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Abstract
In-context learning (ICL) is an emerging ca-
pability of large autoregressive language mod-
els where a few input-label demonstrations are
appended to the input to enhance the model’s
understanding of downstream NLP tasks, with-
out directly adjusting the model parameters.
The effectiveness of ICL can be attributed to
the strong language modeling capabilities of
large language models (LLMs), which enable
them to learn the mapping between input and
labels based on in-context demonstrations. De-
spite achieving promising results, the causal
nature of language modeling in ICL restricts
the attention to be backward only, i.e., a to-
ken only attends to its previous tokens, failing
to capture the full input-label information and
limiting the model’s performance. In this pa-
per, we propose a novel ICL method called
Repeated Demonstration with Sliding Causal
Attention, (RDSCA). Specifically, we dupli-
cate later demonstrations and concatenate them
to the front, allowing the model to ‘observe’
the later information even under the causal re-
striction. Besides, we introduce sliding causal
attention, which customizes causal attention
to avoid information leakage. Experimental
results show that our method significantly im-
proves the input-label mapping in ICL demon-
strations. We also conduct an in-depth analysis
of how to customize the causal attention with-
out training, which has been an unexplored area
in previous research.

1 Introduction

Large language models (LLMs) have become the
backbone of various natural language processing
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tasks in different fields. One of the most re-
markable abilities of LLMs is in-context learn-
ing (ICL) (Brown et al., 2020). By providing a
few demonstrations and instructions into the input,
along with the input queries, LLMs can perform
well in new tasks without requiring fine-tuning.
The secret of ICL is to formulate the input as the
natural language generation task, then the LLM
can be activated to prompt knowledge learned in
the pre-training stage.

Despite the promising results demonstrated by
existing ICL models (Gonen et al., 2022; Wei et al.,
2022), their causal nature in language modeling re-
stricts each token’s attention solely to its preceding
tokens. As a result, these models fail to capture
the complete input-label information, thereby lim-
iting their overall performance. Specifically, the
pre-training objective of the current autoregressive
LLMs focuses on predicting future tokens based
on past ones (Radford et al., 2018), implemented
with causal attention. While this approach works
well for modeling regular sequences, it becomes
less effective when applied to ICL tasks. The limi-
tation of causal attention restricts ICL demonstra-
tions to having only left context, which hampers
the model’s ability to fully comprehend and exploit
the input-label relationship.

Unlike tokens in a sentence that possess sequen-
tial dependencies, there is no inherent sequential
relationship between the demonstrations in the ICL
input. Therefore, it is desirable for these demonstra-
tions to interact with one another comprehensively,
rather than relying solely on later demonstrations
attending to earlier ones, while the reverse is not
possible. Intuitively, if we can enable each demon-
stration to attend to all the others, we can poten-
tially obtain a more sophisticated context for the
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ICL query. However, achieving this on an LLM
pre-trained with the objective of causal language
modeling is not straightforward. Simply removing
the causal restriction and allowing the model to
have access to the right context during inference is
not feasible, as it would result in a significant dis-
parity between training and inference conditions.

In this work, we focus on capturing full input-
label mapping information from demonstrations.
To achieve this target, we propose two tech-
niques. The first is Repeated Demonstration,
where we replicate later demonstrations and con-
catenate them to the front. This allows the
model to ‘observe’ the later information even
under the causal restriction. For example, if
we consider four demonstrations represented by
d1d2d3d4, the input sequence after replication be-
comes d′2d

′
3d

′
4d1d2d3d4. However, simply dupli-

cating demonstrations brings about a new problem:
we do not want to attend a demonstration twice,
as this may cause the model to take shortcuts by
learning to repeat the answer of its first encounter,
rather than learning the input-label mapping. To
address this, we propose the second technique, the
Sliding Causal Attention, which customizes the
original causal attention by restricting the atten-
tion window so that each demonstration can only
attend to all other demonstrations once. In the
case of four demonstrations, attention windows are
d′2d

′
3d

′
4d1, d′3d

′
4d1d2, d′4d1d2d3, and d1d2d3d4, re-

spectively. Through experiments, we demonstrate
that our proposed method (Repeated Demonstra-
tions with Sliding Causal Attention, RDSCA) sig-
nificantly enhances the ability to learn input-label
mapping from ICL demonstrations.

