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Abstract

We argue that translation quality alone is not
a sufficient metric for measuring knowledge
transfer in multilingual neural machine transla-
tion. To support this claim, we introduce Rep-
resentational Transfer Potential (RTP), which
measures representational similarities between
languages. We show that RTP can measure
both positive and negative transfer (interfer-
ence), and find that RTP is strongly correlated
with changes in translation quality, indicating
that transfer does occur. Furthermore, we in-
vestigate data and language characteristics that
are relevant for transfer, and find that multi-
parallel overlap is an important yet under-
explored feature. Based on this, we develop
a novel training scheme, which uses an aux-
iliary similarity loss that encourages represen-
tations to be more invariant across languages
by taking advantage of multi-parallel data. We
show that our method yields increased trans-
lation quality for low- and mid-resource lan-
guages across multiple data and model setups.

1 Introduction

Multilingual neural machine translation (mNMT)
(Ha et al., 2016; Johnson et al., 2017) can support
multiple translation directions in a single model,
with low-resource languages benefiting most and
high-resource languages degrading in quality (Ari-
vazhagan et al., 2019). However, there is a large
discrepancy among low-resource languages, with
some languages benefiting a lot, while others see
relatively little improvement. Conflicting findings
have emerged in cross-lingual knowledge transfer
research, leaving the underlying causes for this dis-
crepancy unclear. For example, some studies have
found that token overlap can be leveraged to in-
crease translation performance (Patil et al., 2022;
Wu and Monz, 2023), while others have found that
token overlap is unimportant for cross-lingual trans-
fer (K et al., 2020; Conneau et al., 2020).

In the context of transferring knowledge from
a parent translation model to a child model, some
research has shown that quality improvements are
larger when using a closely related parent (Zoph
et al., 2016), while others found that unrelated lan-
guage pairs can work even better (Kocmi and Bojar,
2018). Another finding is that an English-centric
model benefits most from positive transfer for direc-
tions into English, while improvement in the other
directions is modest (Arivazhagan et al., 2019).

One of the most striking observations in the lit-
erature is that the improvements of many-to-one
mNMT can be explained to a large extent by the
increased amount of target data (Fan et al., 2021),
rather than by cross-lingual knowledge transfer.

Understanding cross-lingual knowledge trans-
fer in the context of mNMT is an under-explored
research direction (Hupkes et al., 2023). Despite
some existing studies that have examined mNMT
representations, none have yet connected these rep-
resentations to knowledge transfer. For instance,
when translating "voiture" in French and "Auto"
in German to "car" in English, one would expect
that the cross-attention context vectors for French-
English and German-English would be similar.
However, Johnson et al. (2017) show that cluster-
ing occurs on the sentence level rather than the
word level. Even identical sentences in various
languages do not occupy the same position in the
representation space (Escolano et al., 2022), and
encoder representations are dependent on the target
language (Kudugunta et al., 2019) instead of source
meaning.

In this paper, we investigate the relationship
between cross-lingual transfer and cross-attention
similarities between languages, which we formalise
as Representational Transfer Potential (RTP). This
allows us to reason about knowledge transfer in a
way translation quality (BLEU) is unable to cap-
ture. We investigate cross-attention because it acts
as bottleneck between the encoder (mostly respon-
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sible for representing the source sentence) and the
decoder. We find that RTP can be used to quantify
positive, as well as negative transfer (also known
as interference). Furthermore, we show that these
similarities correlate with improvements in trans-
lation quality, indicating that there is knowledge
transfer, and the improved translation quality is not
only due to the increased data on the target side.

Our approach allows us to identify the dataset
and language characteristics that are relevant for
transfer, such as multi-parallel overlap between
languages. Based on our findings, we propose
a method for training a multilingual translation
model using an auxiliary similarity loss that ex-
ploits multi-parallel data, thereby increasing the
degree of language invariance across source repre-
sentations. Contrary to common perception, a sig-
nificant amount of multi-parallel data exists within
parallel datasets such as WMT, making it more
abundant than commonly assumed (Freitag et al.,
2020). Our method works by alternately feeding
parallel and multi-parallel batches to a model. For
multi-parallel batches, we minimize an auxiliary
similarity loss that encourages context vectors, re-
sulting from cross-attention, to be similar. Our re-
sults show that this approach leads to increased per-
formance for low-resource languages across multi-
ple data and model setups.

2 Analyzing Transfer in Many-to-Many
Models

In this section, we aim to delve deeper into the un-
derstanding of knowledge transfer across languages
in mNMT models, moving beyond the commonly
used metric of translation quality as a proxy for
transfer. By exploring the relationship between
transfer and hidden representations in a multilin-
gual model, we aim to gain insight into why certain
languages benefit more from multilingual training
(as discussed in Section 3). Furthermore, we aim to
develop training strategies that can increase repre-
sentational similarity and thus enhance knowledge
transfer (as outlined in Section 4).

