and tune the regularization parameter C using
the values {0.001, 0.01, 0.1, 1, 10}. A class weight
parameter is computed for each code as well as for
the novel code and is inversely proportional to the
class frequencies in the training set.

DistilBERT. We use the DistilBERT implemen-
tation from Hugging Face10. In particular, we use
DistilBERT’s tokenizer and its DistilBertForSe-
quenceClassification module which accepts a vari-
able number of labels, |C|+1 in this case. We tune
the learning rate using values {1×10−5, 2×10−5}
with a weight decay of 0.01. We use a batch size
of 8 and train for 25 epochs with early stopping on
the validation loss with a patience of 5 epochs. We
also compute a class weight inversely proportional
to the class frequencies in the training set and apply
it to the cross entropy loss. All our experiments
consistently show that using class weights benefits
performance.

A.3.3 Information-retrieval Paradigm
Along with hyperparameter details, we provide
additional architecture details about both the bi-
encoder and cross-encoder.

Bi-Encoder. In the bi-encoder, we create repre-
sentations for the code c, the text span t and the pre-
vious question q with three distinct BERT encoders,
Et, Eq and Ec. In our case, we use DistilBERT as
the encoder for all three inputs. We pass each input
whose start is truncated to the model’s 512 token
input limit to its respective encoder and extract its
CLS token representation.

ht = Et(t), hq = Eq(q), hc = Ec(c)

8https://github.com/dorianbrown/rank_bm25
9https://scikit-learn.org/stable/

10https://huggingface.co/

We use a component-wise max pooling method
max(·, ·) to aggregate ht and hq together.

hpool = max(ht, hq)

Finally, a cosine similarity is applied between the
pooled representation, hpool, and the code represen-
tation, hc, to generate a score. A class weighted
mean-squared error loss is then computed and back-
propagated through the three encoders. For the
novel code detection subtask, a linear classifier is
placed on top of the vector of encoder scores. For
the training of the linear classifier, we use another
class weighted cross entropy loss and keep the three
encoders frozen.

We tune the learning rate using the values {1×
10−5, 2× 10−5} with a weight decay of 0.01. We
use a larger batch size of 32, since training sets now
have a size of |C| ×N where N is the number of
coded text spans. We train for 25 epochs with early
stopping on the validation loss set with a patience
of 5 epochs.

Cross-Encoder. In the cross-encoder, we create
representations for the concatenation of codes with
the question and the text span. That is, for every
code c in the training set, the text span t and the
previous question q are each independently con-
catenated with the code c using the special [SEP]
token. Both concatenations are passed to different
encoders Et and Eq to obtain a contextual repre-
sentation. Truncation is applied to the start of both
t and q to comply with the encoder’s maximum
token input length.

ht [SEP] c = Et(t [SEP] c)

hq [SEP] c = Eq(q [SEP] c)

The representations are pooled using a
component-wise max pooling method max(·, ·)

hpool = max(ht [SEP] c, hq [SEP] c)

We place a classification head on top of hpool
identical in architecture to the DistilBERT classi-
fication head. We compute a class weighted cross
entropy loss and backpropagate it through both en-
coders. For the novel code detection subtask, a
linear classifier is placed on top of the vector of
encoder scores, which, in this case, are logits. We
use a class weighted cross entropy loss and keep
the two encoders frozen.

In this case, we experiment with DistilBERT
and ConvBERT. In both cases, we tune the learning

14903

https://github.com/dorianbrown/rank_bm25
https://scikit-learn.org/stable/
https://huggingface.co/

rate using the values {1× 10−5, 2× 10−5} with a
weight decay of 0.01. We use a batch size of 32
and train for 30 epochs with early stopping on the
validation loss set to have a patience of 5 epochs.
We train for more epochs because we noticed that
the cross-encoders took longer to converge.

A.3.4 Zero-shot Paradigm
We use OpenAI’s GPT-3.5 API to generate LLM re-
sponses to our zero-shot prompt. In particular, we
use the model checkpoint gpt-3.5-turbo-0301
with a temperature of 1. The question and the text
span are truncated to allow for a 64 token genera-
tion. At the time of our experiments, this version of
GPT-3.5 allowed for 4096 tokens. In Figure 9, we
show the template that we use to prompt GPT-3.5.

You are a helpful assistant that suggests
qualitative codes for a qualitative re-
searcher. The coders you can suggest are:
[AVAILABLE_CODES], and None of
the above. Which of the previous codes
would you assign to the following ex-
cerpt from an interview with a woman
at risk of cardiovascular disease (CVD):
“Question: [QUESTION] Answer: [AN-
SWER]”

Figure 9: Template used to prompt a generative LLM
M for a ranking of the codes for a passage. [AVAIL-
ABLE_CODES] is a placeholder for the list of codes
from C to rank for an instance (q, t)i, [QUESTION] is a
placeholder for the previous question q and [ANSWER]
is a placeholder for the text span t highlighted by one
of the coders.