Our proposed sliding casual attention is the first
attempt that customizes the causal attention in the
inference stage without further training. We investi-
gate a number of different designs for customizing
causal attention and reach some principles for the
success of ICL. For example, we find that the first
<SOS> token plays an essential role. It should al-
ways be available to attend to no matter where the
attention window slides. Besides, the size of the
attention window determines the richness of the
semantic context, thus it affects the performance
greatly. Our contributions are summarized as:

• To the best of our knowledge, we are the first
to identify the limitation of causal language
modeling in the ICL and to introduce a novel
approach for enabling effective interactions

between demonstrations.

• We validate the feasibility of customizing
causal attention during the inference stage
without further training and conduct further
analysis on causal attention customization.
We believe this idea has great potential and
sheds new light on optimizing ICL and other
large model inference scenarios.

• We conduct experiments on several text classi-
fication datasets to evaluate the effectiveness
of our proposed method. The experimental re-
sults clearly demonstrate that our approach
significantly enhances the input-label map-
ping in ICL demonstrations.

2 Backgrounds

2.1 Causal Language Modeling

Most of the current decoder-only LLMs employ
causal language modeling as the pre-training objec-
tive (Radford et al., 2018), which aims to predict
future tokens based on the past.

argmin
θ

∑

i

Pθ(ui|u0, u1, ..., ui−1) (1)

In causal language modeling, the model only at-
tends to tokens that occur before (the left con-
text), resulting in a unidirectional attention scheme
known as causal attention. This approach enables
the model to process each token in the input se-
quence in order, without accessing any information
from the future (the right context).

Causal Attention Mask Practically, a causal at-
tention mask is used to implement causal atten-
tion, which guarantees unidirectionality by mask-
ing all right-to-left attention connections and only
allowing right-to-left connections. Formally, the
attention mask is a binary-valued matrix M ∈
{0, 1}n×n, where n is the total sequence length.
The element mij in M indicates whether the j-th
token in the sequence can attend to the i-th token,
with a value of 1 for yes and 0 for no. Therefore,
the causal attention mask matrix is a lower triangu-
lar matrix where mij = 0,∀i < j.

2.2 In-context Learning

Now we formally introduce the definition and basic
notations of in-context learning. We focus on clas-
sification tasks and causal language models. Given
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Figure 1: An illustration for regular ICL and our RDSCA ICL. Regular ICL uses vanilla causal attention, causing
the uneven interaction between demonstrations. In RDSCA, each demonstration can attend to all the others thanks
to demonstration repetition and sliding causal attention.

K input-label pairs {xi, yi}Ki=1 and a query xq, the
objective is to predict the label of the query yq by
predicting the next token. Formally,

argmin
yq∈C

P (yq|(x1, y1), (x2, y2), ..., (xK , yK), xq)

(2)
where C is the label set.

To perform ICL successfully, we transform the
classification task into a natural language gener-
ation task by adding templates to the query and
demonstrations. Additionally, discrete labels are
mapped to label words, such as "positive" and "neg-
ative" for sentiment classification. We denote the
demonstration with templates and label words as
di = T (xi, yi). The entire input to the model is
formed by concatenating the demonstrations and
the query q = T (xq, _), resulting in d1d2...dkq.

Semantically-unrelated label ICL (SUL-ICL)
In regular ICL, natural language words that are
closely related to the task objective are used as label
words. This allows the model to utilize semantic
prior knowledge. For example, when conducting
sentiment classification, label words such as "posi-
tive" and "negative" are highly semantically related
to the sentiment labels of the input. During pre-
training, the model is exposed to similar patterns
and can learn to associate these label words with
the corresponding sentiment labels. In this paper,
we eliminate the contribution of semantic priors
and perform semantically-unrelated label ICL (Wei
et al., 2023). In this setting, natural language la-
bels are replaced with semantically-unrelated la-
bels. This approach forces the model to rely solely

on input-label mappings to perform ICL.