2.1 Experimental Setup

Data To investigate the relationship between
transfer and representation in multilingual machine
translation, we conduct our experiments on the
TED Talks corpus (Qi et al., 2018). The corpus
comprises parallel data from 59 languages and is
chosen over other large parallel corpora such as

OPUS-100 (Zhang et al., 2020) due to its high
translation quality and inclusion of relatively large
portions of explicit multi-parallel data, which is an
important characteristic for our analysis. We train
a many-to-many model on all language pairs that
contain English in the source or target, resulting
in 116 translation directions. To ensure compara-
ble results, we apply joint subword segmentation
(Sennrich et al., 2016) and use a vocabulary size of
32K. We also train and evaluate bilingual baselines
using the same setup.

Additionally we evaluate on the out-of-domain
FLORES-101 evaluation benchmark (Goyal et al.,
2021). Out-of-domain data helps to assess robust-
ness and generalization capabilities, and provides a
more realistic measure of how well the system can
handle diverse and unexpected inputs. This dataset
is completely multi-parallel, which is a necessary
property for our analysis. It consists of a dev (997
sentences) and devtest (1012 sentences) split, both
of which we combine to enhance the robustness
of our findings. Sentences are extracted from En-
glish Wikipedia, and translated to 101 languages
by professional translators.

Evaluation We calculate BLEU scores (Papineni
et al., 2002) using sacreBLEU (Post, 2018). 1

Models We train many-to-one and many-to-
many Transformer base models (Vaswani et al.,
2017). Detailed information about the models and
training process can be found in Appendix A.1.

Results For evaluation on TED we used tok-
enized BLEU to be comparable with Neubig and
Hu (2018) and Aharoni et al. (2019). Table 1
shows that our many-to-one and many-to-many
models obtains comparable or better BLEU scores
for X→English directions.

2.2 (Dis-)advantages of Multilingual Training
Having validated that our model meets strong base-
lines, we will use the FLORES-101 (Goyal et al.,
2021) evaluation dataset for our subsequent analy-
ses. X→En results are summarized in Table 2. 2 In
general, low-resource and mid-resource languages
benefit (+8.5 and +4.5 BLEU), and high-resource
language scores are weakened (−0.7 BLEU) com-
pared to bilingual baselines. Similar to previous
findings (Johnson et al., 2017) we find that a many-
to-many setup outperforms a many-to-one setup.

1nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
2For full results on TED, see Table 4
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Be-En Az-En Gl-En Sk-En De-En It-En He-En Ar-En Avg.
Train dataset size 4.5K 5.9K 10K 61K 167K 203K 211K 213K 109K

Neubig and Hu (2018) (many-to-one) 18.3 11.7 29.1 28.3 – – – – 21.6
Aharoni et al. (2019) (many-to-many) 21.7 12.8 30.7 29.5 33.0 35.1 33.2 28.3 28.04

Ours (many-to-one) 23.8 14.3 34.9 33.4 36.3 38.5 36.5 31.3 31.1
Ours (many-to-many) 24.9 15.2 36.0 34.2 37.5 39.8 37.3 32.6 32.2

Table 1: X→En test BLEU (tokenized) on TED Talks corpus for language pairs from Aharoni et al. (2019).

low (<10K) mid (10K-150K) high (>150K)
12 languages 23 languages 17 languages

bi 1.2 12.3 18.6

m2o 8.8∗(12/0) 14.6∗(20/3) 15.0∗(0/17)

m2m 9.7∗(12/0) 16.8∗(21/0) 17.9∗(0/15)

Table 2: X→En BLEU on FLORES-101 for bilingual (bi),
many-to-one (m2o) and many-to-many (m2m) models. Re-
sults are bucketed by number of training examples in TED.
∗(n/m) denote the fraction of scores in a bucket the are sig-
nificantly better (n) or worse (m) to the bilingual baseline,
according to bootstrap resampling.

Low-resource BLEU scores have a large standard
deviation (±6.9), indicating that some languages
benefit much more than others.

2.3 Representational View on Transfer

To further investigate the differences between multi-
lingual and bilingual models, we will now focus on
understanding the underlying mechanics of knowl-
edge transfer. Using translation quality alone as
a measure of knowledge transfer is inadequate, as
differences in translation quality can have various
causes, such as target data distribution (Fan et al.,
2021). Therefore, in the following experiments,
we aim to gain deeper insight into the mechanisms
behind knowledge transfer in multilingual models,
focusing on the many-to-many model, which pro-
duced the highest translation scores.

When translating two semantically equivalent
sentences from different source languages to
the same target language, if the context vectors
produced by the cross-attention mechanism are
(almost) identical for every decoding timestep, the
resulting translations will be the same. However,
the reverse may not hold true; it is possible for
distinct context vectors to produce the same output,
and these variations may correspond to specific
aspects of the target language. The question of
whether source language invariance is a desirable
or even necessary trait for an mNMT model
remains unresolved.