14904

A.4 Automatic Metrics

We provide complete descriptions for the automatic
metrics presented in Section 6.2.1 and 6.2.2.

MRR To compute the MRR, we consider the set
of true codes, C true

i assigned to a text span i as well
as the predicted rank, predicted_ranki : C →
{1, . . . , |C|}, assigned to each code c ∈ C for text
span i by one of our systems. In this computation,
we exclude the novel code as we are interested in
a system’s ability to suggest previously assigned
codes. The reciprocal rank, RRi, for a passage i
is computed as the maximum predicted reciprocal
rank across all true codes. That is,

RRi = max
c∈C true

i

1

predicted_ranki(c)

The MRR is then computed by averaging across all
test instances i with |C true

i | ≥ 1.

P@k To compute the P@k, let Nk be the num-
ber of relevant codes, as indicated by some gold
standard annotation, in the first k suggested codes.
Then the P@k for a text span i is computed as

P@ki =
Nk

k

We then average the instance-level P@k over all
test instances.

sNDCG@k To compute the sNDCG metric, we
approximate a suggested code’s c relevance score
for a text span i, reli(c), in order to carry out the
standard NDCG computation. The relevance score,
reli(c), is computed by using the BERTScore
(Zhang et al., 2019) as the approximation for the
affinity between suggested and true codes. More
specifically, the relevance score rel i(c), for a code
c ∈ C and a text span i is

rel i(c) = max
c′ ∈C true

i

BERTScore(c, c′)

Once all the relevance scores are computed,
we use them in the standard NDCG computa-
tion. To do so, we sort the list of relevance
factors (reli(c) : c ∈ C) to compute the
true_rank_scores list for a text span i. In addi-
tion, the predicted_rank_scores for a text span i
is computed as the list of relevance factors sorted by
the model’s scores for each code. We can then com-
pute the sNDCG score for the suggestions made by

our system for text span i as

sNDCGi =
sDCGi

sIDCGi

sIDCGi =
∑

i∈ 2...|C|+1

true_rank_scores[i]

log(i)

sDCGi =
∑

i∈ 2...|C|+1

predicted_rank_scores[i]

log(i)

Finally, we add a cutoff k to sNDCG as is usually
done in standard NDCG to account only for the top
k results creating sNDCG@k.

14905

A.5 Human Evaluation
We conducted the human evaluation by first run-
ning a pilot study. The pilot study was used to
assess whether the instructions of the human eval-
uation were clear and to estimate the duration of
the study for the full 32 samples. During the pi-
lot study, we recruited a researcher familiar with
qualitative research and asked them to judge the
relevance of 8 instances. Half of these 8 instances
were sampled from coder 1’s human evaluation
samples, and the other half came from coder 2’s.
We made sure that at least one code had been as-
signed to every passage we showed evaluators as
we wanted to be able to compare the rank-based
metrics computed using the original annotations
and the human evaluation annotations. In addition,
we always included the codes from the original
coding annotations to avoid having the evaluator
mark all suggestions as irrelevant. An example of
a question and its corresponding highlighted text
span from coder 1’s annotations as well as a list
of codes (truncated due to space constraints) used
to gather human relevance judgements is shown in
Figure 10.

Figure 10: An example of a question and a text span
from coder 1’s annotations shown to the human evalu-
ator. We truncate the list of codes shown due to space
constraints.

14906

A.6 Additional Results

A.6.1 sNDCG Plots

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.7

0.75

0.8

0.85

Model
SVM

Okapi-BM25

DistilBERT

BiEncoder

Cross-Encoder (DistilBERT)

Cross-Encoder (ConvBERT)

OpenAI GPT-3.5

Point of Data Saturation

S
of

t N
D

C
G

@
4

Figure 11: Plot of sNDCG@4 for coder 1 across K = 1 to K = 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.75

0.8

0.85

0.9

0.95

Model
SVM

Okapi-BM25

DistilBERT

BiEncoder

Cross-Encoder (DistilBERT)

Cross-Encoder (ConvBERT)

OpenAI GPT-3.5

Point of Data Saturation

S
of

t N
D

C
G

@
4

Figure 12: Plot of sNDCG@4 for coder 2 across K = 1 to K = 14

14907

A.6.2 MRR Tables

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SVM 0.28 0.29 0.39 0.41 0.44 0.49 0.52 0.5 0.52 0.51 0.51 0.54 0.47 0.42
DistilBERT 0.45 0.39 0.42 0.43 0.43 0.48 0.52 0.5 0.55 0.55 0.57 0.61 0.57 0.57