3 Method

3.1 Defect of Traditional ICL

During few-shot ICL, we combine the labeled
demonstrations with the query by concatenating
them and feeding them into the LLM. The labeled
demonstrations provide valuable in-context input-
label information, which is included in the few-shot
ICL input. As a result, few-shot ICL consistently
achieves better performance compared to zero-shot
ICL.

However, few-shot ICL under the current
scheme of causal language modeling has a de-
fect. Due to the restriction of causal attention, each
demonstration only has access to half of the full
context (i.e., the left context). As a result, it can-
not ‘observe’ demonstrations that follow it. For
example, in 4-shot ICL, if we consider the third
demonstration as the last query (which makes sense
because tokens that come after it have no influence
on it), then the first two demonstrations serve as its
context while the fourth demonstration is ignored.
In this sense, we can regard predicting the label of
the first demonstration as a zero-shot ICL task, the
second as a one-shot ICL, the third as a two-shot
ICL, and so on, as shown in Figure 1.

While restricting the model from accessing the
right context makes sense when modeling regular
natural language sequences to prevent information
leakage, it is unnecessary for few-shot ICL since
there is no dependency between demonstrations.
The causal restriction limits earlier demonstrations
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from accessing later information, resulting in only
half of the available information being utilized.

3.2 Repeated Demonstrations
Enabling each demonstration to ‘observe’ later
demonstrations is not a trivial task. Simply replac-
ing causal attention with full attention to allow the
model to receive both left and right context is not
feasible, as the model is pre-trained with causal lan-
guage modeling. Switching to full attention during
inference would result in a significant loss in per-
formance, as we have verified through experiments
(Section 4.4). Therefore, we propose the Repeated
Demonstration method to establish sufficient inter-
actions among demonstrations while still adhering
to the premise of causal attention. The method is
based on a simple idea: duplicating all the other
demonstrations except the first one and concatenat-
ing them to the front of the sequence. By doing
so, we expand the input sequence d1d2...dKq to
d′2...d

′
Kd1d2...dKq where d′i is the duplication of

di. This operation allows each demonstration to
attend to all the others by adding the later demon-
strations to its left context. As a result, the model
can make full use of demonstrations while still
obeying the causal attention restriction.

3.3 Sliding Causal Attention
The Repeated Demonstration method alone is not
sufficient to achieve our target, as it introduces
a new problem of duplicated information in the
context. Under causal attention, a token can at-
tend to all tokens that precede it. When com-
bined with repeated demonstrations, this can re-
sult in the same information being duplicated in
the context. For example, when performing 4-
shot ICL with repeated demonstrations, the in-
put is d′2d

′
3d

′
4d1d2d3d4q. The context of d3 is

d′2d
′
3d

′
4d1d2d3 where some demonstrations appear

twice. Repetitive information can cause the model
to learn a shortcut to predict the label by repeat-
ing the label of the same demonstration that ap-
peared for the first time, rather than learning the
input-label mapping as expected. We will provide
a detailed explanation of this phenomenon in the
experimental section (Section 4.4).

To tackle this issue, we propose Sliding Causal
Attention, which utilizes a sliding attention win-
dow to limit the range of tokens that each demon-
stration can attend to. This approach effectively
prevents the occurrence of repetitive information
and ensures that each demonstration has a non-

repetitive context. Specifically, the attention win-
dow is defined as follows:

window(x) =

{
d′i+1...d

′
Kd1...di x = di, i ≤ K

d1d2...dKq x = q
(3)

Then we explain how sliding causal attention
works. We use the window size W to represent the
number of demonstrations contained within it. In
our main setting, we use W = K, indicating each
attention window contains all the demonstrations.
As the window slides, a new demonstration enters
while an old one exits. This ensures that there
are always consistent K different demonstrations
within the context.