Language invariance Our goal is to determine
the degree of language invariance in the encoder

representations of our multilingual model, and how
this affects translation quality and transfer. Unlike
previous studies that have focused on the investiga-
tion of hidden encoder and decoder representations
(Kudugunta et al., 2019), we concentrate on cross-
attention, which connects the encoder and decoder.
To investigate the degree of language invariance,
we sample semantically equivalent sentence triples
S from dataset D, where S = {x1, x2, y}. Here,
x1 and x2 are sentences that originate from two
different non-English source languages ` and `′,
while the language of the target sentence `τ is al-
ways English. We then measure the average cosine
similarity of the cross-attention vectors of all sen-
tences in ` and `′ at different decoding time steps t:

xsim(`,`′,`τ ) =
∑

S∈D∗

1

t

∑

t

c(×t(x1, y),×t(x2, y)),

(1)
where c is the cosine similarity, ×t(·, ·) is the con-
text vector, i.e., the result of encoder-decoder cross-
attention at decoding time step t, andD∗ is a subset
of D that consists of sentence triples in source lan-
guages ` and `′, and target language `τ (English).
We use FLORES-101, consisting of 2,009 multi-
parallel sentences. As we need multiple source
sentences and a single target sentence, our analy-
sis focuses on many-to-one directions. We only
consider cross-attention within the final decoder
layer in this analysis, and leave extensions to non-
English target languages to future work.

The resulting similarity matrix is displayed in
Figure 1 for eight languages. An xsim similarity
value of 1 indicates that the encoder representations
are identical for all decoding time steps, i.e., the
representations are language invariant. Conversely,
a low similarity suggests that the representations
are dissimilar on average, indicating that they are
far from being language invariant. From the matrix,
we can observe several patterns. High-resource
languages tend to have relatively high similarity
with other high-resource languages. For instance,
the similarity between French and Portuguese,
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ja fr el pt gl az bs ta

ja (203K)

fr (190K)

el (131K)

pt (52K)

gl (10K)

az (5.8K)

bs (5.6K)

ta (5.0K)

1 0.76 0.74 0.76 0.75 0.69 0.76 0.61

0.76 1 0.78 0.86 0.84 0.69 0.82 0.59

0.74 0.78 1 0.78 0.77 0.67 0.78 0.59

0.76 0.86 0.78 1 0.86 0.69 0.82 0.59

0.75 0.84 0.77 0.86 1 0.68 0.81 0.58

0.69 0.69 0.67 0.69 0.68 1 0.69 0.61

0.76 0.82 0.78 0.82 0.81 0.69 1 0.59

0.61 0.59 0.59 0.59 0.58 0.61 0.59 1

Figure 1: Average cosine similarities between context
vectors (see Equation 1) for different source language
combinations into English. Train data size is shown
between brackets. The higher the similarity, the higher
the degree of language invariance.

xsim(fr, pt, en), is 0.86, and between Greek and
French, xsim(el, fr, en), is 0.78. Furthermore, we
find that some low-resource languages, such
as Galician (gl) and Bosnian (bs), have high
similarities with high-resource languages. These
languages benefit greatly from multilingual
modeling, as evidenced by an increase of 16.8
and 20.1 BLEU points, respectively, compared
to their bilingual scores. Other low-resource
languages, such as Tamil (ta), do not have high
similarities with high-resource languages. These
languages do not benefit as much from transfer,
as demonstrated by a small increase of only 3.6
BLEU points in the case of Tamil. A full version of
the similarity matrix can be found in Appendix B.3.

Connecting representations to BLEU We
quantify the potential for knowledge transfer into
language ` ∈ L from other languages `′ ∈ L \ {`},
by connecting context vector similarity and transla-
tion quality. To the best of our knowledge, this is
the first approach that quantifies transfer at the rep-
resentational level. We define the Representational
Transfer Potential (RTP) as follows:

RTP(`) =
∑

`′∈L\{`,en}

∆B(`, `′)
max |∆B(`, `′)|xsim(`,`′,en),

(2)
where ∆B(`, `′) is the difference in bilingual
BLEU scores between the languages when translat-
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Figure 2: The x-axis represents Representational Trans-
fer Potentials (RTP), which measure the total transfer
potential for a language (as detailed in Equation 2),
on FLORES-101. The y-axis illustrates the differ-
ence in BLEU scores (multilingual BLEU - bilingual
BLEU) on FLORES-101. The size of the dots indicates
the bilingual BLEU score. The correlation coefficient
(Spearman’s ρ) is .77 and it is statistically significant
(p < 0.001). The trend illustrates that a higher RTP
value is positively associated with changes in transla-
tion performance in a multilingual setting.

ing into English, which can be thought of as an up-
per bound for the potential transfer between ` and
`′. ∆B(`, `′) is then weighted by the average repre-
sentational similarity between ` and `′ when trans-
lating into English, xsim(`,`′,en) (see Equation 1).
RTP thus shows to what extent languages act as
donor, i.e., benefiting other languages, or recipi-
ent, i.e., benefiting from other languages. Positive
transfer can occur when a language `′ has better
translation performance than `, which increases
the weighted RTP(`) score. Negative transfer can
occur when language `′ has worse translation per-
formance than `, which decreases the score. It is
important to note that RTP is not a score of a lan-
guage in isolation, but rather a score of a language
dataset in the context of other language datasets.
Thus, RTP depends on the languages involved and
the available resources in a dataset.