Okapi-BM25 0.19 0.19 0.17 0.14 0.18 0.14 0.17 0.17 0.14 0.15 0.14 0.11 0.18 0.17
Bi-Encoder 0.55 0.41 0.44 0.4 0.45 0.48 0.51 0.54 0.48 0.48 0.54 0.54 0.54 0.55

Cross-Encoder (DistilBERT) 0.41 0.45 0.39 0.51 0.5 0.55 0.57 0.56 0.55 0.55 0.56 0.61 0.56 0.54
Cross-Encoder (ConvBERT) 0.69 0.59 0.52 0.56 0.42 0.63 0.58 0.61 0.56 0.59 0.60 0.62 0.57 0.52

GPT-3.5 0.74 0.69 0.66 0.61 0.64 0.66 0.58 0.6 0.63 0.57 0.56 0.63 0.58 0.58

Table 7: MRR for coder 1 for K = 1 to K = 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SVM 0.65 0.63 0.63 0.27 0.67 0.64 0.36 0.66 0.62 0.68 0.7 0.65 0.46 0.48
DistilBERT 0.67 0.6 0.25 0.27 0.35 0.76 0.76 0.75 0.75 0.75 0.74 0.7 0.71 0.63

Okapi-BM25 0.23 0.28 0.23 0.22 0.23 0.23 0.22 0.24 0.23 0.23 0.23 0.23 0.2 0.19
Bi-Encoder 0.67 0.5 0.41 0.73 0.76 0.74 0.7 0.71 0.7 0.74 0.76 0.73 0.71 0.68

Cross-Encoder (DistilBERT) 0.62 0.62 0.63 0.64 0.67 0.69 0.72 0.72 0.68 0.64 0.71 0.69 0.64 0.59
Cross-Encoder (ConvBERT) 0.62 0.7 0.74 0.67 0.78 0.78 0.76 0.75 0.77 0.77 0.78 0.76 0.72 0.72

GPT-3.5 0.89 0.78 0.76 0.74 0.77 0.77 0.76 0.74 0.73 0.73 0.73 0.71 0.71 0.75

Table 8: MRR for coder 2 for K = 1 to K = 14

A.6.3 sNDCG@4 Tables

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SVM 0.75 0.72 0.75 0.76 0.77 0.78 0.79 0.79 0.79 0.78 0.79 0.8 0.79 0.77
DistilBERT 0.81 0.77 0.78 0.77 0.77 0.77 0.8 0.79 0.8 0.8 0.8 0.8 0.8 0.79

Okapi-BM25 0.74 0.73 0.72 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.7
Bi-Encoder 0.84 0.8 0.81 0.79 0.80 0.81 0.81 0.82 0.8 0.8 0.8 0.82 0.8 0.82

Cross-Encoder (DistilBERT) 0.8 0.79 0.79 0.79 0.8 0.82 0.81 0.82 0.8 0.81 0.82 0.82 0.79 0.79
Cross-Encoder (ConvBERT) 0.87 0.83 0.82 0.83 0.8 0.83 0.81 0.84 0.81 0.83 0.83 0.83 0.82 0.82

GPT-3.5 0.84 0.76 0.76 0.74 0.77 0.76 0.74 0.77 0.75 0.74 0.72 0.75 0.71 0.74

Table 9: sNDCG@4 for coder 1 for K = 1 to K = 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SVM 0.93 0.84 0.85 0.72 0.84 0.84 0.74 0.82 0.81 0.83 0.83 0.82 0.76 0.78
DistilBERT 0.93 0.84 0.74 0.73 0.76 0.87 0.86 0.85 0.85 0.85 0.85 0.83 0.83 0.8

Okapi-BM25 0.93 0.82 0.83 0.81 0.82 0.81 0.82 0.8 0.79 0.79 0.79 0.79 0.8 0.79
Bi-Encoder 0.93 0.82 0.78 0.87 0.88 0.88 0.87 0.85 0.85 0.86 0.85 0.85 0.83 0.83

Cross-Encoder (DistilBERT) 0.92 0.84 0.85 0.83 0.85 0.86 0.86 0.84 0.83 0.82 0.84 0.83 0.81 0.81
Cross-Encoder (ConvBERT) 0.92 0.86 0.88 0.85 0.88 0.88 0.87 0.85 0.86 0.86 0.85 0.86 0.84 0.84