Additionally, we find that the <SOS> token,
which represents the first token of the sequence,
is crucial to the model’s performance. Therefore,
we add <SOS> to every attention window to en-
sure that each token can attend to <SOS>. We will
provide further explanations on this in the experi-
mental section 4.4.

4 Experiments

4.1 Setup
Models We conducted experiments on decoder-
only causal language models. We utilized the
LLAMA (Touvron et al., 2023) model family with
varying scales, including 7B, 13B, 30B, and 65B.

Tasks We evaluate on classification tasks, includ-
ing SST-2 (Socher et al., 2013), CB (De Marneffe
et al., 2019), RTE (Dagan et al., 2005; Wang et al.,
2019a), AGNews (Zhang et al., 2015), QQP (Wang
et al., 2019b), and QNLI (Wang et al., 2019b). If
the dataset includes a validation split, we evaluate
the model’s performance on the validation set. Oth-
erwise, we evaluate on the test set. Datasets are
obtained from Huggingface Datasets library*.

Other Details For all experiments, we use K = 4
demonstrations by default. Demonstrations are uni-
formly sampled from the training data. We utilize
prompt templates from PromptSource† (Bach
et al., 2022). For each dataset, we use four different
templates and select a set of K training examples
using 4 different random seeds. Therefore, the re-
ported results are the average of 16 different runs.
We would like to emphasize that we run all meth-
ods using the same random seeds, ensuring that

*https://huggingface.co/docs/datasets/index
†https://github.com/bigscience-workshop/promptsource
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Figure 2: Averaging performance of RDSCA on LLAMA of different scales. Left: ICL with random-selected
demonstrations. We report the results of both 4-shot and 7-shot ICL for this setting. Middle: We combine
our method with the demonstration retrieval technique. We employ KATE (Liu et al., 2022) to retrieve target
demonstrations. Right: we combine with PROTOTYPICAL CALIBRATION (Han et al., 2022) to further improve
performance. Full results can be found in Appendix A

the demonstrations used by each method are identi-
cal. This was done to eliminate any potential bias
caused by differences in the demonstrations seen
by each method and ensure a fair comparison. Due
to limited computing resources, we evaluate a ran-
dom sample of 200 examples for tasks with a large
validation set, instead of the entire dataset. We have
found that this sample size is sufficient to obtain
stable and reliable results.

4.2 Main Results

Figure 2 presents a comparison between our
method and regular ICL. We observe a clear cor-
relation between the performance of semantically
unrelated label ICL and the model scale: increas-
ing the model scale improves performance for all
methods. In the case of LLAMA-7B, the perfor-
mance is poor, and the performance gap between
different methods is small, indicating that it is chal-
lenging for small models to learn the input-label
mapping from demonstrations while the semantic
meaning of labels is removed. As the model size
scales up to 30B and 65B, the models begin to ex-
hibit strong ICL capabilities, and the performance
of different methods varies. This phenomenon is
consistent with the findings of Wei et al. (2023),
which suggest that larger language models learn the
input-label mapping differently because the input-
label mapping learning ability only emerges when
the model is large enough. In comparison with ICL
with random demonstrations, we find that retriev-
ing demonstrations that are more relevant to the
query can significantly improve the performance

on all scales. Furthermore, calibration has a posi-
tive influence on the ICL results, showing that our
method can be combined with other techniques to
further enhance the overall performance.

RDSCA improves input-label mapping We ob-
serve a significant performance boost over regular
ICL in both 4-shot and 7-shot settings on LLAMA-
30B and LLAMA-13B. Our method shows an av-
erage improvement of 8.4% on LLAMA-30B and
10.5% on LLAMA-65B compared to regular ICL,
indicating a significant advantage in learning the
input-label mapping from demonstrations. As men-
tioned in previous sections, we believe that in the
scheme of causal language modeling, regular ICL
only utilizes half of the context (left context) for the
demonstrations. In contrast, our method makes use
of all the available information, which enhances
the representations of demonstrations and provides
richer semantics for predicting the query’s target.