In Figure 2, we plot the resulting RTP scores
on the x-axis, and the changes in BLEU scores in
a multilingual model versus a bilingual model on
the y-axis. We observe a strongly positive and sig-
nificant correlation (ρ = .77, p < 0.001), where
a higher RTP score implies increased translation
performance, and a lower RTP score implies lower
translation performance. Consider Hebrew (he),
which has high similarities with lower perform-
ing languages, and smaller similarities with better
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performing languages. Therefore, RTP can cor-
rectly predict that Hebrew does not benefit from
the multilingual setup, which is evidenced by its
negative RTP score (−.39) and decreased BLEU
score (−3.7). On the other hand, Bosnian (bs) has a
relatively high RTP score of .28, meaning it is sim-
ilar to languages with stronger translation quality.
Bosnian is the language that benefits most from the
multilingual setup (+20.1 BLEU). This means that
the resulting differences in translation quality are
due to knowledge transfer as captured by the RTP
score, and not as a side effect of increased target
data size. However, it is worth mentioning that this
trend is not perfect and can only explain part of the
transfer. For instance, Galician and Finnish have
similar RTP scores (.23 and .21) but the increase in
translation quality for Galician is far greater: 16.8
vs 3.8 for Finnish. The discrepancies in RTP scores
warrant further investigation (see next Section).

To ensure the validity and generalizability of our
RTP analysis findings beyond a single test dataset
(FLORES-101), we incorporate an additional test
dataset, NTREX-128 (Federmann et al., 2022). It
consists of 1997 multi-parallel sentences in 128
languages. For NTREX-128, we again observe a
strongly positive correlation (ρ = .73, p < 0.001)
between RTP and translation quality, further es-
tablishing their relationship. See Appendix B.1
Figure 4 for the corresponding plot. Additionally,
the mean absolute RTP deviation per language on
FLORES-101 and NTREX-128 is 0.008, and the
correlation is extremely robust ((ρ = .99, p <
0.001)). These results provide further evidence that
RTP scores are consistent across different test sets,
rather than being an artifact of a specific dataset.

We also perform ablations on RTP and compare
to linguistic baselines, which are detailed in Ap-
pendix B.1. We conclude that RTP has far better
correlation with translation quality compared to
ablations and linguistic baselines.

Finally, we show that RTP can be used to pick
suitable auxiliary transfer languages. We find that
training a language with its top 5 RTP contribu-
tors leads to substantially better results of up to
6.8+ BLEU, compared to training with its bottom
5 contributors. More results are in Appendix B.2.

3 Analyzing Causes for Transfer

Next, we investigate characteristics that are relevant
for transfer. Our objective is to use dataset and
linguistic features to predict the representational

similarities xsim(`,`′,y), as defined in Equation 1.

3.1 Data Features and Linguistic Features
Dataset size: The difference in training data size
for two languages may serve as a predictor for
transfer. It is likely that a low-resource language
would benefit from a high-resource language. Let
S` denote the number of parallel sentences to En-
glish for language `, and S`′ be defined similarly
for language `′. We then compute the ratio of the
smaller value to the larger value as follows:

S(`,`′) =
min(S`, S`′)

max(S`, S`′)
. (3)

Since xsim is symmetric, we design features that
are also symmetric, when applicable.

Vocabulary occupancy: We calculate the
difference in vocabulary occupancy for ` and `′.
The fraction of the vocabulary that is used by a
language captures information about how well the
subwords are optimized for that language. Let V`
be the set of unique subwords in vocabulary V that
are present in the training data S` of language `.
The vocabulary occupancy is then computed as:
|V`|/|V |. V`′ is defined similarly. The vocabulary
occupancy ratio between ` and `′ is defined as:

V(`,`′) =
min(|Vl|/|V |, |V`′ |/|V |)
max(|Vl|/|V |, |V`′ |/|V |)

. (4)

Source subword overlap: We measure the simi-
larity between the (subword) vocabularies of lan-
guage ` and language `′. This is calculated by
taking the ratio of the number of subwords that
are common to both languages (|V` ∩ V`′ |) and the
total number of unique subwords in both languages
(|V` ∪ V`′ |) according to the following equation:

Osrc(`,`′) =
|V` ∩ V`′ |
|V` ∪ V`′ |

. (5)

We also investigated the use of frequency-weighted
subwords, which produced similar results.
Multi-parallel overlap: We are interested to see
how generating identical target sentences (in En-
glish) affects transfer. To calculate this, we take
the ratio of the number of multi-parallel sentences
shared by the languages ` and `′, denoted as
S`′ ∩ S`, to the total number of training sentences
in both languages (S`′ ∪ S`):

Sshared(`,`′) =
|S`′ ∩ S`|
|S`′ ∪ S`|

. (6)
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Target n-gram overlap: We also measure the sim-
ilarity between the generated target n-grams for the
languages. This is similar to the (weighted) source
subword overlap but applied to the target side. Let
S(`,`p) be the set of aligned training sentence pairs
of language ` with pivot language `p (English is
taken as pivot here). The (weighted) target subword
overlap is then defined as:

Otgt(`,`′) =
∑

i

∑

n

n-g(Si(`′,`p)) · n-g(Si(`,`p)) · n,

(7)
where n-g(·) is the n-gram count in a sentence. We
have also experimented with higher-order n-grams,
and found similar results as unigram, thus we only
report the results for unigram.
Linguistic features: We adopt five linguistic fea-
tures, as described in Lin et al. (2019): geo-
graphic distance, genetic distance (derived from
language descent tree), inventory distance (kNN-
based phonological inventory vectors, distinct from
phonological distance), syntactic distance, and
phonological distance.