GPT-3.5 0.97 0.86 0.86 0.84 0.86 0.86 0.85 0.81 0.82 0.83 0.81 0.81 0.81 0.8

Table 10: sNDCG@4 for coder 2 for K = 1 to K = 14

14908

A.6.4 Macro F1 Tables

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SVM 0.44 0.37 0.37 0.33 0.32 0.33 0.35 0.35 0.34 0.35 0.33 0.32 0.3 0.21
DistilBERT 0.49 0.52 0.58 0.56 0.55 0.62 0.60 0.63 0.61 0.62 0.64 0.65 0.63 0.7

Okapi-BM25 0.48 0.5 0.56 0.56 0.56 0.54 0.57 0.49 0.56 0.55 0.56 0.56 0.53 0.58
BiEncoder 0.36 0.3 0.32 0.38 0.36 0.38 0.39 0.4 0.41 0.42 0.42 0.43 0.44 0.46

Cross-Encoder (DistilBERT) 0.53 0.53 0.35 0.51 0.51 0.55 0.6 0.45 0.58 0.59 0.59 0.49 0.55 0.53
Cross-Encoder (ConvBERT) 0.49 0.48 0.38 0.5 0.36 0.5 0.41 0.56 0.59 0.47 0.55 0.61 0.59 0.51

OpenAI GPT-3.5 (Turbo) 0.26 0.37 0.4 0.46 0.41 0.42 0.42 0.44 0.47 0.53 0.44 0.52 0.41 0.44

Table 11: Macro F1 for the novel code for coder 1 for K = 1 to K = 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SVM 0.1 0.27 0.29 0.47 0.3 0.31 0.17 - - - - - - -
DistilBERT 0.49 0.49 0.4 0.43 0.45 0.45 0.45 - - - - - - -

Okapi-BM25 0.44 0.6 0.56 0.50 0.53 0.5 0.56 - - - - - - -
BiEncoder 0.52 0.39 0.4 0.47 0.45 0.45 0.45 - - - - - - -

Cross-Encoder (DistilBERT) 0.47 0.63 0.56 0.46 0.46 0.56 0.59 - - - - - - -
Cross-Encoder (ConvBERT) 0.47 0.56 0.64 0.47 0.57 0.55 0.57 - - - - - - -

OpenAI GPT-3.5 (Turbo) 0.13 0.42 0.42 0.49 0.45 0.46 0.48 - - - - - - -

Table 12: Macro F1 for the novel code prediction subtask for coder 2 for K = 1 to K = 14. Cells past K = 8 are
marked with “-” since no novel codes occur.

A.6.5 Micro F1 Tables

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SVM 0.79 0.58 0.56 0.46 0.44 0.4 0.41 0.39 0.38 0.37 0.35 0.34 0.31 0.22
DistilBERT 0.51 0.53 0.58 0.60 0.59 0.66 0.65 0.68 0.67 0.71 0.69 0.74 0.75 0.84

Okapi-BM25 0.55 0.53 0.57 0.57 0.59 0.63 0.65 0.6 0.63 0.62 0.63 0.64 0.64 0.76
BiEncoder 0.36 0.42 0.44 0.56 0.57 0.62 0.63 0.68 0.69 0.72 0.73 0.74 0.77 0.86

Cross-Encoder (DistilBERT) 0.56 0.53 0.45 0.54 0.59 0.61 0.64 0.68 0.68 0.64 0.64 0.7 0.8 0.79
Cross-Encoder (ConvBERT) 0.74 0.53 0.53 0.51 0.57 0.63 0.62 0.56 0.71 0.7 0.66 0.64 0.62 0.61

OpenAI GPT-3.5 (Turbo) 0.28 0.44 0.47 0.58 0.55 0.57 0.6 0.64 0.66 0.71 0.67 0.71 0.69 0.78

Table 13: Micro F1 for the novel code prediction subtask for coder 1 for K = 1 to K = 14.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SVM 0.12 0.36 0.36 0.87 0.3 0.32 0.19 - - - - - - -
DistilBERT 0.62 0.58 0.66 0.56 0.80 0.81 0.83 - - - - - - -

Okapi-BM25 0.63 0.62 0.58 0.71 0.76 0.68 0.79 - - - - - - -
BiEncoder 0.77 0.64 0.66 0.87 0.8 0.81 0.83 - - - - - - -

Cross-Encoder (DistilBERT) 0.88 0.67 0.68 0.87 0.78 0.74 0.8 - - - - - - -
Cross-Encoder (ConvBERT) 0.88 0.65 0.70 0.87 0.79 0.76 0.74 - - - - - - -

OpenAI GPT-3.5 (Turbo) 0.14 0.65 0.65 0.87 0.8 0.79 0.83 - - - - - - -

Table 14: Micro F1 for the novel code prediction subtask for coder 2 for K = 1 to K = 14. Cells past K = 8 are
marked with “-” since no novel codes occur.

14909