4.3 Results on MMLU

REGULAR ICL RDSCA

humanities 65.99 68.44
STEM 51.84 51.57
social sciences 72.29 73.60
other 63.34 64.65

average 62.20 63.66

Table 1: LLAMA-65B 4-shot ICL results on MMLU.

We also validate LLAMA-65B on
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Figure 3: Illustration of the attention mask, which
we divide into multiple regions and label with num-
bers. The specific meanings are as follows: ① query-to-
demonstrations attention; ② inter-demonstrations right-
to-left attention; ③ inter-demonstrations(repeat) right-
to-left attention; ④ attention to the start-of-sentence
token; ⑤ attention to redundant context; ⑥ inter-
demonstrations left-to-right attention;⑦ demonstrations-
to-query attention;⑧ other left-to-right attention.

MMLU (Hendrycks et al., 2021), which is a
more advanced benchmark for evaluating the
abilities of LLMs. The results are shown in
Table 1.

4.4 Looking Deeper into Causal Attention
Customization

In this section, we conduct a further investigation to
look deeper into the effectiveness of sliding causal
attention. How and why does sliding causal atten-
tion work and are there alternatives when customiz-
ing causal attention? To answer these questions,
we implement the following ablations:

• FULL ATTN. This uses full attention instead
of causal attention so the model can attend to
both the left and right context.

• RD. This is the ablation of RDSCA that uses
original causal attention without sliding causal
attention.

• RDSCA w/o <SOS>. In this ablation of RD-
SCA, when the attention window moves for-
ward, latter tokens cannot attend to the begin-
ning of the sentence, i.e., the <SOS> token.

Figure 3 shows how we divide the whole attention
matrix into various regions. The above-mentioned
methods have unique access to these regions. De-
tails and experimental results are shown in Table 2.

Can we break the causal restriction? First, we
are concerned about the limitations of causal at-
tention. Intuitively, if we can remove the causal
restriction during inference by using non-causal
attention and providing the model with the full con-
text, we can fully utilize the demonstration infor-
mation. However, our experimental results indicate
that this simple idea is not feasible. The perfor-
mance of FULL ATTN. is no better than random
guessing, but why? There is a simple explanation:
the gap between causal attention training and non-
causal attention inference is too huge. Since the
model is trained using causal language modeling,
it has no inductive bias toward data with the cor-
rect context. Therefore, using full attention during
inference is out-of-distribution for a causal model.

Sliding attention window matters. Based on the
results, it is evident that RD has little improvement
over regular ICL. Although RD provides richer
interaction between demonstrations than regular
ICL, the lack of attention restrictions causes the
same demonstration to attend to its first appear-
ance. Consequently, the model takes a shortcut
and repeats the answer of the first appearance in-
stead of learning the input-label mapping to predict
the result. Therefore, the improvement brought
by simply repeating the demonstrations is limited.
However, the situation changes when we add the
sliding causal window, which blocks repeated in-
formation and forces the demonstrations to attend
only to other unseen demonstrations, ensuring that
there is no information leakage. According to the
evaluation results, this approach successfully en-
ables the model to better capture the input-label
mapping information, as expected.

This ablation study further indicates another in-
sight: the default causal attention may not be al-
ways optimal in ICL. Previous research aimed at
improving ICL has mainly focused on template
construction and demonstration selection, with lit-
tle attention paid to the causal attention masks. Our
study shows that customizing attention masks can
be a new technique for enhancing ICL, which is
worthy of further research.

Attending to the <SOS> token is essential.
Next, we examine the role of the first token <SOS>
in causal attention customization. If not treating the
<SOS> token separately, as the attention window
moves, the first token slides out of the scope of the
attention window. This means that the latter demon-
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Methods Attention Regions Is causal? LLAMA-65B LLAMA-30B

RANDOM GUESS - - 43.06 43.06

REGULAR ICL ①+② Yes 59.83 (+16.77) 52.71 (+9.65)
FULL ATTN. (v1) ①+②+⑥ No 45.15 (+2.09) 47.84 (+4.78)
FULL ATTN. (v2) ①+②+⑥+⑦ No 44.32 (+1.26) 47.36 (+4.30)