3.2 Experimental Setup

We treat the prediction of the representational sim-
ilarities xsim(`,`′,`τ ) (see Equation 1) when trans-
lating into target language `τ (English) between
source languages ` and `′ as a regression prob-
lem. We use the features described in the previ-
ous subsection as input variables. To account for
variations in feature values across different lan-
guage pairs, we scale the features between 0 and
1. We consider all 52 source languages. Consider-
ing that representational similarities are symmetric,
and discarding combinations where ` = `′, the re-
sulting number of to be predicted representational
similarities is (52·52)−52

2 = 1326. We use a leave-
one-out cross-validation approach, leaving out all
similarities for a single language in each round.
To evaluate the performance of the model, we use
the average (over all language pairs) mean abso-
lute error (MAE) as the evaluation metric. Since
different machine learning algorithms have differ-
ent inductive biases, we train and evaluate three
regression models using the scikit-learn library (Pe-
dregosa et al., 2011): linear regression (LR), mul-
tilayer perceptron (MLP), and gradient boosting
(GB). The detailed hyper-parameter settings used
for each model can be found in Appendix A.2.

Regressor LR MLP GB

baseline (noise) 0.061 0.061 0.061

da
ta

se
t

dataset size 0.052 0.052 0.046
vocabulary occupancy 0.041 0.041 0.035
multi-parallel overlap 0.047 0.042 0.034
source subword overlap 0.040 0.036 0.031
target subword overlap 0.050 0.046 0.042

lin
gu

is
tic

geographic distance 0.062 0.053 0.049
genetic distance 0.054 0.053 0.049
inventory distance 0.062 0.061 0.055
syntactic distance 0.051 0.050 0.050
phonological distance 0.061 0.061 0.052

all data 0.031 0.029 0.021
all linguistic 0.049 0.043 0.034
all data + all linguistic 0.028 0.025 0.016

Table 3: Mean absolute error (MAE) scores averaged
over language pairs for transfer prediction, i.e., predict-
ing xsim(`,`′,`τ ) (similarity scores between languages `
and `′ when translating into English, see Equation 1)
using data features and linguistic features (Section 3.1).
Best scores per regressor in bold and per feature class
underlined.

3.3 Prediction Results

The results for predicting representational similari-
ties are shown in Table 3. First, combined features
lead to better MAE scores than single features. Us-
ing all dataset features results in better predictions
than using all linguistic features, and combining
dataset and linguistic features results in best results
for all algorithms. Furthermore, all single features
have the potential to improve over a naïve baseline
(random input), indicating that they have at least
some predictive power.

3.4 Feature Importance

We investigate the importance of features to gain a
better understanding of their role in transfer.
Linear regression coefficients: Weight coeffi-
cients are used as a crude measure of feature impor-
tance. These coefficients quantify the conditional
association between the target xsim and a given
feature, while holding other features constant. The
sign of the coefficients shows the direction of the
association, and the magnitude is an indication of
the strength of the association. In Figure 3, we
can see that multi-parallel overlap, source subword
overlap, and vocabulary occupancy have the largest
positive weights among the data features, which
implies that these features are positively associated
with the target variable and have a strong influence
on the prediction. Furthermore, Genetic and Syn-
tactic distance have the highest importance among
the linguistic features.
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Figure 3: Feature importance for transfer prediction:
linear regression sign of coefficients. Absolute values
are plotted. Black line indicates negative coefficient
(e.g., genetic distance is negative).

Permutation importance: To further understand
the importance of each feature, we additionally
calculate permutation feature importance scores
(Breiman, 2001; Fisher et al., 2019). This method
evaluates the decrease in model score when a sin-
gle feature value is randomly shuffled. This model-
agnostic procedure breaks the relationship between
the feature and the target, thus the drop in the model
score is indicative of how much the model depends
on the feature. The results using permutation fea-
ture importance are consistent with the results ob-
tained using linear regression coefficients. Specifi-
cally, we find that multi-parallel overlap is the most
important feature for all three regression models.
Source subword overlap is also important for MLP
and GB, and slightly less for LR. Vocabulary oc-
cupancy and dataset size also score relatively high
on importance. Genetic distance is consistently the
most important linguistic feature among all models.
For more details, the permutation feature impor-
tance plots can be found in Appendix B.4.