RD ①+②+③+④+⑤ Yes 60.18 (+17.12) 54.02 (+10.96)
RDSCA w/o <SOS> ①+②+③ Yes 32.20 (−10.86) 12.96 (−30.10)

RDSCA ①+②+③+④ Yes 64.96 (+21.90) 56.55 (+13.49)

Table 2: Ablations on causal attention customization. We report the averaging performance on all tasks. We
implement two versions of the FULL ATTN., which differ in whether including left-to-right attention of the query.

strations and the query cannot attend to <SOS>.
Our experiments show that in this setting the ICL
ability is severely affected (①+②+③ in Table 2).
However, when we manually add the <SOS> to-
ken to the attention window (as in the case of RD-
SCA), we observe a significant improvement in
performance. This comparison demonstrates that
the <SOS> token is crucial for the model to per-
form correctly. But why does such a seemingly
insignificant token have such a significant impact
on performance? We believe that the significance
of the <SOS> token lies in allowing the model to
treat the tokens under the attention window as a
valid sequence rather than a fragment of the whole
sequence.

As the model is pre-trained on sequences that all
start with <SOS>, it does not know how to handle
sequences that do not start with <SOS>. There-
fore, when customizing causal attention, we need
to make sure that the model regards the tokens in
the attention window as a valid sequence starting
with <SOS>. Only in this way, we can activate the
model’s language modeling ability correctly.

W = 1 W = 2 W = 3 W = 4

Figure 4: Visualization of attention masks for different
window sizes.

4.5 Ablation on Attention Window Size

In this section, we discuss the impact of window
size. We denote the attention window size of the
original RDSCA as W = K, meaning that there

Window n-shots LLAMA-65B LLAMA-30B

REGULAR 0-1-2-3-4 69.87 63.10

W=1 0-0-0-0-4 60.83 52.78
W=2 1-1-1-1-4 71.33 60.83
W=3 2-2-2-2-4 74.01 65.70
W=4 3-3-3-3-4 74.27 68.73

W=4 3-3-3-3-3 70.99 64.44

Table 3: Average performance on all tasks for differ-
ent attention window sizes. We also report the num-
ber of demonstrations contained in the context of each
demonstration. For example, "0-1-2-3-4" means that,
for regular ICL, the first demonstration has no context,
the second sees one demonstration, the third sees two,
and so on. In this experiment, we use KATE to retrieve
demonstrations instead of random-selected ones. In this
way, we save computational resources because there is
no need to run experiments over different random seeds.

are K demonstrations in each window. In this case,
each demonstration can attend to all other ones, so
each demonstration can be considered as perform-
ing (K − 1)-shot ICL. As shown in Figure 4, we
employ smaller window sizes W on RDSCA and
see what happens to the ICL ability. Intuitively,
reducing the size of the sliding window means re-
ducing the context (the number of demonstrations)
that the current one is able to attend to. Thus the
model’s ability to learn the input-label mapping
from context would be affected. Especially, when
W = 1, each demonstration can only attend to
itself, which is equivalent to zero-shot ICL. The
results are shown in Table 3. As expected, the
window size is highly correlated with ICL perfor-
mance: the larger the window size, the better the
performance. Surprisingly, we notice that when
W = 2, i.e., one-shot ICL for all demonstrations,
RDSCA is already comparable with regular ICL on
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both 30B and 65B LLAMA. This indicates that our
ICL method makes more efficient exploitation of
the demonstrations in ICL. The last row of Table 3
shows when the query not seeing all 4 demonstra-
tions, the performance drops.

4.6 What If Adding More Demonstrations?

4 8 16 32
Number of demonstrations

60

70

80

90

Pe
rfo

rm
an

ce

rdsca
rd
regular

Figure 5: Increasing the number of demonstrations for
LLAMA-65B on SST-2.

In this section, we investigate how our method
performs with more demonstrations. We start from
K = 4 demonstrations and gradually add more. As
shown in Figure 5, all methods receive significant
performance gains when the number of demonstra-
tions is relatively small. However, as the number
of demonstrations increases, the benefits of adding
more demonstrations gradually reduce. The ICL
performance reaches a plateau at around K = 16.
Before reaching this plateau, RDSCA consistently
outperforms the vanilla-repeat and regular ICL, in-
dicating that our method is robust to the increase
in the number of demonstrations. However, this
advantage gradually diminishes when adding more
demonstrations. All methods seem to perform com-
parably at around K = 16, suggesting that the
ability to learn from context is close to its upper
bound at this point.

In addition, we observe an interesting phe-
nomenon in the experiment. We find that the perfor-
mance of RD sharply declines when there are too
many demonstrations (decreasing by 12.02 points
from K = 24 to 30, and 25.24 points from K = 30
to 40.), while RDSCA does not suffer such huge
losses. We explain this phenomenon from two
aspects: First, as mentioned earlier, if not customiz-
ing the causal attention, the model learns short-
cuts from repeated examples rather than input-label

mapping, which leads to a decline in ICL perfor-
mance. Second, due to the repetition of demonstra-
tions, the context becomes too long when adding
too many demonstrations, and some studies have
shown that LLMs still have difficulty modeling
long sequences. Our method can effectively solve
these problems by customizing attention. There-
fore, we believe that our exploration of customizing
causal attention highlights a possible solution for
tackling the long sequence modeling issue, which
is worth further research in the future.

4.7 Discussions on Efficiency Issues

As repeating demonstrations involves expanding
the sequence lengths, the model is required to pro-
cess more tokens when compared with regular ICL,
which may lead to computational inefficiency and
extra memory consumption. However, we argue
that these efficiency issues can be neglected practi-
cally. Thanks to the auto-regressive nature of Large
Language Models LLMs, the representations of
previous tokens are not dependent on later tokens.
Therefore, in the inference phase, the representa-
tions of demonstrations can be pre-computed and
stored offline, thereby mitigating the added com-
putational burden. Moreover, our adaptation of
the attention mask allows the LLM to focus only
on tokens within the sliding window for key-value
(KV) caching, rather than retaining information
on all previous tokens. This optimization reduces
the memory requirements of RdSca. Consequently,
the memory consumption of RdSca remains on par
with that of a standard ICL setup.

5 Related Works

5.1 In-context Learning

In-context learning (ICL) is an effective approach
for adapting pre-trained LLMs to downstream
tasks (Brown et al., 2020). This is achieved by
adding task-specific templates and demonstrations
before the test query, without updating model pa-
rameters. Recent works focus on enhancing ICL
with various techniques. For example, Liu et al.
(2022); Rubin et al. (2022); Ram et al. (2023); Luo
et al. (2023) propose that choosing demonstrations
more carefully results in better ICL performance.
Some studies try improving ICL with more sophis-
ticated prompt templates, either by hand-craft or
by automation (Gonen et al., 2022). Some pro-
pose chain-of-thoughts (CoT) to elicit the reason-
ing abilities of LLMs by augmenting each demon-
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stration with a chain of reasoning steps (Wei et al.,
2022). Subsequent studies have continued to build
upon this approach, achieving further improve-
ments (Wang et al., 2022). Some studies explore
the mechanism of ICL. Min et al. (2022) shows that
randomly replacing labels in the demonstrations
barely hurts performance so ground truth demon-
strations are not required. (Wei et al., 2023) claims
that the success of ICL relies on both semantic prior
knowledge and input-label mappings. They find
that larger models can better capture input-label
mappings from demonstrations.

5.2 Attention Customization

There has been a number of work done on at-
tention customization since Transformer was pro-
posed (Vaswani et al., 2017). many of them fo-
cus on modeling long sequences (Kitaev et al.,
2020; Beltagy et al., 2020) or improving efficiency
through sparse attention (Tay et al., 2023). Some
works have explored customizing attention to block
certain dependencies. For example, Mu et al.
(2023) prevents later tokens from attending to the
prompt to compress context. These attention cus-
tomizations can be viewed as some kind of modi-
fications to the model architecture, which requires
additional training. However, our study is the first
to investigate the possibility of attention customiza-
tion during inference without further training.