4 Optimising for Representational
Invariance

Some features that we have shown to be predic-
tive of transfer have been used in previous work.
Higher vocab overlap leads to more positive trans-
fer (Chung et al., 2020; Patil et al., 2022; Sun et al.,
2022). Temperature sampling addresses dataset
size (imbalance) (Arivazhagan et al., 2019). Back-
translated data can be used for similar effect (Liao
et al., 2021). Grouping languages by their linguis-
tic similarity outperforms English-centric models
(Oncevay et al., 2020; Fan et al., 2021). In contrast,
there are no such methods for multi-parallel data.

Parallel datasets contain a large number of hidden
multi-parallel sentences that remain unused, and
resurfacing these improves multilingual translation
quality (Freitag and Firat, 2020; Xu et al., 2022).
However, these approaches only add multi-parallel
data, but do not explicitly exploit multi-parallel
properties as part of the learning objective. In con-
trast, we describe a method that explicitly leverages
the characteristics of multi-parallel data.

We introduce an auxiliary similarity loss that en-
courages context vectors to be more similar when
generating the same target token. When sampling a
parallel batch, consisting of a source sentence x and
the corresponding target sentence y, we optimize
the cross-entropy loss as usual. When sampling a
multi-parallel batch, consisting of meaning equiva-
lent triples {x1, x2, y} (as defined in Section 2.3),
such that y 6= x1 and x1 6= x2, we optimize a
similarity loss function:

Lxsim(x1,x2,y) =
n∑

t=1

s(×t(x1, y),×t(x2, y)), (8)

where s(·, ·) is a similarity function and ×t(·, ·) is
the context vector resulting from the cross-attention
at decoding timestep t. The goal of minimizing
Lxsim is to encourage representations that are in-
variant across languages. The final learning objec-
tive for multi-parallel batches (x1, x2, y) combines
minimizing Lxsim and cross-entropy (LCE):

L(x1,x2,y) = λLxsim(x1,x2,y) +
2∑

i=1

LCE(xi,y). (9)

4.1 Experimental Setup
We follow the setup as described in Section 2.1 and
make the following modifications: 1) we sample
parallel and multi-parallel batches in a 1:1 ratio, 2)
for the multi-parallel batches, we optimize an auxil-
iary cosine similarity loss and set weight to λ = 1.
To reduce the impact of a small number of dimen-
sions that can dominate similarity metrics, known
as rogue dimensions (Timkey and van Schijndel,
2021), we subtract the mean context vector c̄ from
each context vector in the batch before calculating
similarities. If we sample a batch where English is
not the target, we do not calculate a similarity loss,
i.e., λ = 0. Note, that our method does not require
a dataset that is fully multi-parallel. The paral-
lel dataset consists of all X→En and En→X pairs.
Its size is 10M pairs. The multi-parallel dataset
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FLORES-101 TED

low (<10K) mid (10K-150K) high (>150K) low (<10K) mid (10K-150K) high (>150K)
12 languages 23 languages 17 languages 12 languages 23 languages 17 languages

many-to-many 9.7 16.8 17.9 20.5 30.2 31.2

+ multi-parallel 9.9∗(0/0) 16.9∗(0/0) 17.7∗(0/0) 20.8∗(0/0) 30.1∗(0/0) 31.0∗(0/0)

+ xsim 11.5∗(12/0) 17.8∗(18/0) 17.4∗(0/13) 21.8∗(12/0) 30.7∗(14/1) 30.4∗(0/14)

many-to-one 8.8 14.6 15.0 19.9 27.9 27.2

+ multi-parallel 8.6∗(0/0) 14.7∗(0/0) 14.9∗(0/0) 19.7∗(0/0) 27.6∗(0/0) 27.0∗(0/0)

+ xsim 10.8∗(12/0) 15.7∗(16/2) 14.5∗(0/10) 22.0∗(12/0) 28.8∗(14/2) 26.6∗(0/11)

Table 4: X→En BLEU on FLORES-101 and TED test for multilingual many-to-many and many-to-one models,
compared to including multi-parallel batches during training (multi-parallel) and additionally adding our auxiliary
similarity loss (+ xsim). ∗(n/m) denote the fraction of scores in a bucket the are significantly better (n) or worse
(m) to the bilingual baseline, according to bootstrap resampling.

consists of all (x1, x2) source combinations, with
target y fixed to English. The size is 5.9M triples.

Additionally we perform an ablation experiment
where we set the similarity loss to 0, to investi-
gate the role of the loss versus the modified data
sampling strategy. Note that we cannot ablate the
multi-parallel batching, since the similarity loss
requires multi-parallel batches.

4.2 Results

We include results for our method on both
in-domain (TED) and out-of-domain test sets
(FLORES-101), for both many-to-many as well as
many-to-one models. Table 4 shows BLEU scores
and a comparison to the baselines. Adding multi-
parallel batches and our similarity loss yields im-
provements for low- and mid-resource languages,
in both many-to-many and many-to-one models.
Including multi-parallel batches without applying
a similarity loss leads to scores that are not sta-
tistically significantly different from the baseline.
Furthermore, many-to-many models have the best
performance on all aggregated test score buck-
ets. Lowest resource languages benefit most from
this approach, with an average BLEU increase of
+1.8 and +1.3 (many-to-many). This makes sense,
since Lxsim encourages the representations of these
languages to be more similar to other languages,
most of which have better performance. Mid-
resource languages also benefit from adding Lxsim:
+1.0 and +0.5 average increase for FLORES-101
and TED. Higher resource languages suffer from
adding the auxiliary loss (−0.5 for FLORES-101,
−0.8 for TED). These results demonstrate that
lower- and mid-resource languages improve when
explicitly optimizing for language invariance using
multi-parallel data. Higher-resource languages pay

a small price in performance. This trend holds for
in- and out-of-domain test sets, and different types
of multilingual models.

5 Related Work

Analyzing mNMT Investigating representations
using Singular Value Canonical Correlation Analy-
sis (SVCCA, Raghu et al., 2017) showed that en-
coder representations cluster on linguistic similar-
ity, and encoder representations are dependent on
the target language (Kudugunta et al., 2019). Addi-
tionally, the set of most important attention heads
are similar across language pairs, which enables
language clustering (Kim et al., 2021). Further-
more, representations of different languages cluster
together when they are semantically related (John-
son et al., 2017; Escolano et al., 2019). In particular,
visualising cross-attention per decoding time-step
shows that meaning equivalent sentences generally
cluster together (Johnson et al., 2017).

However, the extent of these phenomena has
not been quantified per language. Moreover, these
studies have primarily focused on representations
in isolation, or its relation with linguistic similarity,
with less focus on the role of representations in
knowledge transfer. In contrast, we explicitly
connect representations to transfer, which allows
for a deeper understanding of the impact of transfer
on translation quality.

6 Conclusion

Previous research has primarily measured knowl-
edge transfer in terms of BLEU scores, leaving
open the question of whether improvements in
translation quality are due to transfer or other fac-
tors such as target data distribution. To address
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this gap, we proposed a new measure of knowl-
edge transfer, Representational Transfer Potential
(RTP), which measures the representational simi-
larities between languages. We demonstrated that
RTP is capable of measuring both positive and neg-
ative transfer (interference). A key finding is that
RTP is positively correlated with improved transla-
tion quality, indicating that the observed improve-
ments in translation quality are a result of knowl-
edge transfer rather than other factors. Addition-
ally, we explored the role of dataset and language
characteristics in predicting transfer, and found that
multi-parallel overlap is highly predictive for the
degree of transfer, yet under-explored in existing
literature. We proposed a novel learning objective
that explicitly leverages multi-parallel properties,
by incorporating an auxiliary similarity loss that
encourages representations to be invariant across
languages. Our results show that a higher degree
of invariance yields substantial improvements in
translation quality in low- and mid-resource lan-
guages.
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Limitations

While our focus is on English-centric many-to-
many and many-to-English models, it is impor-
tant to note that there has been prior work that has
explored non-English-centric setups, such as the
studies by Fan et al. (2021) and Freitag and Firat
(2020). This may present limitations in the general-
izability of our results to other multilingual settings.
While our analysis already uses 53 languages, we
did not measure to what extent our findings hold
when using even more languages. Furthermore,
our training data size is relatively small which may
affect model performance. We use TED instead
of the larger OPUS-100 dataset, because TED has
higher translation quality and consists of partly
multi-parallel data.

Broader Impact

In general, machine translation poses potential
risks such as mistranslation. This risk is higher

for low-resource languages. Our method of explic-
itly aligning representations likely results in less
risk for low-resource languages, since the trans-
lation quality is improved, and increased risk for
high-resource languages.
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A Experimental Setup

A.1 Translation Models

We use the Transformer Base architecture (6 lay-
ers, model dimension 512, hidden dimension 2048
and 8 attention heads) and share all parameters be-
tween all language pairs (Ha et al., 2016; Johnson
et al., 2017). We use Adam (Kingma and Ba, 2015)
(β1 = 0.9, β2 = 0.98 and ε = 10−9) to optimize
a label smoothed (Szegedy et al., 2016) (smooth-
ing=0.1) cross entropy loss function. To be able
to make use of multilingual data within a single
system we use a target-language prefix tag to each
source sentence (Johnson et al., 2017; Ha et al.,
2016). We tie the weights of the decoder input em-
beddings and the decoder softmax layer (Press and
Wolf, 2017) and apply a 0.2 dropout rate (Srivas-
tava et al., 2014) on the sum of the input- and posi-
tional embeddings, on the output of each sublayer,
on the output after the ReLU activation in each
feedforward sublayer, and to the attention weights.
The resulting model has 93M trainable parameters.
We use a batch size of 25k tokens. Following Neu-
big and Hu (2018) and Aharoni et al. (2019), we do
not use temperature sampling. Models are imple-
mented in our open-source translation system. All
models we train converge in approximately 2 days
of training, using 4x NVIDIA TITAN V (12GB)
GPUs.

A.2 Regressors

For MLP and GB, we report the average score over
3 random seeds. We do not report STD as it is
negligible.

MLP : For the multilayer perceptron, we used
hidden layer dimensionality 80 using 3 layers. We
use the ReLU activation function, Adam (Kingma
and Ba, 2015) (β1 = 0.9, β2 = 0.98 and ε =
10−9).