6 Conclusion

In this study, we introduce RDSCA, a novel ICL
framework that enhances the learning of the input-
label mapping from demonstrations. We propose
that the causal attention mechanism of decoder-
only LLMs restricts the model from fully exploiting
the input-label mapping from demonstrations. To
address this, we suggest repeating demonstrations
to allow each demonstration to have full context
and customizing the vanilla causal attention mecha-
nism to prevent information leakage. Experimental
results show that our method consistently improves
the input-label mapping ability of ICL on LLMs
of different scales. Furthermore, we delve deeper
into causal attention customization and show how
different attention settings affect ICL performance.
Additionally, this work is the first to customize
the causal attention of a pre-trained autoregressive
LLM without further training, which may pave the
way for further research in this direction.

Limitations

Although RDSCA has demonstrated outstanding
performance in capturing the full input-label map-
ping from demonstrations, there are some limi-
tations to our work in this section that we must
acknowledge. First, our method expands the
sequence length by duplicating demonstrations,
which leads to increased computation costs and
inference latency. This may limit its practicality in
computation-constrained scenarios. Moreover, we
have not evaluated our method on more complex
tasks, nor have we determined its performance with
chain-of-thought scenarios. Therefore, in the fu-
ture, we need to investigate how it can be extended
to a broader range of task scenarios.
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A Full results

Methods 65B 30B 13B 7B

REGULAR ICL 59.82 55.18 47.79 49.72
RD 63.66 59.91 49.68 49.34
RDSCA 75.76 69.32 53.03 50.92

with demonstration retrieval
REGULAR ICL 74.75 65.62 58.00 56.88
RD 77.13 73.63 56.38 59.25
RDSCA 87.38 82.13 68.88 64.63

Table 4: Full evaluation results on SST-2

Methods 65B 30B 13B 7B

REGULAR ICL 76.79 58.15 44.98 50.67
RD 76.12 56.49 42.94 48.34
RDSCA 76.90 56.17 46.97 50.66

with demonstration retrieval
REGULAR ICL 78.12 64.73 45.54 57.59
RD 79.72 60.38 49.06 59.91
RDSCA 79.72 60.38 52.83 57.08

Table 5: Full evaluation results on CB

Methods 65B 30B 13B 7B

REGULAR ICL 53.67 49.13 61.50 59.62
RD 53.20 53.37 62.54 57.96
RDSCA 59.68 53.44 60.05 57.23

with demonstration retrieval
REGULAR ICL 60.17 53.85 67.94 63.47
RD 61.79 62.95 70.38 64.20
RDSCA 64.87 61.54 66.79 64.36

Table 6: Full evaluation results on QQP

Methods 65B 30B 13B 7B

REGULAR ICL 59.38 53.45 47.84 46.56
RD 58.27 52.28 47.77 47.63
RDSCA 60.51 54.49 45.33 47.29

with demonstration retrieval
REGULAR ICL 63.21 60.90 51.79 52.56
RD 62.03 65.67 51.66 53.14
RDSCA 64.43 66.15 51.27 52.98

Table 7: Full evaluation results on QNLI

Methods 65B 30B 13B 7B

REGULAR ICL 36.97 36.33 29.69 28.19
RD 37.86 36.49 30.31 27.64
RDSCA 43.85 40.09 31.12 30.89

with demonstration retrieval
REGULAR ICL 70.75 70.38 67.12 67.50
RD 74.63 76.12 72.00 74.12
RDSCA 75.13 76.25 70.12 70.75

Table 8: Full evaluation results on AG-News

Methods 65B 30B 13B 7B

REGULAR ICL 72.36 63.99 55.4 53.76
RD 72.0 65.56 55.4 55.6
RDSCA 73.07 65.8 57.07 53.95

with demonstration retrieval
REGULAR ICL 72.25 63.12 56.75 52.75
RD 72.39 65.27 55.7 54.66
RDSCA 74.07 65.92 56.74 53.23

Table 9: Full evaluation results on RTE
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