GB: For the gradient booster, we used squared
error, 0.1 learning rate, and 100 estimators.

B Additional Results

B.1 Representational Transfer Potential
ablations

Table 5 shows ablations on RTP, and linguistic base-
lines as described in Lin et al. (2019). We calcu-
late correlation coefficients (Spearman’s ρ) on the
metrics and the difference in BLEU scores (multi-
lingual BLEU - bilingual BLEU) on FLORES-101.

metric ρ p

RTP .77 < .001
only ∆ BLEU .56 < .001
only xsim 0.28 < .05

genetic distance −.11 > .30
inventory distance −.14 > .30
syntactic distance .14 > .30
phonological distance −.13 > .30
combined distances −.01 > .30

Table 5: RTP ablations and linguistic baselines, calcu-
lated on FLORES-101.
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Figure 4: The x-axis represents Representational Trans-
fer Potentials (RTP), which measure the total transfer
potential for a language (as detailed in Equation 2), on
NTREX-128. The y-axis illustrates the difference in
BLEU scores (multilingual BLEU - bilingual BLEU)
on NTREX-128. The size of the dots indicates the bilin-
gual BLEU score.

Removing the xsim term in RTP gives ρ = .56,
and removing ∆ BLEU results in ρ = 0.77. The
linguistic features do not correlate with BLEU dif-
ference. We conclude that RTP has far better cor-
relation with translation quality than linguistic dis-
tances and ablations.

Figure 4 shows RTP scores calculated on the
NTREX-128 (Federmann et al., 2022) dataset. The
trend illustrates that a higher RTP value is posi-
tively associated with changes in translation per-
formance in a multilingual setting. The correlation
coefficient (Spearman’s ρ) is 0.73 and it is statis-
tically significant (p < 0.001). Figures 4 and 2
(RTP vs delta BLEU on FLORES-101) are highly
similar, indicating that RTP generalizes to different
test sets.
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Be RTPtop size Be RTPmin size Bn RTPtop size Bn RTPmin size

1 uk (0.75) 107K -1 bn (0.59) 3.9K 1 hi (0.65) 178K -1 es (0.58) 195K
2 ru (0.75) 206K -2 ta (0.6) 5.1K 2 mr (0.65) 9.3K -2 gl (0.58) 9.9K
3 bg (0.73) 172K -3 my (0.6) 19K 3 ur (0.62) 5.7K -3 pt (0.58) 52K
4 mk (0.72) 249K -4 mr (0.64) 9.3K 4 mn (0.62) 7.4K -4 it (0.59) 203K
5 sr (0.72) 136K -5 ur (0.64) 5.7K 5 hy (0.62) 203K -5 nb (0.59) 16K

Table 6: RTP top and bottom contributing languages for Belarusian (first two columns) and Bengali (last two
columns). Data sizes for the contributing languages into English are shown in columns size. We underline the
smallest from the top or bottom, and use this size to subsample the larger one when creating the RTP top and
bottom training sets.

B.2 Represenational Transfer Potential: Top
5 vs Bottom 5

For Belarusian and Bengali, we find the top 5 and
bottom 5 contributors to their RTP scores. We then
create a training set for both sets, by comparing
the top and bottom data sizes and subsampling the
largest such that it has the same size as the smallest.
This information is presented in Table 6.

We then train a many-to-many system on the
resulting datasets, after including Belarusian or
Bengali and English. Results can be found in Ta-
ble 7. We observe large discrepancies in scores
for the top 5 and bottom 5 datasets, even though
the dataset sizes are identical, for both in-domain
(TED) and out-of-domain (FLORES-101) settings.
In all cases, the model trained on the top 5 RTP con-
tributors outperforms the one trained on the bottom
5 contributors. The difference is substantial: Be-En
on TED with the top RTP contributors scores 16.2
BLEU, whereas the system trained on the bottom
contributors results in 9.4 BLEU. These findings
show that RTP can be used to identify suitable aux-
iliary transfer languages.

B.3 Encoder Representation Similarity
Figure 5 shows cross-attention similarities between
all language combinations.

B.4 Permutation Feature Importances
See Figure 6 for the feature importance box plots.
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FLORES-101 TED

Be-En Bn-En Be-En Bn-En

bilingual 0.5 0.4 6.1 6.8
many-to-many (all) 7.0 6.1 24.9 19.3

many-to-many (RTPtop) 5.4 4.1 16.2 12.9
many-to-many (RTPmin) 2.3 1.6 9.4 6.2
∆ BLEU +3.1 +2.5 +6.8 +6.7

Table 7: Be-En and Bn-En BLEU scores on FLORES-101 and TED. We compare systems trained on bilingual
data with many-to-many systems trained on all data (all), the top 5 contributors to RTP (RTPtop), and the bottom 5
contributors to RTP (RTPmin).
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Figure 5: Cross-attention similarities for all language combinations. Training data size into English depicted
between brackets. (Zoom for better visibility.)
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Figure 6: Sorted permutation feature importance scores
for LR (top), MLP (middle) and GB (bottom).
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